page 1

MONITORING REPORT

JI0079 - CMM utilisation on the Joint Stock Company named Komsomolets Donbassa Coal Mine of DTEK (Donbasskaya Toplivnaya Energeticheskaya Kompanya)

Monitoring Report 03 Monitoring period 01/11/2010 to 30/06/2011

Version 4 23 August 2011

CONTENTS

- A. General project activity and monitoring information
- B. Key monitoring activities
- C. Quality assurance and quality control measures
- D. Calculation of GHG emission reductions

<u>Annexes</u>

Annex 1: References
Annex 2: Installation scheme including metering positions
Annex 3: Data flowchart
Annex 4: Deviations from the monitoring plan as stated in the PDD
Annex 5: Differences between the determined PDD and implemented project
Annex 6: Photo of the plant

SECTION A. General project activity information

A.1 Title of the project activity:

CMM utilisation on the Joint Stock Company named Komsomolets Donbassa Coal Mine of DTEK (Donbasskaya Toplivnaya Energeticheskaya Kompanya)

A.2. JI registration number:

JI0079 / UA2000011, registered at 09/12/2008.

Details of the project approval can be found under Annex I of this Monitoring Report.

A.3. Short description of the project activity:

In this project CMM, which has been sucked out of the active coal mine DTEK MINE KOMSOMOLETS DONBASSA PJSC¹, has been utilised in two enclosed flares and two upgraded boilers. The methane has been burned to less harmful CO₂.

In this monitoring report credits, produced in the third monitoring period should be monitored for the purpose of the verification as Emission Reductions Units ERU.

Unit	period	CH ₄ [t/period]		
Flares 3+4	01/11/2010 to 31/12/2010	881		
Flares 3+4	01/01/2011 to 30/06/2011	2,596		
Boilers 1+2	01/11/2010 to 31/12/2010	399		
Boilers 1+2	01/01/2011 to 30/06/2011	1,362		
Total	01/11/2010 to 30/06/2011	5,238		

Table-1 Amount of methane utilised for flaring and heat production

A.4. Monitoring period:

Start date	01/11/2010
End date	30/06/2011

Start day and end day included.

This third monitoring period follows up to the end of the second monitoring period. The end date has been set at the request of the DTEK MINE KOMSOMOLETS DONBASSA PJSC.

¹ The name of the coal mine changed to DTEK MINE KOMSOMOLETS DONBASSA, PUBLIC JOINT-STOCK COMPANY (DTEK MINE KOMSOMOLETS DONBASSA PJSC), see B.4. for justification.

A.5. Methodology applied to the project activity (incl. version number):

A.5.1. Baseline methodology:

The approved consolidated methodology ACM0008 / Version 03 "Consolidated baseline methodology for coal bed methane and coal mine methane capture and use for power (electrical or motive) and heat and/or destruction by flaring") has been used to identify the baseline scenario of the proposed JI project [ACM0008].

According to ACM0008 the methodological "Tool to determine project emissions from flaring gases containing methane", EB 28 Meeting report, Annex 13, has been taken for the determination of the project emissions from flaring. In difference to the flaring tool a combustion efficiency of 99.5%, according to the IPCC guidelines (see also ACM0008 Version 1 and Version 2), has been taken into account instead of the default value of 90% as given in the flaring tool.

A.5.2. Monitoring methodology:

A monitoring plan provided by the "Approved consolidated baseline methodology ACM0008", Version 03, Sectoral Scope: 8 and 10, EB28 is applied to the project [ACM0008].

Applicability requirements for the monitoring plan of the ACM008 methodology are identical to respective requirements of the baseline setting.

According to ACM0008 the methodological "Tool to determine project emissions from flaring gases containing methane", EB 28 Meeting report, Annex 13, has been taken for the determination of the project emissions from flaring. In difference to the flaring tool a combustion efficiency of 99.5%, according to the IPCC guidelines (see also ACM0008 Version 1 and Version 2), has been taken into account instead of the default value of 90% as given in the flaring tool.

A.6. Status of implementation including time table for major project parts:

Unit	Planned installation date, as stated in the PDD	firing capacity	Implementation status
Central Shaft			
new boiler	Oct 2007	10 MW	Delayed, planned for late 2011 or early 2012
flare No: 1	Sep 2007	5 MW	Delayed, planned for late 2011 or early 2012
flare No: 2	Apr 2008	5 MW	Delayed, planned for late 2011 or early 2012

Table-2 Status of Implementation

page 4

Air Shaft № 3			
cogeneration unit 1	Sep 2008	approx. 3,6 MW	Delayed, planned for the end of the third quarter of 2011
cogeneration unit 2	on unit 2 Sep 2008 approx. 3,6 MW		Delayed, planned for the end of the third quarter of 2011
cogeneration unit 3	Sep 2008	approx. 3,6 MW	Delayed, planned for late 2011 or early 2012
Two upgraded boilers	Oct 2007	2 x 10 MW	Installed in October 2009
flare No: 3	Sep 2007	5 MW	Installed in 2008
flare No: 4	Apr 2008	5 MW	Installed in 2008

Table-3 Data of installed units

Unit: Flare 3							
Manufacturer: OAO "NPAO Vniikompressormash" a subsidiary of Ukrrosmetal, Sumy, Ukraine							
Type:UKG-5/8	Type:UKG-5/8						
Serial Numbers: 03-08							
Capacity: 5-8 MW							
Activity Status							
Date of commission	14/02/2008						
Last major overhaul None							
Last inspection June 2011 – Eco-Alliance							
Start of operation 09/08/2008							
Planned installation date [PDD] Sept 2007							

Unit: Flare 4						
Manufacturer: OAO "NPAO Vniikompressormash" a subsidiary of Ukrrosmetal, Sumy, Ukraine						
Type:UKG-5/8						
Serial Numbers: 04-08						
Capacity: 5-8 MW						
Activity Status						
Date of commission	14/02/2008					
Last major overhaul None						
Last inspection June 2011 – Eco-Alliance						
Start of operation 27/10/2008						
Planned installation date [PDD] April 2008						

Unit: Boiler 1
Manufacturer: Biyskiy Kotelniy Zavod
Type: E10-1,4R (KE-10/14 S)
Serial Numbers: 62350

page	5
------	---

Capacity: 10 t steam/h						
Activity	Status					
Date of commission	1987					
Last major overhaul	12.08.2008					
Last inspection	22.03.2011 - Gosgorpromnadzor					
Start of operation	October 2009					
Planned installation date [PDD]	October 2007					

Unit: Boiler 2					
Manufacturer: Biyskiy Kotelniy Zavod					
Type: E10-1,4R (KE-10/14 S)					
Serial Numbers: 62360					
Capacity: 10 t steam/h					
Activity Status					
Date of commission	1987				
Last major overhaul	12.08.2008				
Last inspection 22.03.2011- Gosgorpromnadzor					
Start of operation October 2009					
Planned installation date [PDD]	October 2007				

Installation of further units as stated in the PDD is delayed due to the Global Financial Crisis and lack of methane amount which has been caused by changes in mining plan and should follow in late 2011 and 2012.

