THIRD MONITORING REPORT

PROJECT: ACHEMA UKL-7 plant N₂O abatement project

Prepared by:

VERTIS FINANCE

September 2, 2011

Monitoring periods

Line 2

Project campaign 3

FROM: 13/10/2009 TO: 21/10/2010 ERUs 200,400

Line 3

Project campaign 3

FROM: 17/06/2009 TO: 16/11/2010 ERUs 48,619

Line 4

Project campaign 3

FRÓM: 03/08/2010 TO: 09/03/2011 ERUs 99,159

Line 5

Project campaign 3

FRÓM: 12/08/2010 TO: 17/03/2011 ERUs 103,817

Line 7

Project campaign 3

FRÓM: 03/11/2009 TO: 08/12/2010 ERUs 150,615

Line 8

Project campaign 3

FROM: 21/11/2009 TO: 25/10/2010 ERUs 91,448 Line 2

Project campaign 4

FROM: 22/10/2010 TO: 12/05/2011 ERUs 160,448

MONITORING REPORT

PROJECT: ACHEMA UKL nitric acid plant N₂O abatement project

LINE: Line 2

MONITORING PERIOD: FROM: 13/10/2009

TO: 21/10/2010

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1.	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS VOLUME FLOW 1 TAIL GAS N₂O CONCENTRATION	6
	3.1.	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1.	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1.	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 2 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the third project campaign on Line 2.

The first project campaign on Line 2 started on 30/05/2008. Secondary catalyst was installed on 07/11/2008. Total quantity of emission reductions generated during the third project period from 13/10/2009 through 21/10/2010 on Line 2 is **200 400 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION							
Baseline Emission Factor	EF_BL	9.51	kgN2O/tHNO3				
Project Campaign Emission Factor	EF_P	2.00	kgN2O/tHNO3				
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 767	tHNO3				
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	60 767	tHNO3				
Nitric Acid Produced in the Project Campaign	NAP_P	86 079	tHNO3				
GWP	GWP	310	tCO2e/tN2O				
Emission Reduction	ER	200 400	tCOe				
ER=(EF_BL-EF_P)*NAP_P*GWP/1000							
Abatement Ratio	-	79.0%)				

EMISSION REDUCTION PER YEAR							
Year	2008	2009	2010				
Date From		13 Oct 2009	01 Jan 2010				
Date To		31 Dec 2009	21 Oct 2010				
Nitric Acid Production		17 444	68 634				
Emission Reduction		40 612	159 787				
$ER_YR = ER * NAP_P_YR / NAP_P$							

Baseline emission factor established for the Line 2 during baseline measurement carried from 09/11/2007 through 20/05/2008 is $9.51 \text{ kgN}_2\text{O/tHNO}_3$.

Project emission factor during the third project campaign after installation of secondary catalysts on Line 2, which started on 13/10/2009 and went through 21/10/2010 with secondary catalyst installed and commissioned on 07/11/2008, is 2.00 kgN₂O/tHNO₃.

3

During the project campaign 86 079 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 2 emission reductions including information on baseline emission factor setting for the Line 2.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

4

3. BASELINE SETTING

Baseline emission factor for line 2 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 2 has been carried out from 09/11/2007 through 20/05/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N₂O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:

Variable	Definition
EF_BL	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE_{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of $N_2 \tilde{O}$ in the stack gas during the baseline campaign (mgN_2O/m^3)
OH_{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)
NAP_{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N₂O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 2 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 2 the tail gas volume flow in the stack of the nitric acid plant as well as N₂O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PE_n	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

8

4.3 Project Campaign Length

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

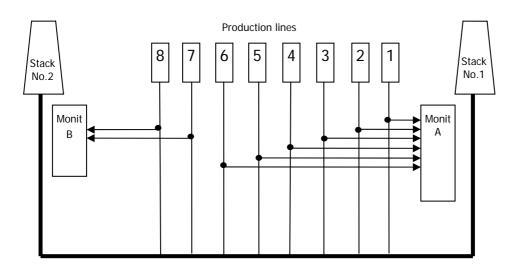
The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)

9


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

10

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

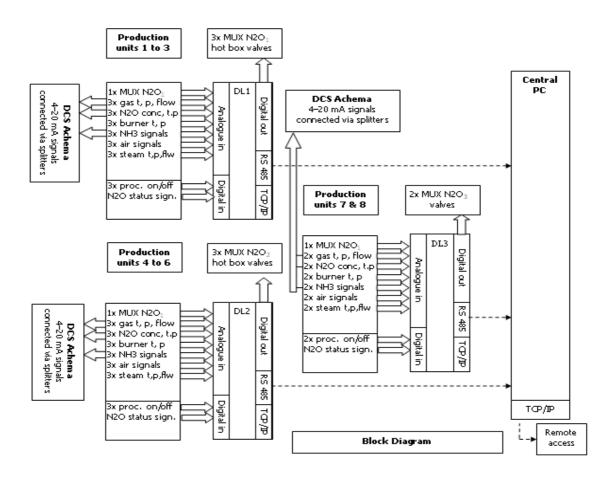
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

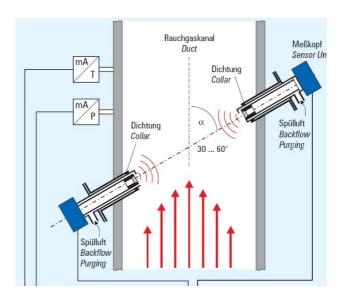
Main purpose of the N_2O automated measurement system (AMS) is to measure total mass of N_2O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N_2O emitted during particular campaign it is necessary to measure on an extractive basis the N_2O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

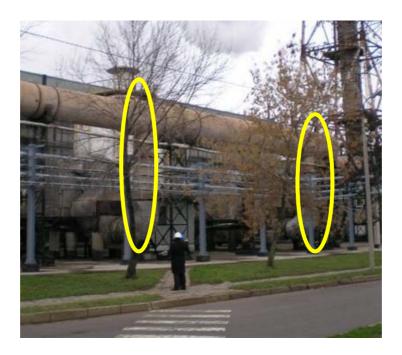
gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

13

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

where Humi (water content)=

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

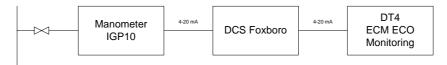
As required by the AM0034/Version 02 methodology the N_2O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N_2O AMS consists from the N_2O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N_2O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

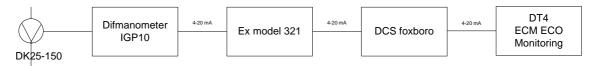
15

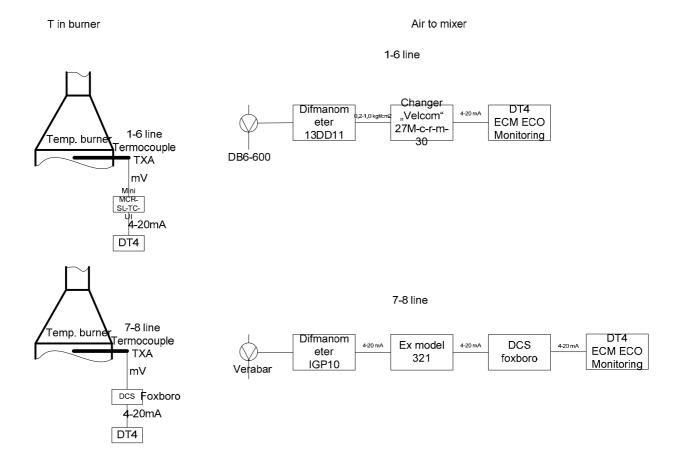
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 1-6 line


P in mixer 7-8 line


NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

18

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 08/11/2007 and ending on 29/07/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

19

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA
Y is the value of the parameter being objective of the measurement
a is a constant of the regression Line
b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN₂O/m₃. The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

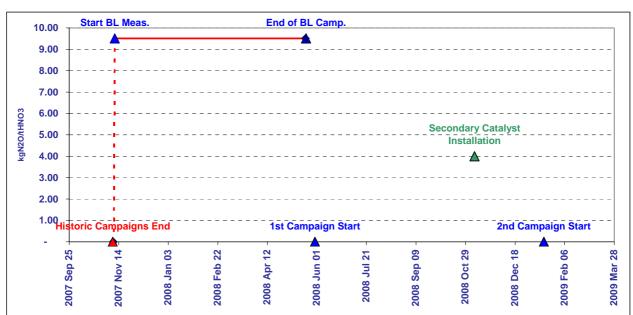
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 62 710 tHNO₃ and time duration was on average 239 days. Table contains also information on suppliers of primary catalysts for the line 2.

Start End Line **ACHEMA UKL-2** Production Days Production per Primary Catalyst Composition dav Historic Campaigns 1 t HNO3 07 Jun 2004 272 63 318 26 Jan 2005 233 Heraeus 90/5/5 27 Jan 2005 2 t HNO3 65 490 21 Sep 2005 95/5 237 276 Umicore 51 101 22 Sep 2005 62/4/34 3 t HNO3 10 Apr 2006 200 256 Heraeus 24 Jan 2007 63/4/33 4 t HNO3 63 008 11 Apr 2006 288 219 Heraeus **5** t HNO3 70 635 14 Mar 2007 08 Nov 2007 296 Johnson Matthey n.a. Average HNO3 production t HNO3 62 710 239 262 Johnson Matthey Project Campaigns BL t HNO3 09 Nov 2007 20 May 2008 193 315 PL t HNO3 86 079 13 Oct 2009 21 Oct 2010 373 231 Johnson Matthey

T 2 Historic campaigns

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.


T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 09/11/2007 and continued through 20/05/2008 when the 60 767 tHNO $_3$ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO $_3$.

T 3 Baseline campaign length

22

ACHEMA UKL-2	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Nov 08	2007 Nov 09	2008 May 20	2008 May 20	2008 May 21
Baseline Factor kgN2O/tHNO3	-	-	9.51	9.51	9.51
Production tHNO3		-	60 767	60 767	-
Per Day Production tHNO3	261.9				
Baseline less Historic Production	(1 943.4)				
Baseline less Historic Days	(7.4)				

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 2 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 09/11/2007 through 20/05/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N₂O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600° C occurred. Calculated baseline N2O emissions were 618 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 6.460%, which is further modified by an uncertainty of 0.087% due to under-sampling. As a result we have arrived to the baseline emission factor of 9.51 kgN $_2$ O/tHNO $_3$.

Table T 5 shows the calculation of the project emission factor on Line 2 during the project campaign. Project campaign started on 13/10/2009 and went through 21/10/2010.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN20)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.00 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

	BASELINE EMIS										
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure	AMS in Operation	Nitric Acid Productio NCSG
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	°C	OP kPa	h	NAP t/h
Elimination of extreme values											
Lower limit			0	0	0	0	0 -	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 254	4 633	4 353	4 216	4 296	4 277	4 606	4 576	3 828	4 63
as % of Dataset		92%	100%	94%	91%	93%	92%	99%	99%	83%	100
Minimum			-	0	140	2 069	-	42	5		-
Maximum			15.73	2 356	106 649	6 243	18.13	1 100	679		
Mean			13.12	1 576	83 679	5 815	9.78	843	604		
Standard Deviation			3.81	323	18 036	263	1.67	207	45		
Total			60 767		10 000	200	1.07	201	40		60 7
N2O Emissions (VSG * NCSG * OH)		561	t N2O								
Emission Factor			kgN2O / tHNO3								
Permitted Range											
Minimum						4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		3 710		3 710	3 710					3 828	
as % of Operating Hours		87%		87%	87%					90%	
Minimum				465	10 197						
Maximum				2 356	105 388						
Mean				1 588	85 591						
Standard Deviation				293	14 825						
N2O Emissions (VSG * NCSG * OH)		578	t N2O	ſ							
Emission Factor			kgN2O / tHNO3								
Data within the confidence interval											
5% Confidence interval											
Lower bound				1 014	56 534						
Upper bound				2 162	114 648						
Count				3 430	3 604						
as % of Operating Hours				81%	85%						
Minimum				1 118	77 416						
Maximum				2 156	105 388						
Mean				1 654	87 784						
Standard Deviation				173	7 591						
N2O Emissions (VSG * NCSG * OH)		618	t N2O								

T 5 Project emission factor

			PROJECT EI	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa
	Onit		t/II	ing N2O/Nin3	NIIIS/II	NIII3/II	/0	<u> </u>	кга
Elimination of extreme values									
Lower limit			0	0	0	0	•	- 50	0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000
Raw Data Measured Range									
Count		5 920	5 895	5 768	5 880	7 351	6 207	8 949	8 93
as % of Dataset		66%	66%	64%	66%	82%	69%	100%	100
Minimum			0.95	3	50 032	293	4	6	
Maximum			18.90	633	98 491	7 902	19.56	1 100	71:
Mean			14.60	359	82 917	5 574	10.74	646	52
Standard Deviation			1.37	67	4 044	1 296	0.79	394	18
Total			86 079						
Neo 5 1 1 (Veo 4 1000 4 01)		1=0	. 1100						
N2O Emissions (VSG * NCSG * OH)			t N2O						
Emission Factor		2.05	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				227	74 990				
Upper bound				491	90 843				
Count				5 374	5 456				
as % of Operating Hours				91%	92%				
Minimum				228	75 154				
Maximum				491	90 838				
Mean				353	82 315				
Standard Deviation				56	3 238				
Standard Deviation				30	3 2 3 0				
N2O Emissions (VSG * NCSG * OH)		172	t N2O						
Actual Project Emission Factor (EF_PActual)		2.00	kgN2O / tHNO3						
Abatement Ratio		79.0%							
		A. (1 = (1				
Moving Average Emission Factor Correction	1	Actual Factors 1.80	Moving Average R 1.80	uie					
	2	1.84	1.84						
	3	2.00	2.00						
	4	2.00	2.00						
					1				
Decided Emission Foot (FF B)		0.00	k-N20/4UN02						
Project Emission Factor (EF_P)		2.00	kgN2O / tHNO3						
Abatement Ratio		79.0%							

2

MONITORING REPORT

PROJECT: ACHEMA UKL nitric acid plant N₂O abatement project

LINE: Line 2

MONITORING PERIOD: FROM: 22/10/2010

TO: 12/05/2011

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1.	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS VOLUME FLOW 1 TAIL GAS N₂O CONCENTRATION	6
	3.1.	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1.	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1.	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 2 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the fourth project campaign on Line 2.