A.7. Intended deviations or revisions to the registered PDD:

The installation of further units as stated in the PDD is delayed due to the Global Financial Crisis. The coal production decreased and the financial situation of the coal mine get worse. As only four of nine planned units have been installed, the planned amount of emission reductions could not be achieved. Since the coal production and financial situation of the coal mine improved in 2010 the continuation of the project installation is planned for coming years.

Central Shaft

At the time the main degasification pipe is renewed. The works should be finalised in epy end of the third quarter of 2011. The installation of the flares 1 and 2 as well as the boiler 1 is planned for late 2011 or early 2012.

<u>Air shaft</u>

The boilers 1+2 at Air Shaft have been upgraded with a CMM burner system and started operation in October 2009. A monitoring system for the boilers has been installed since January 28, 2010. The installation of two cogeneration units is planned for the end of the third quarter of 2011 and one cogeneration unit will be installed on late 2011 or early 2012.

The maximum supply pressure from the existing central gas suction system turned out to be not sufficient for the supply of the flares and the boiler with gas. Both flares have been equipped with compressors for additional pressure generation. The key data of the compressors are given in Table-4.

Table-4 Data of additionally installed compressors

Typ of compressor	rotary
Manufacture / Type	GR-85-24/1,5
Compressor discharge min, m ³ /sec or (m ³ /min)	0,17÷0,43

 (10÷26)

 Pressure difference, MPa or (kp/cm²)
 0,01÷0,05 (0,1÷ 0,5)

 Engine power max. kW
 45

 Frequency, 1/s or (RPM)
 24,08÷49,25 (1445÷2955)

A.8. Intended deviations or revisions to the registered monitoring plan:

Monitoring Plan has been revised during third monitoring period because of the changes made in method of calculating of additional energy consumption. See < Revised Monitoring Plan-KD.V3.pdf>.

The calculation of the emission reductions is not calculated on a yearly basis, but for an individual period. Flow data and flare efficiency as well as the methane amount destroyed by flaring MD_{FI} are calculated in 15 min. intervals in Excel sheets. The main emissions variables for project emissions, baseline emissions and emissions reductions are calculated on a monthly basis. Yearly sums and a total sum for the monitoring are calculated.

The flares have been equipped with compressors for additional pressure generation, so additional power, which is measured by power meters, is consumed by the project. The formula from the ACM0008 for additional project emissions from energy used to capture and use methane has been included in the revised Monitoring Plan.

The formula for the calculation of project emissions from uncombusted methane has been updated. Formulae from the «Methodological "Tool to determine project emissions from flaring gases containing methane"» [AM_Tool]) have been applied, see Annex 4. The calculation of project emissions from uncombusted methane from flaring is now more accurate.

The additional power consumption has been calculated using the Baseline Carbon Emission Factors for the Ukrainian power grid, which is given by NEIA [NEIA].

The consumed power amount has been measured with electric power meters, which have been installed 30/04/2010, see also Annex 4.

A.9. Changes since last verification:

None.

A.10. Person(s) responsible for the preparation and submission of the monitoring report:

DTEK MINE KOMSOMOLETS DONBASSA PJSC²

• Vodopshin Roman Vasil'evich, Technical Director

Eco-Alliance OOO

- Vladimir Kasyanov, Managing director
- Pavel Shelegeda, Deputy Director
- Aleksandr Didenko, Monitoring Assistant
- Viktor Avtonomov, Monitoring Assistant

Carbon-TF B.V

- Dr. Jürgen Meyer, Managing Director
- Clemens Backhaus, Managing Director

² The name of the coal mine changed to DTEK MINE KOMSOMOLETS DONBASSA, PUBLIC JOINT-STOCK COMPANY (DTEK MINE KOMSOMOLETS DONBASSA PJSC), see B.4. for justification.

page 7

SECTION B. Key monitoring activities according to the monitoring plan for the monitoring period stated in A.4.

B.1. Monitoring equipment:

B.1.2. Table providing information on the equipment used (incl. manufacturer, type, serial number, date of installation, date of last calibration, information to specific uncertainty, need for changes and replacements):

Table-5 Monitoring equipment

ID	Data	Method	Manufacturer	Classification	Serial number	Range	Frequency of Measurement	Instal- lation	Place of the instalation	Uncertainty level of data	Calibration procedure	Last calibration (№ of the document)	Calibrator
1	CMM flow	Gas flow meter	SIEMENS	ME 1120- 2CC22-1BA3	Flare №3: K2989B Flare №4: K2989A	298-1566 м3/h	Every 15 min	2008	Measuring pipeline	0.25%	Calibration made using procedures of Sumystandart- metrology Calibration frequency – 1 year	27.10.2010 passport to flow meter № K2989A 19.11.2010 passport to flow meter № K2989B	Sumystandart -metrology
2	Pressure difference	Pressure difference transmitter	SIEMENS	SITRANS P PED:SEP DS III 7MF4433- 1CA02-1AB1- Z	Flare№3: N1- W401-9002993 Flare№4: N1- W401-9002992	060 mBar	Every 15 min	2008	Measuring pipeline (Gas flow meter)	0.25%	Calibration made using procedures of Sumystandart- metrology Calibration frequency – 1 year	02.11.2010 certificate № 2174 02.11.2010 certificate № 2175	Sumystandart -metrology
3	Pressure	Pressure transmitter	SIEMENS	SITRANS P Serie Z	Flare№3: AZB/W1196798 Flare№4: AZB/W7153229	01,6 Bar (abs.)	Every 15 min	2010	Measuring pipeline (Corps of the Gas flow meter)	0.25%	Calibration made using procedures of Sumystandart- metrology Calibration frequency – 1 year	18.10.2010 certificate № 2076 02.11.2010 certificate № 2173	Sumystandart -metrology

Monitoring Report Nr. 03 - Komsomolets Donbassa

27.10.2010 passport to Resistance Calibration made thermometer Measuring Flare.No3: 08259 Flare№3 using procedures Resistance TSPU 1-3N Pt-№ 08259, JSC "Tera", (№08262 was used 2010 pipeline of Sumystandart-Sumystandart Tempera-0.5% 4 100 0,5% -50...+250°C №08269 thermo-Every 15 min till March 2010) Flare№4 (After the Gas metrology ture Chernigov -metrology **80Φ8** 08.10.2009 meter Flare№4: 08269 2008 flow meter) Calibration passport to frequency -1 year Resistance thermometer № 08262 ± 1.5 K in none. the range thermocouple is from Flame supposed to be Thermo-Type S, Flare Nº3: 69884 Pipe of the [0-04.10.10 for 5 2010 Tempera-Herth GmbH 0...+1500°C Every 15 min changed at least None couple Pt/PtRh Flare Nº4: 71088 Flare 600°C]**) both flares one time per year, ture 0.25% from according to the value above flaring tool 600°C**) Calibration made using procedures CH4 of Sumystandart-16.11.2010 0...20/100% metrology Sumystandart CH4 Infrared Distributive passport to ULTRAMAT Flare№3: N1 CO2 Calibration -metrology 6 SIEMENS Every 15 min 2008 2.0% gasanalizer apartment of concentrameasure-23 W4-339 0...20/100% frequency – 1 year Eco-Alliance the Flare № N1 W4tion ment 02 Calibrations made 339 (03-08) 0...5/25% using procedures of Eco-Alliance every two weeks Calibration made NMHC Gas Gasochrom using procedures 7 0.001% of MAKNII ,Chromatograp 3101 0...100% MAKNII 15.10.2010 MAKNII concentrachromat-Yearly no data 75 h" LHM-8MD Calibration tion ography frequency – 1 year Initial calibration made using procedures of manufacturer. Flare №3: business business Further 086568070787744 Distributive Concern Watthour-«Concern 30.04.2 calibrations made 07.2008 Electric 8 CE6803V 1.0% **«ENERGYM** 1 Flare №4: Continuous apartment of power meter ENERGYMEA 010 using procedures 086568070789405 the Flare **EASURE**» **SURE**» of Sumystandart-9 metrology Calibration frequency - 16 years

Monitoring Report Nr. 03 – Komsomolets Donbassa

9	Electric power	Transformer of electric current	"Umansky zavod "Megommetr"	T 0,66 UZ 0,66 kV 50 Hz 300/5A	Flare №3: 09553	00,66 kV (300/5A)	Continuous	2010	Distributive apartment of the Flare	0.5%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrology Calibration frequency – 4 years	01.2010	MEGOMME TR
10	Electric power	Transformer of electric current	"Umansky zavod "Megommetr"	T 0,66 UZ 0,66 kV 50 Hz 300/5A	Flare №3: 08233	00,66 kV (300/5A)	Continuous	2010	Distributive apartment of the Flare	0.5%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrology Calibration frequency – 4 years	01.2010	MEGOMME TR
11	Electric power	Transformer of electric current	"Umansky zavod "Megommetr"	T 0,66 UZ 0,66 kV 50 Hz 300/5A	Flare №3: 23934	00,66 kV (300/5A)	Continuous	2010	Distributive apartment of the Flare	0.5%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrology Calibration frequency – 4 years	03.2010	MEGOMME TR
12	Electric power	Transformer of electric current	"Umansky zavod "Megommetr"	T 0,66 UZ 0,66 kV 50 Hz 300/5A	Flare №4: 22518	00,66 kV (300/5A)	Continuous	2010	Distributive apartment of the Flare	0.5%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrology Calibration frequency –	02.2010	MEGOMME TR

Monitoring Report Nr. 03 – Komsomolets Donbassa

											4 years		
13	Electric power	Transformer of electric current	"Umansky zavod "Megommetr"	T 0,66 UZ 0,66 kV 50 Hz 300/5A	Flare №4: 23607	00,66 kV (300/5A)	Continuous	2010	Distributive apartment of the Flare	0.5%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrology Calibration frequency – 4 years	03.2010	MEGOMME TR
14	Electric power	Transformer of electric current	"Umansky zavod "Megommetr"	T 0,66 UZ 0,66 kV 50 Hz 300/5A	Flare №4: 23913	00,66 kV (300/5A)	Continuous	2010	Distributive apartment of the Flare	0.5%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrology Calibration frequency – 4 years	02.2010	MEGOMME TR
15	CMM flow	Gas flow meter	"Energoteh"	no data(d=151,85 8)	Boiler №1: 77777	1693200 m3/h	Every 15 min	2010	Measuring pipeline before boiler №1	0.25%	Calibration made using procedures of Sumystandart- metrology Calibration frequency – 1 year	19.11.2010 passport to flow meter № 77777	Sumystandart -metrology
16	CMM flow	Gas flow meter	"Energoteh"	no data(d=151,85 8)	Boiler №2: 77778	1693200 m3/h	Every 15 min	2010	Measuring pipeline before boiler №2	0.25%	Calibration made using procedures of Sumystandart- metrology Calibration frequency – 1 year	19.11.2010 passport to flow meter № 77778	Sumystandart -metrology
17	Pressure difference	Pressure difference transmitter	APLISENS	PR-28	Boiler №1: 11092049	02,5kPa	Every 15 min	2010	Measuring pipeline before boiler №1 (Gas flow meter)	0.25%	Calibration made using procedures of Sumystandart- metrology Calibration frequency – 1 year	14.10.2010 certificate № 2035	Sumystandart -metrology