The first project campaign on Line 2 started on 30/05/2008. Secondary catalyst was installed on 07/11/2008. Total quantity of emission reductions generated during the fourth project period from 22/10/2010 through 12/05/2011 on Line 2 is **160 448 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION						
Baseline Emission Factor	EF_BL	9.51	kgN2O/tHNO3			
Project Campaign Emission Factor	EF_P	1.83	kgN2O/tHNO3			
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 767	tHNO3			
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	60 767	tHNO3			
Nitric Acid Produced in the Project Campaign	NAP_P	67 392	tHNO3			
GWP	GWP	310	tCO2e/tN2O			
Emission Reduction	ER	160 448	tCOe			
ER=(EF_BL-EF_P)*NAP_P*GWP/1000						
Abatement Ratio		82.4%)			

EMISSION REDUC	CTION PER Y	EAR	
Year	2099	2010	2011
Date From		22 Oct 2010	01 Jan 2011
Date To		31 Dec 2010	12 May 2011
Nitric Acid Production		25 426	41 966
Emission Reduction		60 535	99 913
$ER_YR = ER * NAP_P_YR / NAP_P$			

Baseline emission factor established for the Line 2 during baseline measurement carried from 09/11/2007 through 20/05/2008 is 9.51 kgN₂O/tHNO₃.

Project emission factor during the fourth project campaign after installation of secondary catalysts on Line 2, which started on 22/10/2010 and went through 12/05/2011 with secondary catalyst installed and commissioned on 07/11/2008, is 1.83 kgN₂O/tHNO₃.

3

During the project campaign 67 392 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 2 emission reductions including information on baseline emission factor setting for the Line 2.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

4

3. BASELINE SETTING

Baseline emission factor for line 2 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 2 has been carried out from 09/11/2007 through 20/05/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N₂O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:

Variable	Definition
EF_BL	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE_{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of $N_2 \tilde{O}$ in the stack gas during the baseline campaign (mgN_2O/m^3)
OH_{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)
NAP_{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N₂O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 2 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 2 the tail gas volume flow in the stack of the nitric acid plant as well as N₂O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PE_n	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 Project Campaign Length

8

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

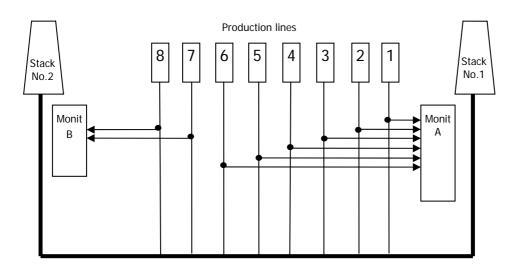
The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

Where:

Variable	Definition						
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)						
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.						
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)						
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)						

9


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

10

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

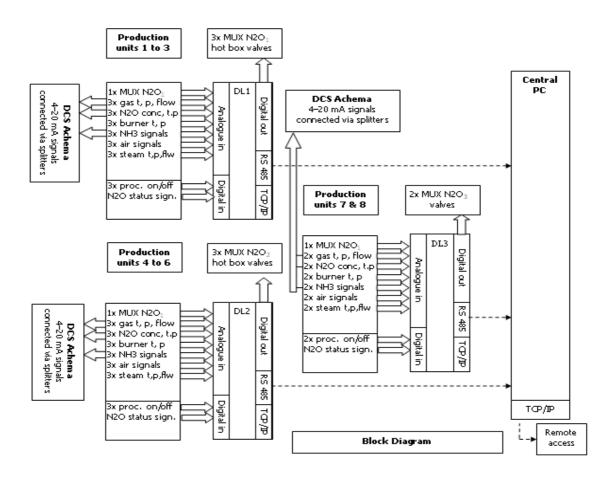
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

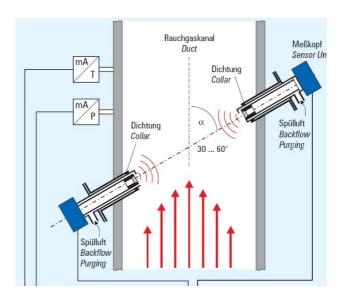
Main purpose of the N_2O automated measurement system (AMS) is to measure total mass of N_2O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N_2O emitted during particular campaign it is necessary to measure on an extractive basis the N_2O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

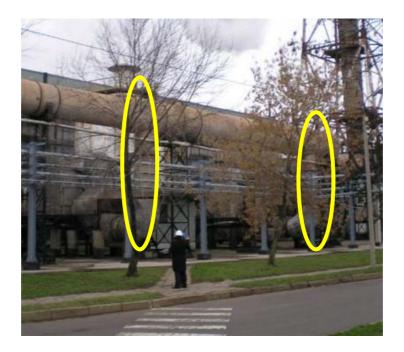
gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

13

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

where Humi (water content)=

$$(L1_Flow_steam*1.2436)/(L1_Flow_N2O*(273.15/(273.15+L1_Temp))*(L1_Press/101.325))*1 \\ 00+0.6$$

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

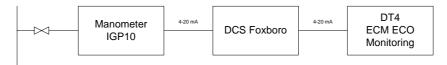
As required by the AM0034/Version 02 methodology the N_2O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N_2O AMS consists from the N_2O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N_2O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

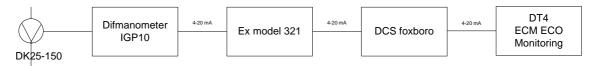
15

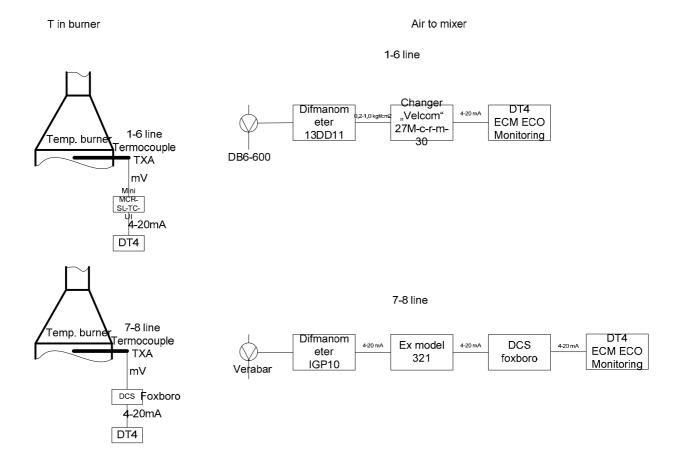
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 1-6 line


P in mixer 7-8 line


NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

18

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 08/11/2007 and ending on 29/07/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

19

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA
Y is the value of the parameter being objective of the measurement
a is a constant of the regression Line
b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN₂O/m₃. The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

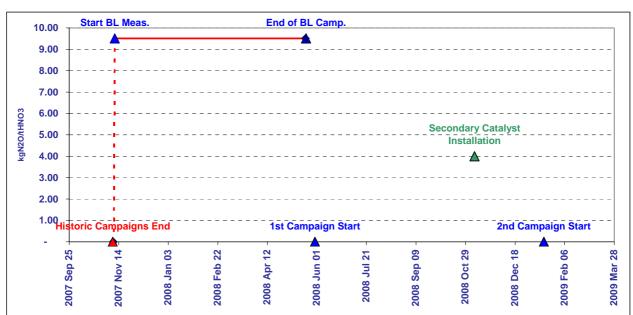
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 62 710 tHNO₃ and time duration was on average 239 days. Table contains also information on suppliers of primary catalysts for the line 2.

Start End Line **ACHEMA UKL-2** Production Days Production per Primary Catalyst Composition dav Historic Campaigns 1 t HNO3 07 Jun 2004 272 63 318 26 Jan 2005 233 Heraeus 90/5/5 27 Jan 2005 2 t HNO3 65 490 21 Sep 2005 95/5 237 276 Umicore 51 101 22 Sep 2005 62/4/34 3 t HNO3 10 Apr 2006 200 256 Heraeus 24 Jan 2007 63/4/33 4 t HNO3 63 008 11 Apr 2006 288 219 Heraeus **5** t HNO3 70 635 14 Mar 2007 08 Nov 2007 296 Johnson Matthey n.a. Average HNO3 production t HNO3 62 710 239 262 Johnson Matthey Project Campaigns BL t HNO3 09 Nov 2007 20 May 2008 193 315 PL t HNO3 67 392 22 Oct 2010 12 May 2011 202 334 Johnson Matthey

T 2 Historic campaigns

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.


T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 09/11/2007 and continued through 20/05/2008 when the 60 767 tHNO $_3$ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO $_3$.

T 3 Baseline campaign length

22

ACHEMA UKL-2	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Nov 08	2007 Nov 09	2008 May 20	2008 May 20	2008 May 21
Baseline Factor kgN2O/tHNO3	-	-	9.51	9.51	9.51
Production tHNO3		-	60 767	60 767	-
Per Day Production tHNO3	261.9				
Baseline less Historic Production	(1 943.4)				
Baseline less Historic Days	(7.4)				

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 2 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 09/11/2007 through 20/05/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N₂O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600° C occurred. Calculated baseline N2O emissions were 618 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 6.460%, which is further modified by an uncertainty of 0.087% due to under-sampling. As a result we have arrived to the baseline emission factor of 9.51 kgN $_2$ O/tHNO $_3$.

Table T 5 shows the calculation of the project emission factor on Line 2 during the project campaign. Project campaign started on 22/10/2010 and went through 12/05/2011.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN20)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.83 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

	BASELINE EMIS										
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure	AMS in Operation	Nitric Acid Productio NCSG
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	°C	OP kPa	h	NAP t/h
Elimination of extreme values											
Lower limit			0	0	0	0	0 -	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 254	4 633	4 353	4 216	4 296	4 277	4 606	4 576	3 828	4 63
as % of Dataset		92%	100%	94%	91%	93%	92%	99%	99%	83%	100
Minimum			-	0	140	2 069	-	42	5		-
Maximum			15.73	2 356	106 649	6 243	18.13	1 100	679		
Mean			13.12	1 576	83 679	5 815	9.78	843	604		
Standard Deviation			3.81	323	18 036	263	1.67	207	45		
Total			60 767		10 000	200	1.07	201	40		60 7
N2O Emissions (VSG * NCSG * OH)		561	t N2O								
Emission Factor			kgN2O / tHNO3								
Permitted Range											
Minimum						4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		3 710		3 710	3 710					3 828	
as % of Operating Hours		87%		87%	87%					90%	
Minimum				465	10 197						
Maximum				2 356	105 388						
Mean				1 588	85 591						
Standard Deviation				293	14 825						
N2O Emissions (VSG * NCSG * OH)		578	t N2O	ſ							
Emission Factor			kgN2O / tHNO3								
Data within the confidence interval											
5% Confidence interval											
Lower bound				1 014	56 534						
Upper bound				2 162	114 648						
Count				3 430	3 604						
as % of Operating Hours				81%	85%						
Minimum				1 118	77 416						
Maximum				2 156	105 388						
Mean				1 654	87 784						
Standard Deviation				173	7 591						
N2O Emissions (VSG * NCSG * OH)		618	t N2O								

T 5 Project emission factor

			PROJECT EI	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	ОТ	OP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa
Elimination of extreme values									
Lower limit			0	0	0	0	0	- 50	0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000
Raw Data Measured Range									
Count		4 520	4 543	4 442	4 485	4 828	4 548	4 845	4 824
as % of Dataset		93%	94%	92%		100%		100%	100%
Minimum			0.67	151	37 339	316	2	5	744
Maximum			18.63	591	94 149	7 678	14.86	1 100	711
Mean Standard Deviation			14.83 1.37	349 68	72 365 3 529	6 088 456	10.44 0.27	846 195	614 87
Total			67 392	00	3 329	456	0.27	195	01
Total			07 002						
N2O Emissions (VSG * NCSG * OH)		114	t N2O						
Emission Factor		1.69	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval Lower bound				215	65 447				
Upper bound				482	79 283				
Opper bound				402	19 203				
Count				4 122	4 369				
as % of Operating Hours				91%					
Minimum				215	65 654				
Maximum				482	79 229				
Mean				346	72 021				
Standard Deviation				58	2 592				
N2O Emissions (VSG * NCSG * OH)			t N2O						
Actual Project Emission Factor (EF_PActual)		1.67	kgN2O / tHNO3						
Abatement Ratio		82.4%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule	1				
	1	1.80	1.80		1				
	2	1.84	1.84						
	3	2.00	2.00						
	4	1.67	1.83						
Project Emission Factor (EF_P)		1.83	kgN2O / tHNO3						
Abatement Ratio		80.8%							
		30.070	ľ						

MONITORING REPORT

PROJECT: ACHEMA UKL nitric acid plant N₂O abatement project

LINE: Line 3

MONITORING PERIOD: FROM: 17/06/2009

TO: 16/11/2010

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1 3.1		6 6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS .1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	.2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	22
	6.1	APPLIED PRINCIPLE	22
	6.2	STACK GAS VOLUME FLOW	23
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	23
	6.4	STACK GAS TEMPERATURE	23
	6.5	STACK GAS PRESSURE	23
7.		EMISSION REDUCTION CALCULATIONS	24

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 3 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the third project campaign on Line 3.