Monitoring Report Nr. 03 - Komsomolets Donbassa

Calibration made Measuring using procedures Pressure pipeline 14.10.2010 Boiler №2: of Sumystandart-Sumystandart Pressure 18 difference APLISENS **PR-28** 0...2.5kPa Every 15 min 2010 before boiler 0.25% certificate difference 02100076 metrology -metrology transmitter №2 (Gas flow № 2036 Calibration meter) frequency - 1 year Measuring Calibration made pipeline using procedures 16.11.2010 Pressure SITRANS P Boiler №1: before boiler of Sumystandart-Sumystandart 19 Pressure SIEMENS 0...1.6 Bar Every 15 min 2010 0.25% certificate №1 (Before transmitter series Z AZB/W5132860 metrology -metrology № 2259 Gas flow Calibration meter) frequency - 1 year Measuring Calibration made pipeline using procedures 02.11.2010 SITRANS P Boiler №2: before boiler of Sumystandart-Sumystandart Pressure 20 0.25% certificate Pressure SIEMENS 0...1,6 Bar Every 15 min 2010 AZB/X1110846 №2 (Before transmitter series Z metrology -metrology № 2172 Gas flow Calibration meter) frequency - 1 year Measuring Calibration made 15.10.2010 pipeline using procedures Resistance passport to Tempera-JSC "Tera", TSPU 1-3N Pt-Boiler №1: before boiler of Sumystandart-Sumystandart 21 -50...+250°C Every 15 min 2010 0.5% Resistance thermo-09440 Chernigov 100 0,5% №1 (After metrology -metrology ture meter thermometer Gas flow Calibration № 09440 meter) frequency – 1 year Calibration made Measuring 15.10.2010 pipeline using procedures Resistance passport to JSC "Tera". TSPU 1-3N Pt-Boiler №2: before boiler of Sumystandart-Sumystandart Tempera-22 -50...+250°C Every 15 min 2010 0.5% Resistance thermo-100 0.5% 08247 №2 (After metrology ture Chernigov -metrology thermometer meter Gas flow Calibration № 08247 meter) frequency - 1 year Calibration made 20.10.2010 using procedures Measuring Steam Steam flow no data 0,5566...10,61 of Sumystandartpassport to Sumystandart 23 Boiler №1: 3 Every 15 min 2010 0.25% "Energoteh" pipeline after 472 ton/h metrology flow meter (d=96,430) flow meter -metrology boiler №1 Calibration <u>№</u> 3 frequency - 1 year Calibration made 19.11.2010 using procedures Measuring Steam flow no data 0,5566...10,61 of Sumystandartpassport to Sumystandart Steam 24 Boiler №2: 919192 0.25% "Energoteh" Every 15 min 2010 pipeline after 472 ton/h flow meter (d=96,430) metrology flow meter -metrology boiler №2 Calibration № 919192 frequency -1 year

Monitoring Report Nr. 03 - Komsomolets Donbassa

Calibration made Measuring using procedures Steam Pressure pipeline after 14.10.2010 Boiler №1: of Sumystandart-Sumystandart 25 Pressure difference APLISENS **PR-28** 0...63kPa Every 15 min 2010 boiler №1 0.25% certificate 06091154 metrology -metrology difference transmitter (Steam flow № 2034 Calibration meter) frequency - 1 year Calibration made Measuring using procedures pipeline after 14.10.2010 Steam Pressure Boiler №2: of Sumystandart-Sumystandart 26 Pressure difference APLISENS **PR-28** 0...63kPa Every 15 min 2010 boiler №2 0.25% certificate 06091155 metrology -metrology (Steam flow № 2033 difference transmitter Calibration meter) frequency -1 year Calibration made Measuring using procedures pipeline after 26.10.2010 Pressure Boiler №1: of Sumystandart-Sumystandart Steam 27 APLISENS PC-28 boiler №1 (0.25% certificate 0...1,6MPa Every 15 min 2010 03081167 metrology -metrology Pressure transmitter Before Steam № 2127 Calibration flow meter) frequency - 1 year Calibration made Measuring using procedures pipeline after 26.10.2010 Boiler №2: of Sumystandart-Sumystandart Steam Pressure 28 APLISENS PC-28 0...1,6MPa Every 15 min 2010 boiler №2 (0.25% certificate Pressure transmitter 03081169 metrology -metrology Before Steam № 2130 Calibration flow meter) frequency -1 year Calibration made Measuring 15.10.2010 using procedures pipeline after Steam Resistance passport to JSC "Tera" TSPU 1-3N Pt-Boiler №1: of Sumystandart-Sumystandart 29 -50...+250°C 2010 boiler №1 (0.5% Resistance Temperathermo-Every 15 min 100 0,5% 09446 metrology Chernigov -metrology After Steam thermometer ture meter Calibration flow meter) № 09446 frequency -1 year Calibration made 15.10.2010 Measuring using procedures Resistance pipeline after Steam passport to JSC "Tera". TSPU 1-3N Ptof Sumystandart-Sumystandart 30 boiler №1 (Boiler №2: 09449 -50...+250°C Every 15 min 2010 0.5% Temperathermo-Resistance 100 0,5% Chernigov metrology -metrology ture meter After Steam thermometer Calibration № 09449 flow meter) frequency - 1 year

Monitoring Report Nr. 03 – Komsomolets Donbassa

31	Water tempera- ture	Resistance thermome- ter	JSC "Tera", Chernigov	TSPU 1-3N Pt- 100 0,5%	Boiler №1: 09447	-50+250°C	Every 15 min	2010	Measuring pipeline before boiler №1	0.5%	Calibration made using procedures of Sumystandart- metrology Calibration frequency – 1 year	18.11.2010 passport to Resistance thermometer № 09447	Sumystandart -metrology
32	Water tempera- ture	Resistance thermome- ter	JSC "Tera", Chernigov	TSPU 1-3N Pt- 100 0,5%	Boiler №2: 09450	-50+250°C	Every 15 min	2010	Measuring pipeline before boiler №2	0.5%	Calibration made using procedures of Sumystandart- metrology Calibration frequency – 1 year	16.11.2010 passport to Resistance thermometer № 09450	Sumystandart -metrology
33	CH4 concentrat ion	Infrared measure- ment	SIEMENS	ULTRAMAT 23	N1 W4-340	CH4 020/100% CO2 020/100% O2 05/25%	Every 15 min	2010	In the boiler- house	2.0%	Calibration made using procedures of Sumystandart- metrology Calibration frequency – 1 year Calibrations made using procedu-es of Eco-Alliance every two weeks	16.11.2010 passport to gasanalizer № N1 W4- 340 (04-08)	Sumystandart -metrology Eco-Alliance

*) FSV: full scale value **) Fixed within EN 60584-2: 1996, Type S, Class 2

B.1.3. Involvement of Third Parties:

- The lab analysis for the determination of the NMHC concentration has been done by MAKNII
- The calibrations of CH₄-concentration meters in the flares have been done by Eco-Alliance
- Calibration of the monitoring equipment has been done by Sumy Standartmetrology
- Eco-Alliance OOO supported the coal mine with the collecting of the monitoring data.
- Carbon-TF has supervised the data for plausibility and completeness.