The first campaign on Line 3 started on 27/08/2008. Secondary catalyst was installed on 04/07/2008. Total quantity of emission reductions generated during the third project period from 17/06/2009 through 16/11/2010 on Line 3 is **48 619 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION							
Baseline Emission Factor EF_BL 5.45 kgN2O/tHNO3							
Project Campaign Emission Factor	EF_P	3.59	kgN2O/tHNO3				
Nitric Acid Produced in the Baseline Campaign	NAP_BL	59 042	tHNO3				
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	56 309	tHNO3				
Nitric Acid Produced in the Project Campaign	NAP_P	84 321	tHNO3				
GWP	GWP	310	tCO2e/tN2O				
Emission Reduction	ER	48 619	tCOe				
ER=(EF_BL-EF_P)*NAP_P*GWP/1000							
Abatement Ratio		34.1%)				

EMISSION DE	DUSTION BED VE	4 D							
EMISSION REDUCTION PER YEAR									
Year	2008	2009	2010						
Date From		17 Jun 2009	01 Jan 2010						
Date To		31 Dec 2009	16 Nov 2010						
Nitric Acid Production		35 016	49 304						
Emission Reduction		20 190	28 429						
$ER_YR = ER * NAP_P_YR / NAP_P$									

Baseline emission factor established for the Line 3 during baseline measurement carried using overlapping approach from 01/02/2008 to 04/07/2008 and from 01/09/2007 through 03/11/2007 is 5.45 kgN₂O/tHNO₃.

Project emission factor during third project campaign after installation of secondary catalysts on Line 3, which started on 17/06/2009 and went through 16/11/2010 with secondary catalyst installed and commissioned on 04/07/2008, is $3.59~kgN_2O/tHNO_3$.

3

During the project campaign 84 321 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 3 emission reductions including information on baseline emission factor setting for the Line 3.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

4

3. BASELINE SETTING

Baseline emission factor for line 3 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 3 has been carried out using overlapping approach from 01/02/2008 to 04/07/2008 and from 01/09/2007 through 03/11/2007.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N₂O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:

Variable	Definition
EF_BL	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE_{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH_{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)
NAP_{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N₂O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 3 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 3 the tail gas volume flow in the stack of the nitric acid plant as well as N₂O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

PEn = VSG * NCSG *
$$10^{-9}$$
 * OH (tN_2O)

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PE_n	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

Because this campaign was third project campaign on Line 3 there has been no minimum average emission factor established yet for this campaign. This factor will be established after 10th project campaign.

8

4.3 Project Campaign Length

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

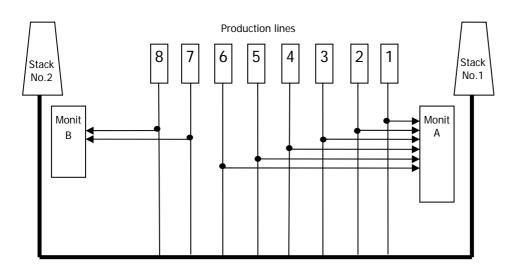
The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

Where:

Variable	Definition						
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)						
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.						
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)						
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)						

9


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

10

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

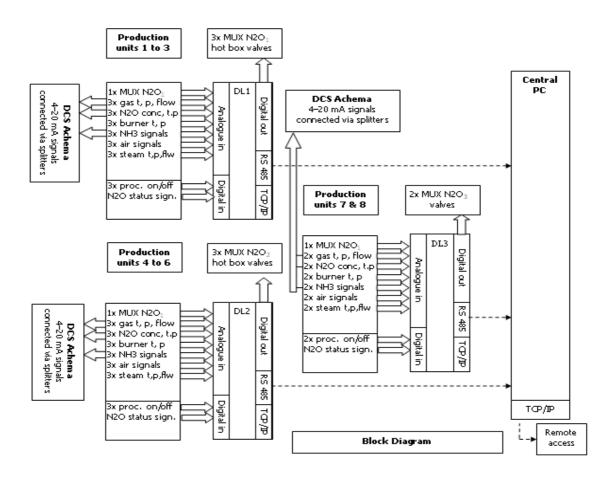
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N_2O automated measurement system (AMS) is to measure total mass of N_2O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N_2O emitted during particular campaign it is necessary to measure on an extractive basis the N_2O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

There are 8 production lines falling under scope of the JI project (lines 1-8). N₂O concentration is measured by 3 concentration meters on a switched basis.

- 1st analyzer measures 1, 2 and 3 lines.
- 2nd analyzer measures 4, 5 and 6 lines.
- 3rd analyzer measures 7 and 8 lines.

Switching between lines is managed by the AMS software. Switching intervals between lines are 300 seconds (5 minutes). 60 seconds (1 minute) of 300 seconds are for purging, i.e. no measurement during that time. Next 240 seconds (4 minutes) are for measuring, i.e. AMS is registering N_2O concentration values of selected line.

1st analyser complete 15 minutes measuring cycle:

Lines	Line 1 Line 2			Lin	ne 3	
process	purging	measuring	purging	measuring	purging	measuring
interval	1 minute	4 minutes	1 minute	4 minutes	1 minute	4 minutes

2nd analyser complete 15 minutes measuring cycle:

Lines	Line 4		Line 5			Line 6		
process	purging	measuring	purging	measuring	purging	measuring		
interval	1 minute	4 minutes	1 minute	4 minutes	1 minute	4 minutes		

3rd analyser complete 10 minutes measuring cycle:

Lines	Line 7		Line 8	
process	purging	measuring	purging	measuring
interval	1 minute	4 minutes	1 minute	4 minutes

Emission values are product of

- operating hours
- mean of the hourly measurements N₂O concentration
- mean of the hourly measured VSG

BE = OH * mean(NCSG) * mean(VSG)

The additional uncertainty comes from the additional deviation of mean(NCSG) in the equation, that stems from lower sampling rate. We calculate the deviation of mean(NCSG) under 2 sec sampling intervals, as well as the actual, and take the difference.

The deviation of mean(NCSG) depends on

- deviation of the hourly measurements
- sample size
- number of measurements

stdev(mean("Actual hourly NCSG")) = stdev("Actual hourly NCSG") / sqrt("OH of NCSG measurement")

where OH is the number of hours (or observations) that are taken into account in the calculation of NCSG, that are not eliminated due to various reasons (like short project campaign, etc). Actual means the number we have with under-sampling.

The hourly NCSG values we receive are in fact the averaged values of NCSG readings collected on a 2 seconds interval. Had we sampled every 2 seconds, we would have 1800 samples per hour. In case of two lines on the same device (with 4 minutes measurement, 1 minute of purge time), we have 720 samples per hour (or 480 in case of 3 lines per device).

"sample size" = "logging interval time" / (("measurement time" + "switching time") * "no. of lines") * "measurement time" / "sampling interval time"

We can estimate the deviation of the second level NCSG measured by the device from the deviation of the hourly samples by taking into account the sample size and that they are the average of the second level readings. From this we can calculate what would be the deviation of the hourly NCSG in case we had a full sampling rate.

stdev("Actual hourly NCSG") = stdev("Second level NCSG") / sqrt("Actual sample size")

stdev("Ideal hourly NCSG") = stdev("Second level NCSG") / sqrt("Ideal sample size")

or

stdev("Ideal hourly NCSG") = stdev("Actual hourly NCSG") * sqrt("Actual sample size") / sqrt("Ideal sample size")

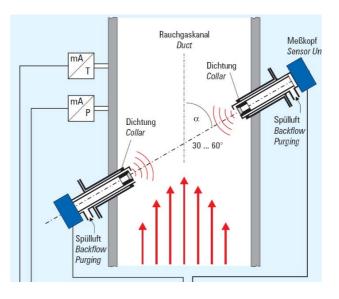
Afther that, we take into account the OH of the NCSG measurement to get the ideal deviation of the mean of the hourly values under normal sampling.

stdev(mean("Ideal hourly NCSG")) = stdev("Ideal hourly NCSG") / sqrt("OH of NCSG measurement")

The additional uncertainty is the difference between the ideal and the under-sampled deviation of the mean of the hourly values.

Diff = stdev(mean("Actual hourly NCSG")) - stdev(mean("Ideal hourly NCSG"))

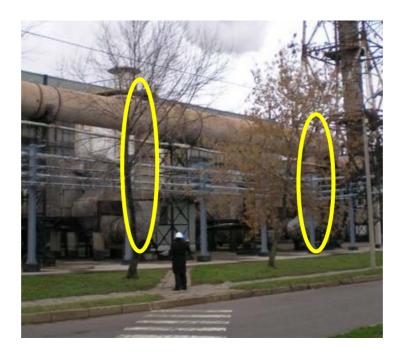
Combined UNC = sqrt(UNC^2 + Diff^2)


Where UNC is the QAL2 uncertainty.

Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

15

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

where Humi (water content)=

(L1_Flow_steam*1.2436)/(L1_Flow_N2O*(273.15/(273.15+L1_Temp))*(L1_Press/101.325))*1 00+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

16

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

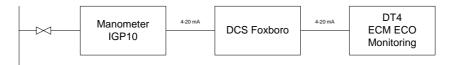
EN14181 compliance

As required by the AM0034/Version 02 methodology the N_2O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N_2O AMS consists from the N_2O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N_2O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

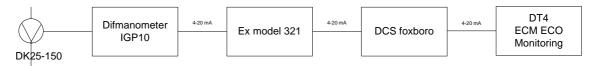
For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

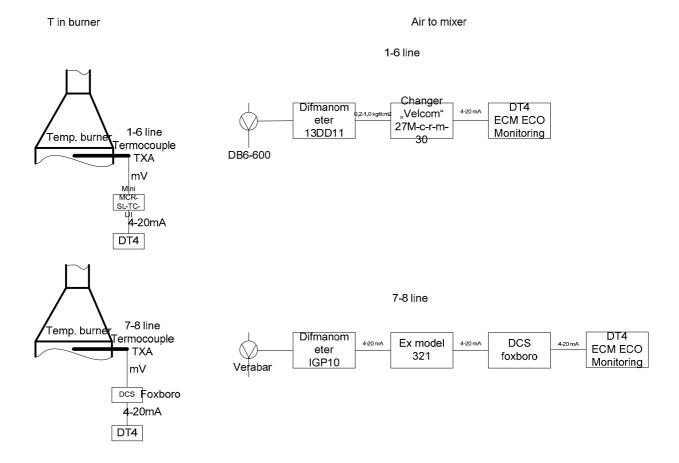
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 1-6 line


P in mixer 7-8 line


NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 09/11/2007 and ending on 30/07/2008 project uses HNO3 concentration data provided by the laboratory measurements.

In case of refractometer's malfunction the HNO3 concentration is measured in laboratory.

The sample point of nitric acid production is in the output of the aggregate – in the pipe after the bleaching column. In the laboratory HNO3 concentration is tested by titration method. This method is defined in the company's standard (No.IST 5666739-32:2002) of nitric acid production. The laboratory controller, who performs the testing, is trained according "Training program for laboratory assistant performing chemical analysis"," Toxic chemical goods worker training program" and has qualification of chemistry's laboratory assistance.

Until 2010 year the testing frequency was once a week. This periodicity is usual in Achema and it is also the usual industry practice. Since 2010 year the testing frequency is once a day during the period of refractometers eventual malfunction. The laboratory NAC results are recorded in the laboratory registers No.Z42-303-40/303/08 and No.Z14-303-40/303/08. From laboratory registers NAC data are inputted in to Excel sheet manually.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA
Y is the value of the parameter being objective of the measurement
a is a constant of the regression Line
b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN₂O/m₃. The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was $59\,680\,$ tHNO $_3$ and time duration was on average $316\,$ days. Table contains also information on suppliers of primary catalysts for the line 3. As shown in the table, it is usual practice in Achema to use primary catalysts from various suppliers.

I ine ACHEMA UKI -3 Production Start Fnd Production per Primary Catalyst Composition day 1 t HNO3 63/4/33 Historic Campaigns 612 64 017 05 Feb 2004 09 Oct 2005 Heraeus 2 t HNO3 10 Oct 2005 28 Jun 2006 242 90/5/5 3 t HNO3 59 912 01 Jul 2005 24 Jan 2006 207 289 Heraeus 63/4/33 56 702 23 Nov 2006 302 63/4/33 4 t HNO3 25 Jan 2006 188 Heraeus 5 t HNO3 63/4/33 Average HNO3 production t HNO3 59 680 316 189 BL t HNO3 04 Jul 2008 63/4/33 **Project Campaigns** 01 Sep 2007 Heraeus 84 321

T 2 Historic campaigns

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started using overlapping approach from 01/02/2008 to 04/07/2008 then from 01/09/2007 through 03/11/2007 when the 59 042 tHNO₃ nitric acid production was reached. The baseline measurement for N2O concentration (NCSG) was carried out until the production of 56 309 tHNO₃ was reached.

We have two campaigns available that we can use for the baseline. AMS was installed in the middle of the first campaign, whereas the secondary catalyst was installed in the middle of the consecutive second one. We use these two campaigns to construct the baseline campaign using the overlapping approach as set out by the PDD. To get a clear start, that is, the baseline series has to start with a primary catalyst change, we use the beginning of the second campaign as the basis, until the secondary catalyst installation is reached. If this baseline turns out to be shorter than the project line, we use data available from the first campaign from the AMS installation to overlap the two series, and get a comparable baseline. Since we use the earliest available data from the first campaign, where emissions are generally lower, this is a conservative approach and fully in line with the PDD.

24

T	3	Baseline	campaign	length
---	---	----------	----------	--------

ACHEMA UKL-3	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jul 09	2007 Sep 01	2008 Jul 04	2008 Jul 04	2008 Jul 05
Baseline Factor kgN2O/tHNO3	-	· · · · · · · · · · · · · · · · · · ·	5.45	5.45	5.45
Production tHNO3		-	56 309	59 042	-
Per Day Production tHNO3	189.0				
Baseline less Historic Production	(637.7)				
Baseline less Historic Days	(3.4)				

C 1 Baseline campaign length

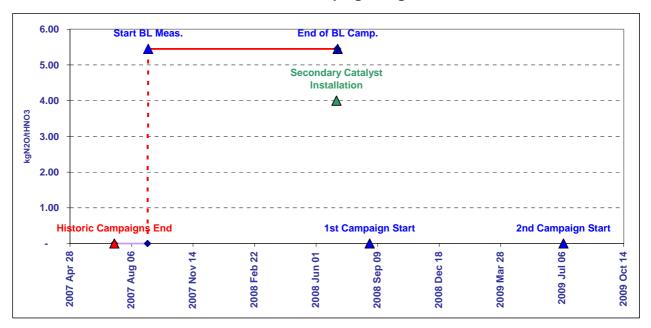


Table T 4 illustrates the calculation of the baseline emission factor on line 3 using the method as defined in the CDM methodology AM0034 and in the PDD.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600° C occurred. Calculated baseline N2O emissions were 341 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 5.630%, which was further modified by an uncertainty of 0.094% due to under-sampling. As a result we have arrived to the baseline emission factor of $5.45~kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 3 during the project campaign. Project campaign started on 17/06/2009 and went through 16/11/2010.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 3.59 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

	BASELINE EMIS		Mitria Anial	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
	Parameter	Operating Hours	Nitric Acid Production	Concentration	Flow	Flow Rate	to Air Ratio	Temperature	Pressure	Operation	Production NCSG
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa	h	NAP t/h
Elimination of extreme values											
Lower limit			0	0	0	0		- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 524	5 074	4 476	4 623	5 148		5 235	5 232	4 155	4 879
as % of Dataset		86%	97%	85%	88%	98%		100%	100%	79%	93%
Minimum			-	0	10	1	0	0	0		
Maximum			16.63	1 864	90 517	6 221	19.99	906	626		17
Mean			11.64	1 100	67 849	4 974		794	545		12
Standard Deviation			5.03	298	11 542	1 802	1.62	258	118		5
Total			59 042								56 309
N2O Emissions (VSG * NCSG * OH)			t N2O								
Emission Factor		5.40	kgN2O / tHNO3								
Permitted Range											
Minimum						4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		4 087		3 816	3 994					4 155	
as % of Operating Hours		90%		84%	88%					92%	
Minimum				381							
Maximum				1 864	77 232						
Mean				1 115	64 988						
Standard Deviation				148	14 287						
N2O Emissions (VSG * NCSG * OH)			t N2O								
Emission Factor		5.24	kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound				825	36 985						
Upper bound				1 406	92 991						
Count				3 482	3 816						
as % of Operating Hours				77%	84%						
Minimum				825	48 852						
Maximum				1 404	77 232						
Mean Standard Deviation				1 108 127	68 019 2 721						
N2O Emissions (VSG * NCSG * OH)		244	t N2O	1							
Emission Factor (EF_BL)			t N2O kgN2O / tHNO3								
LIIII SSIVII FALLUI IEF DLI		5.45	KYNZU / LINUS								

T 5 Project emission factor

			PROJECT EI	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT ℃	OP kPa
Elimination of extreme values									
Lower limit			0	0	0	0	0	- 50	0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000
Raw Data Measured Range									
Count		6 096	8 857	5 966	6 014	12 398	6 262	12 398	12 398
as % of Dataset		49%	71%	48%	48%	100%	50%	100%	100%
Minimum			0.67	21	2 885	126	1	14	1
Maximum			14.70	2 188	81 300	8 000	19.99	1 100	693
Mean			9.52	705	71 132	3 654	10.43	490	546
Standard Deviation			4.96	253	3 584	2 871	1.22	400	112
Total			84 321	200	000.	20		.00	
N2O Emissions (VSG * NCSG * OH)		306	t N2O						
Emission Factor		3.63	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				210	64 107				
Upper bound				1 201	78 156				
Count				5 583	5 814				
as % of Operating Hours				92%	95%				
Minimum				297	64 152				
Maximum				1 201	78 143				
Mean				696	71 359				
Standard Deviation				246	2 349				
NOO Feelesters (MOO + NOOO + CIT)			t N2O						
N2O Emissions (VSG * NCSG * OH) Actual Project Emission Factor (EF_PActual)		303 3.59	t N2O kgN2O / tHNO3						
Abatement Ratio		34.1%	KgN2O7 tHNO3						
Additional ratio		34.170							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule]				
	1	1.92	1.92		1				
	2	3.01	3.01						
	3	3.59	3.59						
	4	-							
Project Emission Factor (EF_P)		3.59	kgN2O / tHNO3						
Abatement Ratio		34.1%	<u>-</u>						

2

© 2008, Vertis Finance

MONITORING REPORT

PROJECT: ACHEMA UKL nitric acid plant N₂O abatement project

LINE: Line 4

MONITORING PERIOD: FROM: 03/08/2010

TO: 09/03/2011

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS VOLUME FLOW	6
	3.1		6
	3.1	.2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.		PROJECT EMISSIONS	8
	4.1	.1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	.2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	22
	6.1	APPLIED PRINCIPLE	22
	6.2	STACK GAS VOLUME FLOW	23
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	23
	6.4	STACK GAS TEMPERATURE	23
	6.5	STACK GAS PRESSURE	23
7		EMISSION PEDILICTION CALCUL ATIONS	24

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 4 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the third project campaign on Line 4.

The first project campaign on Line 4 started on 01/08/2008. Secondary catalyst was installed on 06/10/2008. Total quantity of emission reductions generated during the third project period from 03/08/2010 through 09/03/2011 on Line 4 is **99 159 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION							
Baseline Emission Factor	EF_BL	7.73	kgN2O/tHNO3				
Project Campaign Emission Factor	EF_P	2.33	kgN2O/tHNO3				
Nitric Acid Produced in the Baseline Campaign	NAP_BL	58 683	tHNO3				
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	58 683	tHNO3				
Nitric Acid Produced in the Project Campaign	NAP_P	59 235	tHNO3				
GWP	GWP	310	tCO2e/tN2O				
Emission Reduction	ER	99 159	tCOe				
ER=(EF_BL-EF_P)*NAP_P*GWP/1000							
atement Ratio 75.9%							

EMISSION REDUC	CTION PER Y	EAR	
Year	2009	2010	2011
Date From		03 Aug 2010	01 Jan 2011
Date To		31 Dec 2010	09 Mar 2011
Nitric Acid Production		38 627	20 608
Emission Reduction		64 662	34 498
$ER_YR = ER * NAP_P_YR / NAP_P$			

Baseline emission factor established for the Line 4 during baseline measurement carried from 28/12/2007 through 31/07/2008 is 7.73 kgN₂O/tHNO₃.

Project emission factor during the third project campaign after installation of secondary catalysts on Line 4, which started on 03/08/2010 and went through 09/03/2011 with secondary catalyst installed and commissioned on 06/10/2008, is $2.33 \text{ kgN}_2\text{O/tHNO}_3$.

3

During the project campaign 59 235 tonnes of nitric acid was produced.

© 2008, Vertis Finance

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 4 emission reductions including information on baseline emission factor setting for the Line 4.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

4

© 2008, Vertis Finance

3. BASELINE SETTING

Baseline emission factor for line 4 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 4 has been carried out from 28/12/2007 through 31/07/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N₂O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:

Variable	Definition
EF_BL	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE_{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH_{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)
NAP_{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N₂O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 4 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 4 the tail gas volume flow in the stack of the nitric acid plant as well as N₂O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PE_n	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
ОН	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

8

4.3 Project Campaign Length

© 2008, Vertis Finance

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

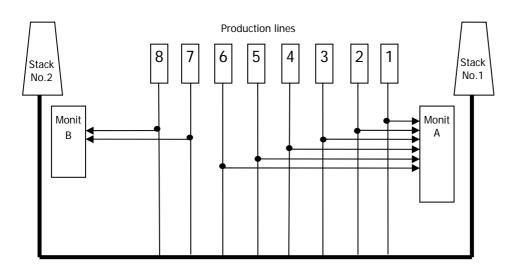
The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

Where:

Variable	Definition					
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)					
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.					
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)					
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)					

9


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

10

© 2008, Vertis Finance

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

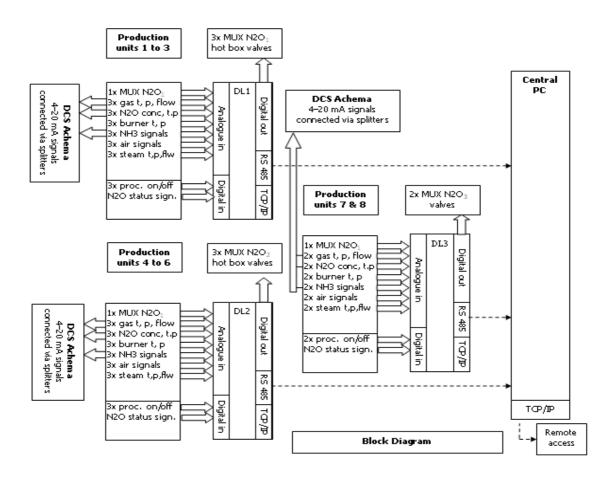
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N_2O automated measurement system (AMS) is to measure total mass of N_2O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N_2O emitted during particular campaign it is necessary to measure on an extractive basis the N_2O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

There are 8 production lines falling under scope of the JI project (lines 1-8). N₂O concentration is measured by 3 concentration meters on a switched basis.

- 1st analyzer measures 1, 2 and 3 lines.
- 2nd analyzer measures 4, 5 and 6 lines.
- 3rd analyzer measures 7 and 8 lines.

Switching between lines is managed by the AMS software. Switching intervals between lines are 300 seconds (5 minutes). 60 seconds (1 minute) of 300 seconds are for purging, i.e. no measurement during that time. Next 240 seconds (4 minutes) are for measuring, i.e. AMS is registering N_2O concentration values of selected line.

1st analyser complete 15 minutes measuring cycle:

Lines	Line 1		Lin	e 2	Line 3		
process	purging	measuring	purging	measuring	purging	measuring	
interval	1 minute	4 minutes	1 minute	4 minutes	1 minute	4 minutes	

2nd analyser complete 15 minutes measuring cycle:

Lines	Lin	e 4	Lin	e 5	Line 6		
process	purging	measuring	purging	measuring	purging	measuring	
interval	1 minute	4 minutes	1 minute	4 minutes	1 minute	4 minutes	

3rd analyser complete 10 minutes measuring cycle:

Lines	Line 7		Line 8		
process	purging	measuring	purging	measuring	
interval	1 minute	4 minutes	1 minute	4 minutes	

Emission values are product of

- operating hours
- mean of the hourly measurements N₂O concentration
- mean of the hourly measured VSG

BE = OH * mean(NCSG) * mean(VSG)

The additional uncertainty comes from the additional deviation of mean(NCSG) in the equation, that stems from lower sampling rate. We calculate the deviation of mean(NCSG) under 2 sec sampling intervals, as well as the actual, and take the difference.

The deviation of mean(NCSG) depends on

- deviation of the hourly measurements
- sample size
- number of measurements

stdev(mean("Actual hourly NCSG")) = stdev("Actual hourly NCSG") / sqrt("OH of NCSG measurement")

where OH is the number of hours (or observations) that are taken into account in the calculation of NCSG, that are not eliminated due to various reasons (like short project campaign, etc). Actual means the number we have with under-sampling.

The hourly NCSG values we receive are in fact the averaged values of NCSG readings collected on a 2 seconds interval. Had we sampled every 2 seconds, we would have 1800 samples per hour. In case of two lines on the same device (with 4 minutes measurement, 1 minute of purge time), we have 720 samples per hour (or 480 in case of 3 lines per device).

"sample size" = "logging interval time" / (("measurement time" + "switching time") * "no. of lines") * "measurement time" / "sampling interval time"

We can estimate the deviation of the second level NCSG measured by the device from the deviation of the hourly samples by taking into account the sample size and that they are the average of the second level readings. From this we can calculate what would be the deviation of the hourly NCSG in case we had a full sampling rate.

stdev("Actual hourly NCSG") = stdev("Second level NCSG") / sqrt("Actual sample size")

stdev("Ideal hourly NCSG") = stdev("Second level NCSG") / sqrt("Ideal sample size")

or

stdev("Ideal hourly NCSG") = stdev("Actual hourly NCSG") * sqrt("Actual sample size") / sqrt("Ideal sample size")

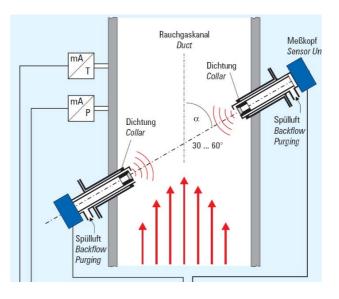
Afther that, we take into account the OH of the NCSG measurement to get the ideal deviation of the mean of the hourly values under normal sampling.

stdev(mean("Ideal hourly NCSG")) = stdev("Ideal hourly NCSG") / sqrt("OH of NCSG measurement")

The additional uncertainty is the difference between the ideal and the under-sampled deviation of the mean of the hourly values.