B.2. Data collection (accumulated data for the whole monitoring period):

B.2.1. List of fixed default values:

Table-6 List of ex-ante fixed values

ID number	Data variable	Source of data	Data unit	Comment
P8, B49 CEF _{ELEC,PJ}	CO ₂ emission factor of CONS _{ELEC,PJ}	National Environmental Investment Agency of Ukraine, NEIA	tCO₂/MWh	Data is taken from the official website of NEIA. Set to: 1.093 t CO ₂ /MWh for 2010 and 1.090 t CO ₂ /MWh for 2011. [NEIA]
P13 Eff _{FL}	Flare combustion efficiency	PDD / revised monitoring plan ID-5 (T _{flare})	%	Set to: 99.5 % for T _{flare} > 850°C 90.0 % for 500°C < T _{flare} < 850°C 0.0 % for T _{flare} < 500°C
P16 Eff _{ELEC}	Efficiency of methane destruction/ oxidation in power plant	ACM0008 / IPCC	%	Set to 99.5 % (IPCC)
P19 Eff _{HEAT}	Efficiency of methane destruction / oxidation in heat plant	ACM0008 / IPCC	%	set at 99.5% (IPCC)
P23, B19 CEF _{CH4}	CO ₂ emission factor for combusted methane	ACM0008 / IPCC	t CO ₂ /t CH ₄	set at 2.75 t CO ₂ /t CH ₄
P28, B18 GWP _{CH4}	Global warming potential of methane	ACM0008 / IPCC	t CO _{2eq} /t CH ₄	set at 21
B55 EF _{CO2,Coal}	CO ₂ emission factor of fuel used for captive power or heat	IPCC 2006 1 Introduction Table 1.2	T CO₂/MWh	Set to 0.3406 t CO ₂ /MWh Using the value for "Other Bituminous Coal" of 94,600 kg CO ₂ /TJ
B57 Eff _{heat}	Energy efficiency of heat plant	Boiler pass	%	91 % old coal boiler 91 % upgraded boiler

B.2.2. List of variables:

Table-7 List of variables – struck through symbols are not used in this monitoring report (this variables are referring to project components which are not installed yet)

ID number	Data variable	Source of	Data unit	Comment
		data (ID Numbers from table 5)		
P1 PE	Project emissions	calculated	t CO _{2eq}	calculated using formulae from the revised monitoring plan
P2 PE _{ME}	Project emissions from energy use to capture and use methane	calculated	t CO _{2eq}	calculated using formulae from the revised monitoring plan
P3 PE _{MD}	Project emissions from methane destroyed	calculated	t CO _{2eq}	calculated using formulae from the revised monitoring plan
P4 PE _{UM}	Project emissions from uncombusted methane	calculated	t CO _{2eq}	calculated using formulae from the revised monitoring plan
P5 CONS _{ELEC,PJ}	Additional electricity consumption by project	measured ID's- 8, 9, 10, 11, 12, 13, 14	MWh	cumulative value, measured
P9 PE _{Flare}	Project emissions from flaring	calculated	t CO _{2eq}	calculated using formulae from the revised monitoring plan
P11 MD _{FL}	Methane destroyed by flaring	calculated	t CH ₄	calculated using formulae from the revised monitoring plan
P12 MM _{FL}	Methane sent to flare	measured ID's- 1, 2,3,4,6,	t CH ₄	
P14 MD _{ELEC}	Methane destroyed by power generation	Calculated	t-CH ₄	calculated using formulae from the revised monitoring plan
P15 MM _{ELEC}	Methane sent to power generation	measured	t CH ₄	
P17 MD _{HEAT}	Methane destroyed by heat generation	calculated	t CH ₄	calculated using formulae from the revised monitoring plan
P18 MM _{HEAT}	Methane sent to heat generation	measured	t CH₄	
P24 CEF _{NMHC}	CO ₂ emission factor for combusted non methane hydrocarbons (various)	calculated	-	Calculated if applicable
P25 PC _{CH4}	Concentration of methane in extracted gas	measured ID-6	%	
P26 PC _{NMHC}	NMHC concentration in coal mine gas	measured ID-7	%	Used to check if more than 1% of emissions and to calculate r
P27 r	Relative proportion of NMHC compared to methane	calculated	%	Calculated if applicable, based on the lab analysis.
B1 BE	Baseline emissions	calculated	t CO _{2eq}	calculated using formulae from the revised monitoring plan

B3 BE _{MR}	Baseline emissions from release of methane into the atmosphere that is avoided by the project activity	calculated	t CO _{2eq}	calculated using formulae from the revised monitoring plan
B4 BE _{Use}	Baseline emissions from the production of power, heat or supply to gas grid replaced by the project activity	calculated	t CO _{2eq}	calculated using formulae from the revised monitoring plan
B14 CMM _{PJ}	CMM captured in the project activity	calculated	t CH ₄	sum of flow meters
B46 GEN	electricity generation by project	measured	MWh	
B47 HEAT	Heat generation by project	measured	MWh	
T _{flare}	Flame temperature of the flare	measured ID - 5	°C	

B.2.3. Data concerning GHG emissions by sources of the project activity

Table-8 GHG emissions by sources of the project activity – struck-through symbols are not used in this monitoring report (this variables are referring to project components which are not installed yet)

ID number	Data variable	Source of data (ID Numbers from table 5)	Data unit	Comment
P12 MM _{FL}	Methane sent to flare	measured ID's- 1, 2,3,4,6,	t CH ₄	
P15 MM_{ELEC}	Methane sent to power generation	measured	t CH ₄	
P18 MM _{HEAT}	Methane sent to heat generation	measured	t CH ₄	

B.2.4. Data concerning GHG emissions by sources of the baseline

Table-9 GHG emissions by sources of the baseline – struck through symbols are not used in this monitoring report (this variables are referring to project components which are not installed yet)

ID number	Data variable	Source of data	Data unit	Comment
B14 CMM _{PJ}	CMM captured in the project activity	calculated	t CH ₄	sum of flow meters
B46 GEN	electricity generation by project	measured	MWh	
B47 HEAT	Heat generation by project	measured	MWh	

B.2.5. Data concerning leakage

Not applicable.

B.2.6. Data concerning environmental impacts

DTEK works on reducing greenhouse gas emissions at power plans and also at coal mines. A pilot project was launched in 2007 at the DTEK MINE KOMSOMOLETS DONBASSA PJSC.