Diff = stdev(mean("Actual hourly NCSG")) - stdev(mean("Ideal hourly NCSG"))

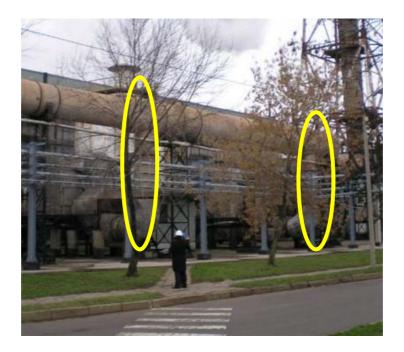
Combined UNC = sqrt(UNC^2 + Diff^2)


Where UNC is the QAL2 uncertainty.

Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

15

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

where Humi (water content)=

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

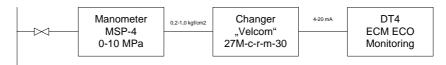
Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

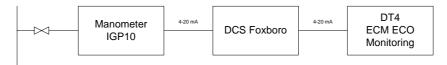
EN14181 compliance

As required by the AM0034/Version 02 methodology the N_2O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N_2O AMS consists from the N_2O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N_2O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

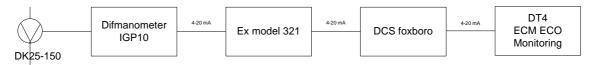

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

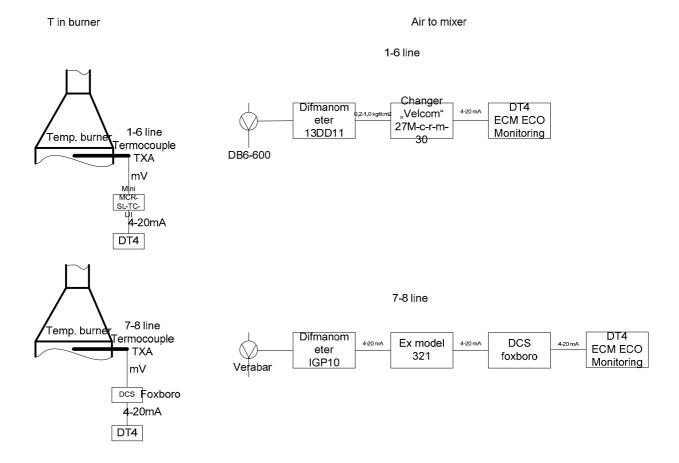
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 1-6 line


P in mixer 7-8 line


NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 31/10/2007 and ending on 10/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

In case of refractometer's malfunction the HNO3 concentration is measured in laboratory.

The sample point of nitric acid production is in the output of the aggregate – in the pipe after the bleaching column. In the laboratory HNO3 concentration is tested by titration method. This method is defined in the company's standard (No.IST 5666739-32:2002) of nitric acid production. The laboratory controller, who performs the testing, is trained according "Training program for laboratory assistant performing chemical analysis"," Toxic chemical goods worker training program" and has qualification of chemistry's laboratory assistance.

Until 2010 year the testing frequency was once a week. This periodicity is usual in Achema and it is also the usual industry practice. Since 2010 year the testing frequency is once a day during the period of refractometers eventual malfunction. The laboratory NAC results are recorded in the laboratory registers No.Z42-303-40/303/08 and No.Z14-303-40/303/08. From laboratory registers NAC data are inputted in to Excel sheet manually.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA
Y is the value of the parameter being objective of the measurement
a is a constant of the regression Line
b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0 $^{\circ}$ C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN₂O/m₃. The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 65 823 tHNO₃ and time duration was on average 275 days. Table contains also information on suppliers of primary catalysts for the line 4.

Start End Line **ACHEMA UKL-4** Production Days Production per Primary Catalyst Composition dav 18 Apr 2003 294 Historic Campaigns 1 t HNO3 69 782 11 Dec 2003 237 Johnson Matthey 90/5/5 11 Dec 2003 06 Dec 2004 Johnson Matthey 2 t HNO3 65 420 90/5/5 361 181 66 129 07 Dec 2004 3 t HNO3 08 Nov 2005 Umicore 95/5 336 197 4 t HNO3 22 Mar 2006 23 Nov 2006 272 Johnson Matthey n.a. **5** t HNO3 60 959 23 Nov 2006 04 Jun 2007 193 316 Johnson Matthey n.a. Average HNO3 production t HNO3 65 823 275 240 Johnson Matthey Project Campaigns BL t HNO3 28 Dec 2007 31 Jul 2008 216 272 59 235 PL t HNO3 03 Aug 2010 09 Mar 2011 218 272 Johnson Matthey

T 2 Historic campaigns

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 28/12/2007 and continued through 31/07/2008 when the $58\,683$ tHNO $_3$ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO $_3$.

T 3 Baseline campaign length

ACHEMA UKL-4	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jun 04	2007 Dec 28	2008 Jul 31	2008 Jul 31	2008 Aug 01
Baseline Factor kgN2O/tHNO3	-	-	7.73	7.73	7.73
Production tHNO3		-	58 683	58 683	-
Per Day Production tHNO3	239.7				
Baseline less Historic Production	(7 140.4)				
Baseline less Historic Days	(29.8)				

24

9.00 Start BL Meas. End of BL Camp. 8.00 7.00 6.00 Secondary Catalyst 5.00 Installation 4.00 3.00 2 00 1.00 Histor ric Campaigns End 1st Campaign Start 2nd Campaign Start 28 Dec 18 90 2007 Nov 14 60 28 6 Jul 06 Aug Feb Jun Sep Apr Mar 2007

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 4 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 28/12/2007 through 31/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N₂O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600° C occurred. Calculated baseline N2O emissions were 479 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 5.450%, which is further modified by an uncertainty of 0.104% due to under-sampling. As a result we have arrived to the baseline emission factor of $7.73~kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 4 during the project campaign. Project campaign started on 03/08/2010 and went through 09/03/2011.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN20)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.33 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

	BASELINE EMIS										
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure	AMS in Operation	Nitric Acid Production
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa	h	NAP t/h
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 564	4 906	4 891	4 467	4 733	5 086	5 161	4 755	4 028	4 90
as % of Dataset		88%	95%	94%	86%	91%	98%	100%	92%	78%	95
Minimum			-	0	-	266	-	1	3		-
Maximum			15.12	2 925	83 541	6 465	19.28	906	634		1
Mean			11.96	1 485	66 846	5 718	9.71	791	572		1
Standard Deviation			4.35	378	10 182	881	2.96	272	62		
Total			58 683	0.0	10 102	001	2.30	212	02		58 68
N2O Emissions (VSG * NCSG * OH)		453	t N2O								
Emission Factor			kgN2O / tHNO3								
Permitted Range											
Minimum						4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		4 399		4 152	4 210					4 028	
as % of Operating Hours		96%		91%	92%					88%	
Minimum				511							
Maximum				2 208	75 876						
Mean				1 511	67 275						
Standard Deviation				274	8 270						
N2O Emissions (VSG * NCSG * OH)		464	t N2O	İ							
Emission Factor			kgN2O / tHNO3								
Data within the confidence interval											
Data within the confidence interval 95% Confidence interval											
Lower bound				973	51 066						
Upper bound				2 048	83 484						
Count				3 735	4 149						
as % of Operating Hours				82%	91%						
Minimum				1 108	59 513						
Maximum				2 046	75 876						
Mean				1 540	68 235						
Standard Deviation				203	2 154						
N2O Emissions (VSG * NCSG * OH)		/70	t N2O								
Emission Factor (EF_BL)		772	kgN2O / tHNO3								

T 5 Project emission factor

			PROJECT EI	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	°C	OP kPa
Elimination of extreme values									
Lower limit			0	0	0	0	0	- 50	0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000
Raw Data Measured Range									
Count		4 379	4 674	4 262	4 348	4 872	4 433	5 233	5 057
as % of Dataset		84%	89%	81%	83%	93%	85%	100%	97%
Minimum			0.61	215	33 308	367	3	1	1
Maximum			16.65	989	77 286	7 622	19.59	909	686
Mean			12.67	385	67 218	5 617	10.35	761	593
Standard Deviation			2.81	87	3 837	591	0.45	303	86
Total			59 235	-					
NICO Estimations (NICO * NICOC * OIII)		440	t N2O						
N2O Emissions (VSG * NCSG * OH) Emission Factor			kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval				045	50.007				
Lower bound				215	59 697				
Upper bound				555	74 739				
Count				4 040	4 204				
as % of Operating Hours				92%	96%				
Minimum				236	59 701				
Maximum				554	74 735				
Mean				375	67 237				
Standard Deviation				75	3 551				
N2O Emissions (VSG * NCSG * OH)		110	t N2O						
Actual Project Emission Factor (EF_PActual)	1	1.86	kgN2O / tHNO3						
Abatement Ratio	'	75.9%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule	1				
5	1	2.77	2.77		1				
	2	2.37	2.57						
	3	1.86	2.33						
Declarate Francisco Francisco (FF D)			1 100 (4111160						
Project Emission Factor (EF_P)		2.33	kgN2O / tHNO3						
Abatement Ratio		69.8%							

2

MONITORING REPORT

PROJECT: ACHEMA UKL nitric acid plant N₂O abatement project

LINE: Line 5

MONITORING PERIOD: FROM: 12/08/2010

TO: 17/03/2011

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS VOLUME FLOW	6
	3.1		6
	3.1	.2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.		PROJECT EMISSIONS	8
	4.1	.1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	.2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	22
	6.1	APPLIED PRINCIPLE	22
	6.2	STACK GAS VOLUME FLOW	23
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	23
	6.4	STACK GAS TEMPERATURE	23
	6.5	STACK GAS PRESSURE	23
7		EMISSION PEDILICTION CALCUL ATIONS	24

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 5 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the third project campaign on Line 5.

The first project campaign on Line 5 started on 02/07/2008. Secondary catalyst was installed on 02/07/2008. Total quantity of emission reductions generated during the third project period from 12/08/2010 through 17/03/2011 on Line 5 is **103 817 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION						
Baseline Emission Factor	EF_BL	6.61	kgN2O/tHNO3			
Project Campaign Emission Factor	EF_P	2.22	kgN2O/tHNO3			
Nitric Acid Produced in the Baseline Campaign	NAP_BL	55 079	tHNO3			
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	55 079	tHNO3			
Nitric Acid Produced in the Project Campaign	NAP_P	76 285	tHNO3			
GWP	GWP	310	tCO2e/tN2O			
Emission Reduction	ER	103 817	tCOe			
ER=(EF_BL-EF_P)*NAP_P*GWP/1000						
Abatement Ratio		68.7%)			

EMISSION REDUC	CTION PER Y	EAR	
Year	2009	2010	2011
Date From		12 Aug 2010	01 Jan 2011
Date To		31 Dec 2010	17 Mar 2011
Nitric Acid Production		48 928	27 358
Emission Reduction		66 585	37 231
$ER_YR = ER * NAP_P_YR / NAP_P$			

Baseline emission factor established for the Line 5 during baseline measurement carried from 29/11/2007 through 17/06/2008 is $6.61 \text{ kgN}_2\text{O/tHNO}_3$.

Project emission factor during the third project campaign after installation of secondary catalysts on Line 5, which started on 12/08/2010 and went through 17/03/2011 with secondary catalyst installed and commissioned on 02/07/2008, is 2.22 kgN₂O/tHNO₃.

3

During the project campaign 76 285 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 5 emission reductions including information on baseline emission factor setting for the Line 5.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

4

3. BASELINE SETTING

Baseline emission factor for line 5 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 5 has been carried out from 29/11/2007 through 17/06/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N₂O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:

Variable	Definition
EF_BL	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE_{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N ₂ O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH_{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)
NAP_{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N₂O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 5 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 5 the tail gas volume flow in the stack of the nitric acid plant as well as N₂O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PE_n	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

8

4.3 Project Campaign Length

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

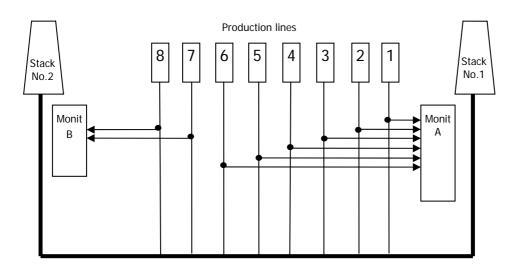
The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)

9


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

10

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

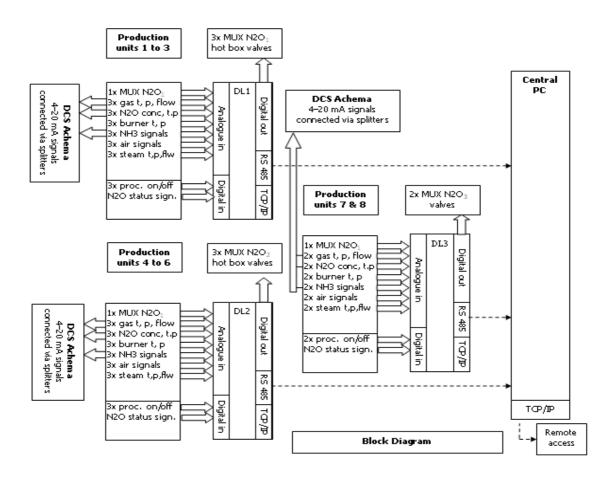
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N_2O automated measurement system (AMS) is to measure total mass of N_2O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N_2O emitted during particular campaign it is necessary to measure on an extractive basis the N_2O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

There are 8 production lines falling under scope of the JI project (lines 1-8). N₂O concentration is measured by 3 concentration meters on a switched basis.

- 1st analyzer measures 1, 2 and 3 lines.
- 2nd analyzer measures 4, 5 and 6 lines.
- 3rd analyzer measures 7 and 8 lines.

Switching between lines is managed by the AMS software. Switching intervals between lines are 300 seconds (5 minutes). 60 seconds (1 minute) of 300 seconds are for purging, i.e. no measurement during that time. Next 240 seconds (4 minutes) are for measuring, i.e. AMS is registering N_2O concentration values of selected line.

1st analyser complete 15 minutes measuring cycle:

Lines	Line 1		Line 2			Line 3		
process	purging	measuring	purging	measuring	purging	measuring		
interval	1 minute	4 minutes	1 minute	4 minutes	1 minute	4 minutes		

2nd analyser complete 15 minutes measuring cycle:

Lines	Line 4		Line 5		Lin	ne 6
process	purging	measuring	purging	measuring	purging	measuring
interval	1 minute	4 minutes	1 minute	4 minutes	1 minute	4 minutes

3rd analyser complete 10 minutes measuring cycle:

Lines	Lir	ne 7	Line 8		
process	purging	measuring	purging	measuring	
interval	1 minute	4 minutes	1 minute	4 minutes	

Emission values are product of

- operating hours
- mean of the hourly measurements N₂O concentration
- mean of the hourly measured VSG

BE = OH * mean(NCSG) * mean(VSG)

The additional uncertainty comes from the additional deviation of mean(NCSG) in the equation, that stems from lower sampling rate. We calculate the deviation of mean(NCSG) under 2 sec sampling intervals, as well as the actual, and take the difference.

The deviation of mean(NCSG) depends on

- deviation of the hourly measurements
- sample size
- number of measurements

stdev(mean("Actual hourly NCSG")) = stdev("Actual hourly NCSG") / sqrt("OH of NCSG measurement")

where OH is the number of hours (or observations) that are taken into account in the calculation of NCSG, that are not eliminated due to various reasons (like short project campaign, etc). Actual means the number we have with under-sampling.

The hourly NCSG values we receive are in fact the averaged values of NCSG readings collected on a 2 seconds interval. Had we sampled every 2 seconds, we would have 1800 samples per hour. In case of two lines on the same device (with 4 minutes measurement, 1 minute of purge time), we have 720 samples per hour (or 480 in case of 3 lines per device).

"sample size" = "logging interval time" / (("measurement time" + "switching time") * "no. of lines") * "measurement time" / "sampling interval time"

We can estimate the deviation of the second level NCSG measured by the device from the deviation of the hourly samples by taking into account the sample size and that they are the average of the second level readings. From this we can calculate what would be the deviation of the hourly NCSG in case we had a full sampling rate.

stdev("Actual hourly NCSG") = stdev("Second level NCSG") / sqrt("Actual sample size")

stdev("Ideal hourly NCSG") = stdev("Second level NCSG") / sqrt("Ideal sample size")

or

stdev("Ideal hourly NCSG") = stdev("Actual hourly NCSG") * sqrt("Actual sample size") / sqrt("Ideal sample size")

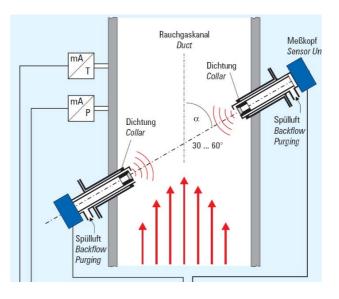
Afther that, we take into account the OH of the NCSG measurement to get the ideal deviation of the mean of the hourly values under normal sampling.

stdev(mean("Ideal hourly NCSG")) = stdev("Ideal hourly NCSG") / sqrt("OH of NCSG measurement")

The additional uncertainty is the difference between the ideal and the under-sampled deviation of the mean of the hourly values.

Diff = stdev(mean("Actual hourly NCSG")) - stdev(mean("Ideal hourly NCSG"))

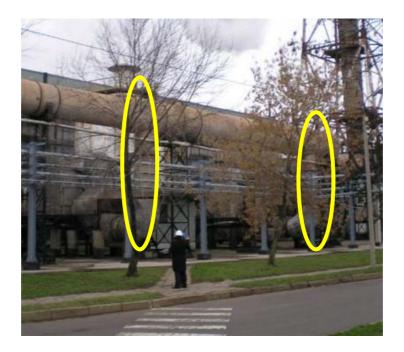
Combined UNC = sqrt(UNC^2 + Diff^2)


Where UNC is the QAL2 uncertainty.

Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

15

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

where Humi (water content)=

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

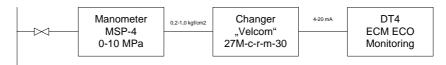
Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

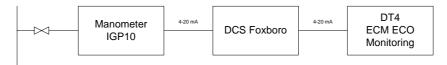
EN14181 compliance

As required by the AM0034/Version 02 methodology the N_2O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N_2O AMS consists from the N_2O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N_2O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

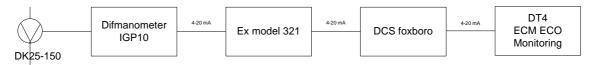

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

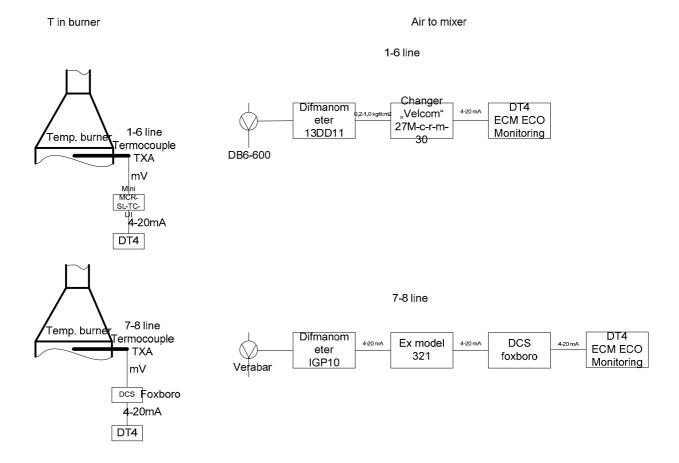
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 1-6 line


P in mixer 7-8 line


NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 15/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

In case of refractometer's malfunction the HNO3 concentration is measured in laboratory.

The sample point of nitric acid production is in the output of the aggregate – in the pipe after the bleaching column. In the laboratory HNO3 concentration is tested by titration method. This method is defined in the company's standard (No.IST 5666739-32:2002) of nitric acid production. The laboratory controller, who performs the testing, is trained according "Training program for laboratory assistant performing chemical analysis"," Toxic chemical goods worker training program" and has qualification of chemistry's laboratory assistance.

Until 2010 year the testing frequency was once a week. This periodicity is usual in Achema and it is also the usual industry practice. Since 2010 year the testing frequency is once a day during the period of refractometers eventual malfunction. The laboratory NAC results are recorded in the laboratory registers No.Z42-303-40/303/08 and No.Z14-303-40/303/08. From laboratory registers NAC data are inputted in to Excel sheet manually.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA
Y is the value of the parameter being objective of the measurement
a is a constant of the regression Line
b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0 $^{\circ}$ C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN₂O/m₃. The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

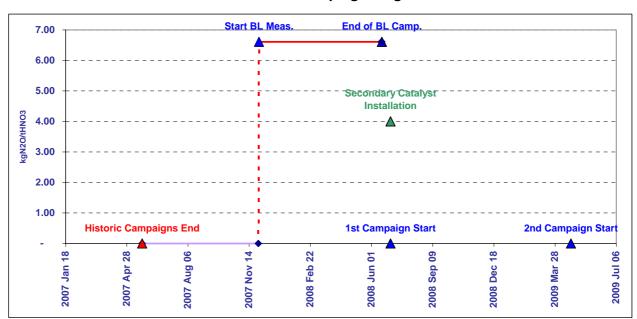
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 64 818 tHNO₃ and time duration was on average 238 days. Table contains also information on suppliers of primary catalysts for the line 5.

Start End Line **ACHEMA UKL-5** Production Days Production per Primary Catalyst Composition dav Historic Campaigns 1 t HNO3 65 664 06 Jun 2003 328 23 Dec 2003 200 Heraeus 63 844 23 Dec 2003 90/5/5 2 t HNO3 24 Aug 2004 245 261 Heraeus 01 Sep 2004 10 May 2005 3 t HNO3 58 961 Johnson Matthey 90/5/5 251 235 06 Mar 2006 4 t HNO3 66 432 12 May 2005 223 Johnson Matthey 90/5/5 **5** t HNO3 69 189 06 Nov 2006 23 May 2007 Heraeus 63/4/33 Average HNO3 production t HNO3 64 818 238 272 Project Campaigns BL t HNO3 55 079 29 Nov 2007 17 Jun 2008 201 274 Umicore 95/5 PL t HNO3 76 285 12 Aug 2010 17 Mar 2011 218 350 Umicore 95/5

T 2 Historic campaigns

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.


T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 29/11/2007 and continued through 17/06/2008 when the 55 079 tHNO $_3$ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO $_3$.

T 3 Baseline campaign length

ACHEMA UKL-5	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 May 23	2007 Nov 29	2008 Jun 17	2008 Jun 17	2008 Jun 18
Baseline Factor kgN2O/tHNO3	_	-	6.61	6.61	6.61
Production tHNO3		-	55 079	55 079	-
Per Day Production tHNO3	271.9				
Baseline less Historic Production	(9 739.2)				
Baseline less Historic Days	(35.8)				

24

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 5 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 29/11/2007 through 17/06/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N₂O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600° C occurred. Calculated baseline N2O emissions were 385 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 5.450%, which is further modified by an uncertainty of 0.126% due to under-sampling. As a result we have arrived to the baseline emission factor of $6.61~kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 5 during the project campaign. Project campaign started on 12/08/2010 and went through 17/03/2011.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN20)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.22 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

	BASELINE EMIS										
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure	AMS in Operation	Nitric Aci Productio NCSG
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	°C OT	OP kPa	h	NAP t/h
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 519	4 571	4 660	4 558	4 701	4 414	4 797	4 698	4 064	4 57
as % of Dataset		94%	95%	97%	94%	97%	92%	99%	97%	84%	95
Minimum			-	0	-	315	-	(0)	0		-
Maximum			15.02	2 289	82 389	6 482	19.73	908	673		
Mean			12.05	1 239	65 232	5 932	10.24	844	613		
Standard Deviation			3.12	268	15 041	990	0.81	195	46		
Total			55 079		10 041	550	0.01	100	40		55 0
N2O Emissions (VSG * NCSG * OH)		365	t N2O								
Emission Factor			kgN2O / tHNO3								
Permitted Range											
Minimum						4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		4 249		4 211	4 211					4 064	
as % of Operating Hours		94%		93%	93%					90%	
Minimum				717	6 728						
Maximum				2 289	78 602						
Mean				1 234	68 731						
Standard Deviation				225	2 256						
N2O Emissions (VSG * NCSG * OH)		383	t N2O								
Emission Factor			kgN2O / tHNO3								
Data within the confidence interval											
5% Confidence interval											
Lower bound				793	64 309						
Upper bound				1 675	73 153						
Count				4 009	4 063						
as % of Operating Hours				89%	90%						
Minimum				796	64 317						
Maximum				1 674	73 152						
Mean				1 240	68 711						
Standard Deviation				204	1 796						
Startdard Deviation											
N2O Emissions (VSG * NCSG * OH) Emission Factor (EF_BL)			t N2O kgN2O / tHNO3								

T 5 Project emission factor

			PROJECT EI	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa
- Control of the cont									
Elimination of extreme values Lower limit			0	0	0	0	0	- 50	0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000
Оррег Енти			30.00	3 000	120 000	10 000	20.00	1 200	1 000
Raw Data Measured Range									
Count		5 118	5 143	4 999	5 064	5 209	5 142	5 230	5 179
as % of Dataset		98%	98%	96%	97%	100%	98%	100%	99%
Minimum			3.95	208	57 735	299	7	(1)	28
Maximum			17.45	1 058	81 816	6 460	19.54	911	716
Mean			15.00	470	67 638	6 042	10.22	882	633
Standard Deviation			1.43	59	3 502	490	0.36	116	37
Total			77 141						
N2O Emissions (VSG * NCSG * OH)		163	t N2O						
Emission Factor			kgN2O / tHNO3						
95% Confidence interval Lower bound Upper bound				355 585	60 775 74 501				
Count				4 750	4 700				
as % of Operating Hours				93%	92%				
Minimum				355	61 272				
Maximum				585	74 495				
Mean				466	66 909				
Standard Deviation				50	2 486				
No. 5 1 1 (1/00 + 1/000 + 0/1)		150	. 1100						
N2O Emissions (VSG * NCSG * OH)			t N2O						
Actual Project Emission Factor (EF_PActual) Abatement Ratio		68.7%	kgN2O / tHNO3						
Abatement Natio		00.7 /6							
Moving Average Emission Factor Correction			Moving Average R	ule]				
	1	1.68	1.68						
	2	2.90	2.90						
	3	2.07	2.22						
Project Emission Factor (EF_P)		2.22	kgN2O / tHNO3						
Abatement Ratio		66.5%							

2

MONITORING REPORT

PROJECT: ACHEMA UKL nitric acid plant N₂O abatement project

LINE: Line 7

MONITORING PERIOD: FROM: 03/11/2009

TO: 08/12/2010

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1 3.1		6 6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS .1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	.2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	22
	6.1	APPLIED PRINCIPLE	22
	6.2	STACK GAS VOLUME FLOW	23
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	23
	6.4	STACK GAS TEMPERATURE	23
	6.5	STACK GAS PRESSURE	23
7.		EMISSION REDUCTION CALCULATIONS	24

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 7 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the third project campaign on Line 7.