After a series of activities, the efficiency of degassing is raised up to 50-60%.

In the first phase two thermal utilisation units have been installed. In the second phase two boilers have been upgraded and CMM has been used in these boilers for heat production. These activities have lead to the significant decrease of different pollutant emissions into the atmosphere. Due to the fact that methane is now burned in flares and boilers there is a considerable emission reduction of this gas generally on the mine and at the Air Shaft #3 the methane emissions have reached almost zero. Also the amount of burned coal have decreased that have lead to reduction of inorganic dust, carbon dust and heavy metals into the atmosphere.

In the next phases CMM should be used in gas engines for power generation.

B.3. Data processing and archiving (incl. software used):

The data are collected, processed and stored using a Siemens SIMATIC PLC S7 system and Siemens WINCC programming software. All data is stored in the internal memory about 2 GB. One time per hour the data are sent via GPS to an Internet-based Server data base. Further on the data is sent to the workstation of Eco-Alliance with frequency 1 time per week, per month and per year and archived quarterly and annually on the CD.

The data can be read any time from the internet data base by authorised personnel. The utilised methane amount is automatically calculated and stored in the PLC. As all input data are stored, the automatically calculation can by checked in retrospect any time.

For plausibility checks and potential data back up the data logged in the hand written journals of the suction system can be taken.

In case of problems with data transferring to the server the data can be recovered from the internal memory of the unit's computer where it's stored for 7 days.

B.4. Special event log:

1) The name of the Coal Mine has been changed per 29/04/2011. The old name OPEN JOINT STOCK COMPANY COAL MINE KOMSOMOLETS DONBASSA is no longer valid, the new name is:

Full name: DTEK MINE KOMSOMOLETS DONBASSA, PUBLIC JOINT-STOCK COMPANY;

Short name: DTEK MINE KOMSOMOLETS DONBASSA PJSC.

The identifying number and domicile of the legal entity as well as the place of registration remain unchanged.

2) On 14/06/2011 there was a lightning stroke at the air shaft #3 of DTEK MINE KOMSOMOLETS DONBASSA PJSC. This accident has caused shutdown of Flare 3 and about 12 hours downtime and shutdown of Flare 4 with downtime for a week. During these periods the flares didn't work and there is no electronic or handwritten data available so the emission reductions for the flares were not calculated for these periods.

SECTION C. Quality assurance and quality control measures

C.1. Documented procedures and management plan:

C.1.1. Roles and responsibilities:

The general project management is implemented by the Technical Director of the DTEK MINE KOMSOMOLETS DONBASSA PJSC through supervising and coordinating activities of his subordinates, such as the Director of Capital Development, the Deputy Director on surface degasification, heat technician, head of safety engineering departments, etc.

Daily a group of mechanics and electricians who are responsible for the measures and maintenance of all technological equipment and measuring instruments are present on-site. There are two shifts, 12 h each. For every shift there is one person on-duty responsible for the proper operation and keeping of the journals.

The monitoring system is supervised by the administration of the coal mine under the existing control and reporting system. The general supervision of the electronically monitoring system is executed by Eco-Alliance OOO, who is consultant for the coal mine.

Figure 1 – Organigram

page 19

C.1.2. Trainings:

The employees responsible for the monitoring control have been trained on-the-job during the installation of the system. Before installation of the gas equipment on the boilers the personnel of the boiler house have received training in "Donetsk centre of personnel preparing" (Horlovka) on specialty "Personnel serving individual boilers working on gas fuel".

The responsible personnel of Eco-Alliance have been trained on the handling with CMM-utilisation units and the applied monitoring systems, during several practical courses in Germany. In this courses which has been carried out by A-TEC Anlagentechnik GmbH, a Joint-Venture participant of Eco-Alliance, also the basic principles of emissions trading and the background of the monitoring has been explained. A-TEC Anlagentechnik GmbH is already running several CMM utilisation plants and monitoring systems in Germany.

These trained personnel is the basis of a team of engineers, which had established a specialised service team in the Ukraine and had instructed further operating and monitoring personnel, as well for this project.

No new personnel training have been carried out because no new equipment have been installed and no new personnel have been recruited.

C.2. Involvement of Third Parties:

- Sumystandartmetrology, has been involved for the yearly examination and calibrations of the measurement equipment
- MakNII Institute, the "State Makeyevka Institute for Research and Education for Safe Work in the Coal Mining Industry", a subsidiary of the "Ukrainian Ministry for Fuel and Energy", has been involved for the lab analysis (NMHC) of the CMM.
- Donetskshakhtostroymontazh has been involved for installation of pipelines
- Eco-Alliance has been involved for monitoring and service of the flares

C.3. Internal audits and control measures:

Every 2 weeks a monitoring engineer from Eco-Alliance makes audits and remarks this in the operation journals of flares and boilers. The mechanics on duty of boilerhouse and vacuum-pump station from the DTEK MINE KOMSOMOLETS DONBASSA PJSC make daily audits.

The monitoring engineer (Eco-Alliance) checks the data from web-site every day and makes internal weekly reports.

Eco-Alliance makes service audits every month.

C.4. Troubleshooting procedures:

The general troubleshooting for the whole coal mine is available at the coal mine. The coal mine personnel are instructed to follow the procedures.

The flares are automatically shut down in case of faults. Internal trouble shooting procedures are available inside the flares.

The boilers shut down with gas valve cutter automatically in case of emergency. Light and sound alarm is activated. Staff on duty closes valves of the gas supply to the boilers, open blowing bleeders, ventilate the boilers, then determines the cause of boiler stopping and removes it.

The electronic monitoring system is checked every day by authorized personnel of Eco-Alliance. In case of finding any incorrectness an appropriate report is made to the service team which moves on site as fast as possible. The service team determines the possible reasons of the incorrectness and amends them (replace the measuring sensors, adjust software, etc.).

page 20

SECTION D. Calculation of GHG emission reductions

D.1. Table providing the formulas used:

Table-10 Formulae used taken from the revised monitoring plan, struck-through symbols are not used in this monitoring report (this symbols are referring to project components which are not installed yet).