The first project campaign on Line 7 started on 28/03/2008. Secondary catalyst was installed on 03/07/2008. Total quantity of emission reductions generated during the third project period from 03/11/2009 through 08/12/2010 on Line 7 is **150 615 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION					
Baseline Emission Factor	EF_BL	9.09	kgN2O/tHNO3		
Project Campaign Emission Factor	EF_P	2.31	kgN2O/tHNO3		
Nitric Acid Produced in the Baseline Campaign	NAP_BL	55 626	tHNO3		
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	55 626	tHNO3		
Nitric Acid Produced in the Project Campaign	NAP_P	71 660	tHNO3		
GWP	GWP	310	tCO2e/tN2O		
Emission Reduction	ER	150 615	tCOe		
ER=(EF_BL-EF_P)*NAP_P*GWP/1000					
Abatement Ratio	79.9%)			

EMISSION REDUC	CTION PER Y	EAR	
Year	2008	2009	2010
Date From		03 Nov 2009	01 Jan 2010
Date To		31 Dec 2009	08 Dec 2010
Nitric Acid Production		8 079	63 581
Emission Reduction		16 980	133 635
$ER_YR = ER * NAP_P_YR / NAP_P$			

Baseline emission factor established for the Line 7 during baseline measurement carried from 12/09/2007 through 27/03/2008 is $9.09 \text{ kgN}_2\text{O/tHNO}_3$.

Project emission factor during the third project campaign after installation of secondary catalysts on Line 7, which started on 03/11/2009 and went through 08/12/2010 with secondary catalyst installed and commissioned on 03/07/2008, is 2.31 kgN₂O/tHNO₃.

3

During the project campaign 71 660 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 7 emission reductions including information on baseline emission factor setting for the Line 7.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

4

3. BASELINE SETTING

Baseline emission factor for line 7 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 7 has been carried out from 12/09/2007 through 27/03/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N₂O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:

Variable	Definition
EF_BL	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE_{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N ₂ O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH_{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m ³ /h)
NAP_{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N₂O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 7 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 7 the tail gas volume flow in the stack of the nitric acid plant as well as N₂O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PE_n	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

8

4.3 Project Campaign Length

© 2008, Vertis Finance

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

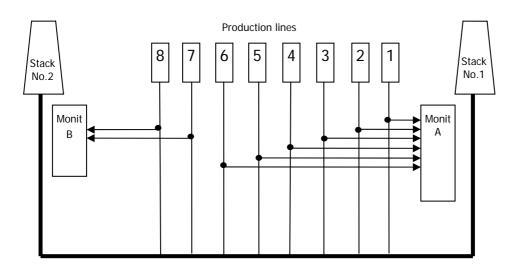
The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)

9


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

10

© 2008, Vertis Finance

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

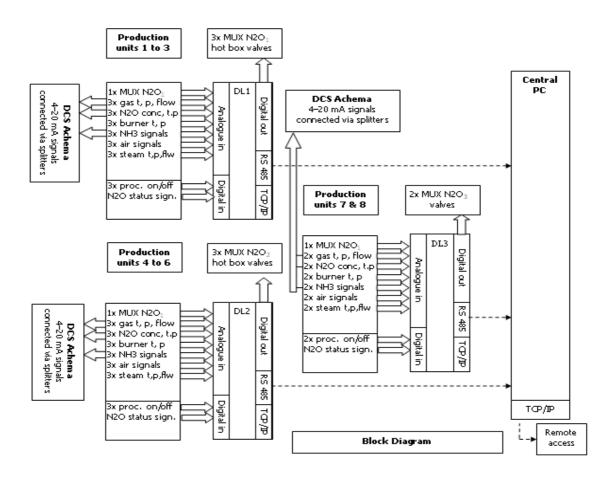
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N_2O automated measurement system (AMS) is to measure total mass of N_2O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N_2O emitted during particular campaign it is necessary to measure on an extractive basis the N_2O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

There are 8 production lines falling under scope of the JI project (lines 1-8). N₂O concentration is measured by 3 concentration meters on a switched basis.

- 1st analyzer measures 1, 2 and 3 lines.
- 2nd analyzer measures 4, 5 and 6 lines.
- 3rd analyzer measures 7 and 8 lines.

Switching between lines is managed by the AMS software. Switching intervals between lines are 300 seconds (5 minutes). 60 seconds (1 minute) of 300 seconds are for purging, i.e. no measurement during that time. Next 240 seconds (4 minutes) are for measuring, i.e. AMS is registering N_2O concentration values of selected line.

1st analyser complete 15 minutes measuring cycle:

Lines	Lin	ie 1	Lin	e 2	Line 3		
process	purging	measuring	purging	measuring	purging	measuring	
interval	1 minute	4 minutes	1 minute	4 minutes	1 minute	4 minutes	

2nd analyser complete 15 minutes measuring cycle:

Lines	Lin	Line 4 Line 5			Line 6		
process	purging	measuring	purging	measuring	purging	measuring	
interval	1 minute	4 minutes	1 minute	4 minutes	1 minute	4 minutes	

3rd analyser complete 10 minutes measuring cycle:

Lines	Lines Line 7 Line 8			ne 8
process	purging	measuring	purging	measuring
interval	1 minute	4 minutes	1 minute	4 minutes

Emission values are product of

- operating hours
- mean of the hourly measurements N₂O concentration
- mean of the hourly measured VSG

BE = OH * mean(NCSG) * mean(VSG)

The additional uncertainty comes from the additional deviation of mean(NCSG) in the equation, that stems from lower sampling rate. We calculate the deviation of mean(NCSG) under 2 sec sampling intervals, as well as the actual, and take the difference.

The deviation of mean(NCSG) depends on

- deviation of the hourly measurements
- sample size
- number of measurements

stdev(mean("Actual hourly NCSG")) = stdev("Actual hourly NCSG") / sqrt("OH of NCSG measurement")

where OH is the number of hours (or observations) that are taken into account in the calculation of NCSG, that are not eliminated due to various reasons (like short project campaign, etc). Actual means the number we have with under-sampling.

The hourly NCSG values we receive are in fact the averaged values of NCSG readings collected on a 2 seconds interval. Had we sampled every 2 seconds, we would have 1800 samples per hour. In case of two lines on the same device (with 4 minutes measurement, 1 minute of purge time), we have 720 samples per hour (or 480 in case of 3 lines per device).

"sample size" = "logging interval time" / (("measurement time" + "switching time") * "no. of lines") * "measurement time" / "sampling interval time"

We can estimate the deviation of the second level NCSG measured by the device from the deviation of the hourly samples by taking into account the sample size and that they are the average of the second level readings. From this we can calculate what would be the deviation of the hourly NCSG in case we had a full sampling rate.

stdev("Actual hourly NCSG") = stdev("Second level NCSG") / sqrt("Actual sample size")

stdev("Ideal hourly NCSG") = stdev("Second level NCSG") / sqrt("Ideal sample size")

or

stdev("Ideal hourly NCSG") = stdev("Actual hourly NCSG") * sqrt("Actual sample size") / sqrt("Ideal sample size")

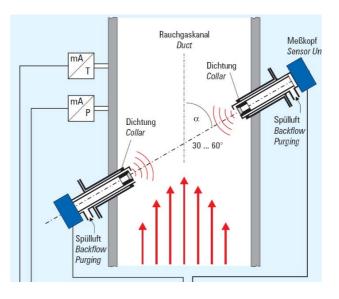
Afther that, we take into account the OH of the NCSG measurement to get the ideal deviation of the mean of the hourly values under normal sampling.

stdev(mean("Ideal hourly NCSG")) = stdev("Ideal hourly NCSG") / sqrt("OH of NCSG measurement")

The additional uncertainty is the difference between the ideal and the under-sampled deviation of the mean of the hourly values.

Diff = stdev(mean("Actual hourly NCSG")) - stdev(mean("Ideal hourly NCSG"))

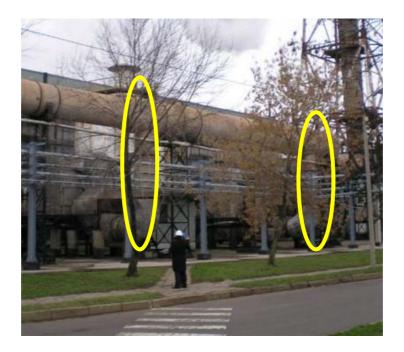
Combined UNC = sqrt(UNC^2 + Diff^2)


Where UNC is the QAL2 uncertainty.

Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

15

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

where Humi (water content)=

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

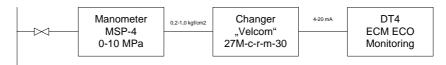
Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

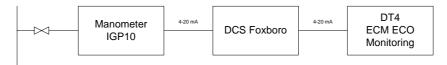
EN14181 compliance

As required by the AM0034/Version 02 methodology the N_2O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N_2O AMS consists from the N_2O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N_2O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

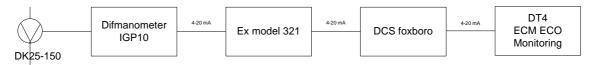

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

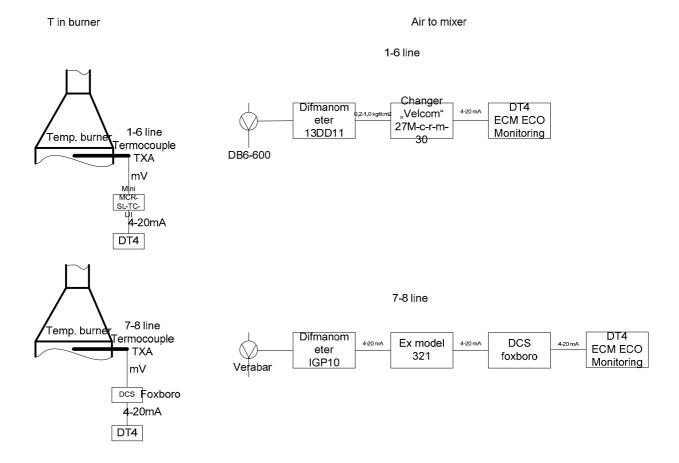
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 1-6 line


P in mixer 7-8 line


NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 04/05/2008 and ending on 18/08/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

In case of refractometer's malfunction the HNO3 concentration is measured in laboratory.

The sample point of nitric acid production is in the output of the aggregate – in the pipe after the bleaching column. In the laboratory HNO3 concentration is tested by titration method. This method is defined in the company's standard (No.IST 5666739-32:2002) of nitric acid production. The laboratory controller, who performs the testing, is trained according "Training program for laboratory assistant performing chemical analysis"," Toxic chemical goods worker training program" and has qualification of chemistry's laboratory assistance.

Until 2010 year the testing frequency was once a week. This periodicity is usual in Achema and it is also the usual industry practice. Since 2010 year the testing frequency is once a day during the period of refractometers eventual malfunction. The laboratory NAC results are recorded in the laboratory registers No.Z42-303-40/303/08 and No.Z14-303-40/303/08. From laboratory registers NAC data are inputted in to Excel sheet manually.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA
Y is the value of the parameter being objective of the measurement
a is a constant of the regression Line
b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0 $^{\circ}$ C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN₂O/m₃. The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

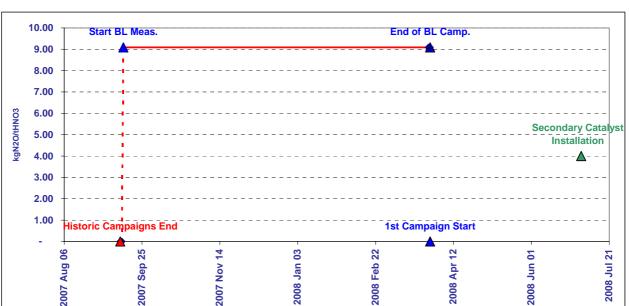
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 64 274 tHNO₃ and time duration was on average 218 days. Table contains also information on suppliers of primary catalysts for the line 7.

Start End Line **ACHEMA UKL-7** Production Days Production per Primary Catalyst Composition dav 10 Sep 2004 Historic Campaigns 1 t HNO3 57 671 16 Mar 2005 308 90/5/5 187 Heraeus 16 Mar 2005 Johnson Matthey 90/5/5 2 t HNO3 70 015 07 Nov 2005 236 297 20 May 2006 63/4/33 3 t HNO3 55 426 08 Nov 2005 Heraeus 193 287 04 Jan 2007 4 t HNO3 67 588 24 May 2006 300 Johnson Matthey n.a. **5** t HNO3 70 670 04 Jan 2007 11 Sep 2007 283 Umicore Average HNO3 production t HNO3 64 274 218 295 63/4/33 Project Campaigns BL t HNO3 12 Sep 2007 27 Mar 2008 197 282 Heraeus PL t HNO3 71 660 03 Nov 2009 08 Dec 2010 400 179 Heraeus 63/4/33

T 2 Historic campaigns

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.


T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 12/09/2007 and continued through 27/03/2008 when the 55 626 tHNO $_3$ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO $_3$.