ID number	Data variable	Nr	Formula
number			
P1 PE _v	Project emissions	(1)	$PE = PE_{ME} + PE_{MD} + PE_{UM}$
P2 PE _{ME}	Project emissions from energy use to capture and use methane	(2)	$PE_{ME} = CONS_{ELEC,PJ} \times CEF_{ELEC,PJ}$
P3 PE _{MD}	Project emissions from methane destroyed	(3)	$PE_{MD} = (MD_{FL} + MD_{ELEC} + MD_{HEAT}) x (CEF_{CH4} + r x CEF_{NMHC})$
P4 PE _{UM}	Project emissions from uncombusted methane	(9)	$PE_{UM} = GWP_{CH4} \times [MM_{ELEC} \times (1 - Eff_{ELEC}) + MM_{HEAT} \times (1 - Eff_{HEAT})] + PE_{Flare}$
P5, CONS _{ELEC}	Additional electricity consumption by the project	(2a)	$CONS_{ELEC,PJ} = \sum_{i=1}^{n} CONS_{ELEC,i}$
P11 MD _{FL}	Methane destroyed by flaring	(5)	$MD_{FL} = \sum_{i=1}^{n} MM_{FL,i} x \eta_{flare,i}$
P14 MD _{ELEC}	Methane destroyed by power generation	(7)	$MD_{elec} = MM_{elec} \times Eff_{elec}$
P17 MD _{HEAT}	Methane destroyed by heat generation	(8)	$MD_{HEAT} = MM_{HEAT} \times Eff_{HEAT}$
PE _{Flare}	Project emissions from flaring	(9a)	$PE_{Flare} = (MM_{Fl} - MD_{Fl}) \times GWP_{CH4}$
P27 r	Relative proportion of NMHC compared to methane	(4)	$r = PC_{NMHC} / PC_{CH4}$
B1 BE _v	Baseline emissions	(10)	$BE = BE_{MR} + BE_{Use}$
B3 BE _{MR,y}	Baseline emissions from release of methane into the atmosphere that is avoided by the project activity	(14)	$BE_{MR} = CMM_{PJ} \times GWP_{CH4}$
B4 BE _{Use,y}	Baseline emissions from the production of power, heat or supply to gas grid replaced by the project activity	(24)	$BE_{Use} = \frac{GEN * EF_{ELEC}}{F_{HEAT}} + (HEAT / Eff_{HEAT,coal}) * EF_{HEAT}$
B14 CMM _{PJ}	CMM captured and destroyed in the project activity	(14a)	$CMM_{PJ} = \sum_{i=1}^{n} MM_{i}$
ER	Emission reductions	(18)	ER = BE - PE

The formulae included in the monitoring plan are taken from the CDM Methodology ACM0008 respective the revised monitoring plan.

D.2. Description and consideration of measurement uncertainties and error propagation:

Some minor errors which have been identified in hand written operation journals have been corrected. Mistakes were made during the writing the electronic data from the monitor into handwritten journals. During checking the data in handwritten journals, the monitoring engineer has made adjustments to the values of measurements, namely: record the correct values of methane accumulation in handwritten journals in few days.

D.3. GHG emission reductions (referring to B.2. of this document):

The tables below provide yearly values. Monthly values are calculated and can be verified in the Excel-Spreadsheet "ER-KD-2010-11-01 to 2011-06-30 V3.xls".

Period	Prospected er PDD [t CO _{2eq}]	nission reductions,	Monitored emission reductions [t CO _{2eq}]		
	Full year Proportionally monitoring p			d percentage ed emissions	
01/11/2010 to 31/12/2010	301,354	50,226	24,447	48.7%	
01/01/2011 to 30/06/2011	339,880	169,940	75,613	44.5%	
Total 01/11/2010 to 30/06/2011	641,234	220,166	100,060	45.4%	

The installation of several units as stated in the PDD is delayed due to the Global Financial Crisis and lack of methane amount. The coal production decreased and the financial situation of the coal mine get worse. As only four of nine planned units have been installed, the planned amount of emission reductions could not be achieved. Since the coal production and financial situation of the coal mine improved in 2010 the continuation of the project installation is planned for coming years.

D.3.1. Project emissions:

Monitored project emissions [t CO2eq / a]							
period	01/11/2010- 31/12/2010	01/01/2011- 30/06/2011	Total 2010- 2011				
methane destruction							
flaring	2,539	7,560	10,099				
heat generation	1,134	3,870	5,004				
power generation	0	0	0				
additional power consumption							
Flare compressors	25	63	88				
Total	3,698	11,493	15,191				

D.3.2. Baseline emissions:

Monitored baseline emissions [t CO ₂ eq / a]						
period	01/11/2010-	01/01/2011- 30/06/2011	Total 2010-2011			

	31/12/2010		
release of methane that is avoided by the project			
flaring	18,507	54,510	73,017
heat generation	8,380	28,603	36,983
power generation	0	0	0
production of heat that is displaced by the project	1,258	3,993	5,251
production of power that is displaced by the project	0	0	0
Total	28,145	87,106	115,251

D.3.3. Leakage:

Not applicable.

D.3.4. Summary of the emissions reductions during the monitoring period:

Project emissions and	d emission reductions	s during the 3 rd v	erification period	
period	Monitored project emissions (tonnes of CO2 equivalent)	Monitored leakage (tonnes of CO2 equivalent	Monitored baseline emissions (tonnes of CO2 equivalent)	Monitored emissions reductions (tonnes of CO2 equivalent)
01/11/2010 to 31/12/2010	3,698	-	28,145	24,447
01/01/2011 to 30/06/2011	11,493	-	87,106	75,613
Total (tonnes of CO2 equivalent)	15,191	-	115,251	100,060

page 24

Annex 1

REFERENCES

- Project Design Document; Version 04, dated 2008-04-14
- Final Determination Report for the project: JI0079 CMM utilisation on the Joint Stock Company named Komsomolets Donbassa Coal Mine of DTEK (Donbasskaya Toplivnaya Energeticheskaya Kompanya), Report No: 2008-200 Rev 02, by DNV Det Norske Veritas, dated 2008-09-18
- Letter of Approval, Nr. M000011, issued on 2007-10-03 by the Ukraine (host party)
- Letter of Approval, Nr. 2007JI04, issued on 2007-11-26 by the Kingdom of the Netherlands (investor party)
- Letter of Endorsment, Nr. 11439/10/310, issued on 2006-12-22 by the Ukrainian Ministry of Environmental Protection
- supporting evidence documents provided by the coal mine
- revised monitoring plan, ver. 3 dated 2011-08-05

[IPCC]	Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories,		
	Reference Manual (Volume 3), Chapter Energy, 1.4.1 Unoxidized Carbon,		
	Page 1.32, 1996, http://www.ipcc-nggip.iges.or.jp/public/gl/invs6a.htm		
[ACM0008]	Approved consolidated baseline methodology ACM0008 – Consolidated baseline methodology for coal bed methane and coal mine methane capture and use for power (electrical or motive) and heat and/or destruction by flaring, version 03, EB28 http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html		
[AM_Tool_07]	Methodological "Tool to determine project emissions from flaring gases containing methane", EB 28, Meeting report, Annex 13 http://cdm.unfccc.int/Reference/tools/index.html		
[DTEK]	Donbasskaya Toplivnaya Energeticheskaya Kompanya		
[NEIA]	Information given by the National Environmental Investment Agency of Ukraine NEIA <u>http://www.neia.gov.ua</u>		

page 25

Figure-2 Installation scheme – DTEK MINE KOMSOMOLETS DONBASSA PJSC, Air Shaft Nr.3

Annex 2

Installation scheme including metering positions

page 26

Annex 3

Data flowchart

page 27

(5)

Annex 4

Deviations from the monitoring plan as stated in the PDD

A4.1 Project emissions from flaring

The formula for the calculation of project emissions from uncombusted methane has been updated. The calculation of project emissions from uncombusted methane from flaring are now more accurate.

In the PDD the formula for project emissions from uncombusted methane is given as per:

$$PE_{UM} = GWP_{CH4} \times \left[(MM_{FL} \times (1 - Eff_{FL}) + MM_{ELEC} \times (1 - Eff_{ELEC}) + MM_{HEAT} \times (1 - Eff_{HEAT}) \right]$$
(9) old

In the revised monitoring plan the formula (9) has been replaced by the following formula:

$$PE_{UM} = GWP_{CH4} \times [MM_{ELEC} \times (1 - Eff_{ELEC}) + MM_{HEAT} \times (1 - Eff_{HEAT})] + PE_{flare}$$
(9) new

PE_{Flare} is calculated using adopted formulae from the «Methodological "Tool to determine project emissions from flaring gases containing methane"» [AM_Tool] and ACM0008 Version 5. The original formulae refer to a yearly basis. The formulae have been adapted in the revised monitoring plan to variable monitoring periods:

The original formulae are:

 $MD_{FL} = MM_{FL} - (PE_{flare}/GWP_{CH4})$

$$PE_{flare} = \sum_{i=1}^{n} TM_{RG,i} x(1 - \eta_{flare,i}) x \frac{GWP_{CH4}}{1000}$$
(9a)
where:

$$PE_{flare} \qquad Project emissions from flaring in the regarded period (t CO_{2eq})
TM_{RG,i} \qquad Mass flow rate of methane in the regarded interval i (kg/interval)
 $\eta_{flare,i} \qquad flare efficiency in the interval i
GWP_{CH4} \qquad Global warming potential of methane (21 t CO_{2eq}/t CH_4)
n \qquad number of samples (intervals) in the regarded period
and$$$

where:

MD _{FL}	Methane destroyed through flaring in the regarded period (t CH ₄)
MM _{FL}	Methane sent to flaring in the regarded period (t CH ₄)
PE _{flare}	Project emissions from flaring in the regarded period (t CO _{2eq})
GWP _{CH4}	Global warming potential of methane (21 t CO _{2eq} /t CH ₄)

aun

In the revised monitoring plan and this monitoring report, formulae 9a and 5, see above have been resolved to fit better to the monitored data.

The project emissions from flaring are calculated using the equation:

$$PE_{flare} = (MM_{Fl} - MD_{FL}) * GWP_{CH4}$$
(9a)

where:

PE_{flare} Project emissions from flaring in the regarded period (t CO_{2eq})

MD _{ELEC}	Methane destroyed through power generation (t CH ₄)
MM _{ELEC}	Methane measured sent to power plant (t CH ₄)
GWP_{CH4}	Global warming potential of methane (21 t CO _{2eq} /t CH ₄)

The formula for the methane destroyed through flaring is:

$$MD_{FL} = \sum_{i=1}^{n} MM_{FL,i} x \eta_{flare,i}$$
(5)

where:

MD _{FL}	Methane destroyed through flaring (t CH ₄)
MM _{FL,i}	Methane sent to flaring in the interval i (t CH_4)
${\pmb \eta}_{{\scriptscriptstyle flare},i}$	Efficiency of methane destruction/oxidation in flare in the interval i, see below
n	number of samples (intervals) in the regarded period

The interval is set to 15 min during the monitoring period, which is more accurate than the 1 h intervals from the «Methodological "Tool to determine project emissions from flaring gases containing methane"» [AM_Tool])

For $\eta_{flare,i}$ three different values are taken, depending on the current combustion temperature $T_{Flame,i}$ of the flare in the interval i:

T _{Flame,i}	$\eta_{_{flare,i}}$	Source
> 850°C	99.5%	[PDD, revised monitoring plan Section D.1.1 and Annex 3]
500-850°C	90.0%	[AM_Tool_07-15]
< 500°C	0%	[AM_Tool_07-15]

where:

T _{Flame,i}	Flame temperature of the flare in the regarded interval i (°C)
$\eta_{{}_{flare,i}}$	flare efficiency in the interval i

page 29

Annex 5

Differences between the determined PDD and implemented project

There is difference between the determined PDD and implemented project.

The name of the Coal Mine has been changed per 29/04/2011. The old name OPEN JOINT STOCK COMPANY COAL MINE KOMSOMOLETS DONBASSA is no longer valid, the new name is:

Full name: DTEK MINE KOMSOMOLETS DONBASSA, PUBLIC JOINT-STOCK COMPANY;

Short name: DTEK MINE KOMSOMOLETS DONBASSA PJSC.

The identifying number and domicile of the legal entity as well as the place of registration remain unchanged.

The conditions defined by paragraph 33 of the JI guidelines are still met for the project.

- The physical location of the project has not changed.
- The emission sources have not changed.
- The baseline scenario has not changed.
- The changes are consistent with the JI specific approach and/or the clean development mechanism (CDM) methodology upon which the determination was prepared for the project.

page 30

<u>Annex 6</u>

Photo of the plant

Figure-4 Flare 3 and Flare 4 – DTEK MINE KOMSOMOLETS DONBASSA PJSC, Air Shaft Nr.3