T 3 Baseline campaign length

ACHEMA UKL-7	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Sep 11	2007 Sep 12	2008 Mar 27	2008 Mar 27	2008 Mar 28
Baseline Factor kgN2O/tHNO3	· _	· · · · · · · · · · · · · · · · · · ·	9.09	9.09	9.09
Production tHNO3		-	55 626	55 626	-
Per Day Production tHNO3	294.6				
Baseline less Historic Production	(8 647.4)				
Baseline less Historic Days	(29.4)				

24

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 7 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 12/09/2007 through 27/03/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N₂O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600° C occurred. Calculated baseline N2O emissions were 536 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 5.640%, which is further modified by an uncertainty of 0.124% due to under-sampling. As a result we have arrived to the baseline emission factor of $9.09~kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 7 during the project campaign. Project campaign started on 03/11/2009 and went through 08/12/2010.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN20)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.31 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

		SION FACTOR									
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure	AMS in Operation	Nitric Acid Production NCSG
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	°C	OP kPa	h	NAP t/h
limination of extreme values											
Lower limit			0	0	0	0	-	- 50	0		0
Upper Limit			50.00	3 000	150 000	10 000	20.00	1 200	1 000		50
aw Data Measured Range											
Count		4 097	4 238	4 385	4 238	4 708		4 708	4 708	3 890	4 23
as % of Dataset		87%	90%	93%	90%	100%		100%	100%	82%	90
Minimum			0.00	0	1 728	0		33	3		
Maximum			16.41	1 933	112 864	6 476		915	667		1
Mean			13.13	1 250	81 347	5 394		811	590		1
Standard Deviation			4.69	448	24 945	1 806	1.37	228	112		
Total			55 626								55 62
N2O Emissions (VSG * NCSG * OH)		417	t N2O								
Emission Factor			kgN2O / tHNO3								
Permitted Range											
Minimum						_	0	880	550		
Maximum					_	7 500	11.20	910	800		
and a set of the second second second											
Data within the permitted range Count		3 145		2 856	2 856					3 890	
as % of Operating Hours		77%		70%	70%					95%	
Minimum		1170		722	57 328					9370	
Maximum				1 933	99 189						
Mean				1 433	89 644						
Standard Deviation				281	5 811						
otandard Deviation				201	3011						
N2O Emissions (VSG * NCSG * OH)			t N2O								
Emission Factor		8.93	kgN2O / tHNO3								
Data within the confidence interval											
5% Confidence interval											
Lower bound				882	78 254						
Upper bound				1 984	101 034						
Count				2 753	2 841						
as % of Operating Hours				67%	69%						
Minimum				913	78 697						
Maximum				1 933	99 189						
Mean				1 457	89 755						
Standard Deviation				257	5 588						
N2O Emissions (VSG * NCSG * OH)		536	t N2O								

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa
	O m		gii.	mg N20/Milo	141110/11	141110711	70	<u> </u>	iii u
Elimination of extreme values									
Lower limit			0	0	0	0	•	- 50	0
Upper Limit			50.00	3 000	150 000	10 000	20.00	1 200	1 000
Raw Data Measured Range									
Count		4 948	7 468	4 948	4 937	9 598	7 762	9 598	9 59
as % of Dataset		52%	78%	52%	51%	100%	81%	100%	1009
Minimum			0.03	227	59 270	4	0	14	
Maximum			17.70	1 138	101 494	8 000	17.14	905	669
Mean			9.60	383	73 188	3 975	10.19	498	46
Standard Deviation			6.51	103	7 323	2 655	0.64	408	232
Total			71 660						
N00 F : : (\)(00 * N000 * 011)		100	(NOO						
N2O Emissions (VSG * NCSG * OH)			t N2O						
Emission Factor		1.54	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				182	58 834				
Upper bound				585	87 541				
Count				4 688	4 441				
as % of Operating Hours				95%	90%				
Minimum				227	58 967				
Maximum				583	87 532				
Mean				372	70 955				
Standard Deviation				91	3 530				
Standard Deviation				91	3 330				
N2O Emissions (VSG * NCSG * OH)		131	t N2O						
Actual Project Emission Factor (EF_PActual)		1.82	kgN2O / tHNO3						
Abatement Ratio		79.9%	_						
				-	1				
Moving Average Emission Factor Correction	1		Moving Average R	ule					
	2	2.18 2.93	2.18 2.93						
	3	1.82	2.93						
	4	1.02	2.31						
	7				ı				
Project Emission Factor/EE D		2.24	Iraniao (AUNGa						
Project Emission Factor (EF_P)		2.31	kgN2O / tHNO3						
Abatement Ratio		74.6%							

2

© 2008, Vertis Finance

MONITORING REPORT

PROJECT: ACHEMA UKL nitric acid plant N₂O abatement project

LINE: Line 8

MONITORING PERIOD: FROM: 21/11/2009

TO: 25/10/2010

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1.	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS VOLUME FLOW 1 TAIL GAS N₂O CONCENTRATION	6
	3.1.	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1.	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1.	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 8 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the third project campaign on Line 8.

The first project campaign on Line 8 started on 17/04/2008. Secondary catalyst was installed on 11/06/2008. Total quantity of emission reductions generated during the third project period from 21/11/2009 through 25/10/2010 on Line 8 is **91 448 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION					
Baseline Emission Factor	EF_BL	6.96	kgN2O/tHNO3		
Project Campaign Emission Factor	EF_P	3.56	kgN2O/tHNO3		
Nitric Acid Produced in the Baseline Campaign	NAP_BL	63 577	tHNO3		
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	52 603	tHNO3		
Nitric Acid Produced in the Project Campaign	NAP_P	86 762	tHNO3		
GWP	GWP	310	tCO2e/tN2O		
Emission Reduction	ER	91 448	tCOe		
ER=(EF_BL-EF_P)*NAP_P*GWP/1000					
Abatement Ratio	-	70.4%)		

EMISSION REDUCTION PER YEAR						
Year	2008	2009	2010			
Date From		21 Nov 2009	01 Jan 2010			
Date To		31 Dec 2009	25 Oct 2010			
Nitric Acid Production		10 657	76 105			
Emission Reduction		11 233	80 215			
$ER_YR = ER * NAP_P_YR / NAP_P$						

Baseline emission factor established for the Line 8 during baseline measurement carried from 01/09/2007 through 15/04/2008 is 6.96 kgN₂O/tHNO₃.

Project emission factor during the third project campaign after installation of secondary catalysts on Line 8, which started on 21/11/2009 and went through 25/10/2010 with secondary catalyst installed and commissioned on 11/06/2008, is 3.56 kgN₂O/tHNO₃.

3

During the project campaign 86 762 tonnes of nitric acid was produced.

© 2008, Vertis Finance

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 8 emission reductions including information on baseline emission factor setting for the Line 8.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

4

© 2008, Vertis Finance

3. BASELINE SETTING

Baseline emission factor for line 8 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 8 has been carried out from 01/09/2007 through 15/04/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N₂O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:

Variable	Definition
EF_BL	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE_{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH_{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)
NAP_{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N₂O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 8 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 8 the tail gas volume flow in the stack of the nitric acid plant as well as N₂O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PE_n	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

8

4.3 Project Campaign Length

© 2008, Vertis Finance

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

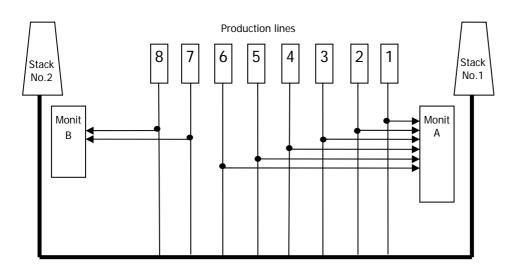
The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)

9


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

10

© 2008, Vertis Finance

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

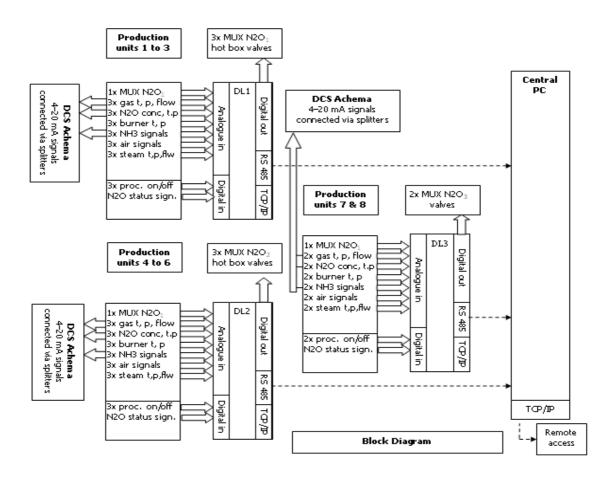
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

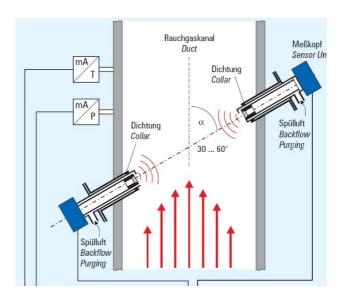
Main purpose of the N_2O automated measurement system (AMS) is to measure total mass of N_2O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N_2O emitted during particular campaign it is necessary to measure on an extractive basis the N_2O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

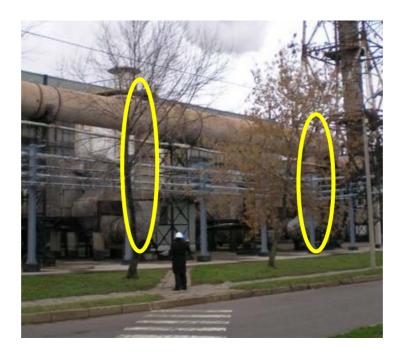
gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

13

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

where Humi (water content)=

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N_2O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N_2O AMS consists from the N_2O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N_2O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

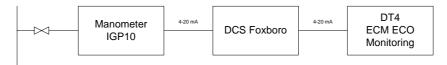
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

15

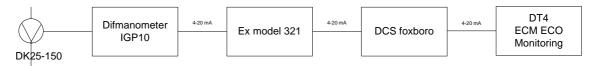
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure

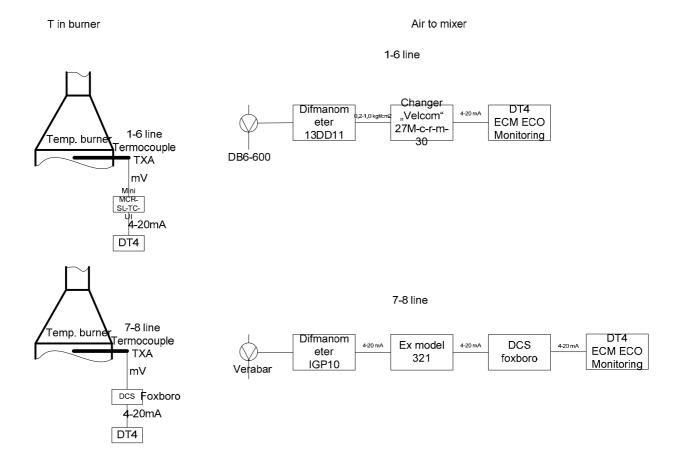
© 2008, Vertis Finance



All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 1-6 line


P in mixer 7-8 line


NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

18

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 20/10/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA
Y is the value of the parameter being objective of the measurement
a is a constant of the regression Line
b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN₂O/m₃. The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 63 620 tHNO₃ and time duration was on average 228 days. Table contains also information on suppliers of primary catalysts for the line 8.

Production Start End Line **ACHEMA UKL-8** Days Production per Primary Catalyst Composition dav Historic Campaigns 1 t HNO3 00 Jan 1900 00 Jan 1900 n/a 62 575 250 90/5/5 2 t HNO3 10 Dec 2004 17 Aug 2005 250 Heraeus 63 418 02 Nov 2005 3 t HNO3 14 Jun 2006 Umicore 95/5 224 283 4 t HNO3 63 138 15 Jun 2006 01 Feb 2007 273 Johnson Matthey n.a. **5** t HNO3 65 347 02 Feb 2007 28 Aug 2007 316 Johnson Matthey n.a. Average HNO3 production t HNO3 63 620 228 279 Project Campaigns BL t HNO3 01 Sep 2007 15 Apr 2008 280 Umicore 95/5 PL t HNO3 86 762 21 Nov 2009 25 Oct 2010 338 257 Umicore 95/5

T 2 Historic campaigns

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 01/09/2007 and continued through 15/04/2008 when the 63 577 tHNO $_3$ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO $_3$.

T 3 Baseline campaign length

22

ACHEMA UKL-8 Dates	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign	
	2007 Aug 28	2007 Sep 01	2008 Mar 15	2008 Apr 15	2008 Apr 16	
Baseline Factor kgN2O/tHNO3	_	· -	6.96	6.96	6.96	
Production tHNO3		-	52 603	63 577	-	
Per Day Production tHNO3	279.0					
Baseline less Historic Production	(42.6)					
Baseline less Historic Days	(0.2)					

© 2008, Vertis Finance

8.00 Start BL Meas. End of BL Camp. 7.00 6.00 -Secondary-Catalyst 5.00 kgN2O/tHN03 4.00 3.00 2.00 1.00 **Historic Campaigns End** 1st Campaign Start 90 25 03 Nov 14 2008 Jun 01 2008 Jul 21 Aug Sep Jan 2008 Apr 2007 2007

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 8 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 01/09/2007 through 15/04/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N₂O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600° C occurred. Calculated baseline N2O emissions were 470 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 5.890%, which is further modified by an uncertainty of 0.106% due to under-sampling. As a result we have arrived to the baseline emission factor of $6.96~kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 8 during the project campaign. Project campaign started on 21/11/2009 and went through 25/10/2010.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN20)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 3.56 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

	BASELINE EMIS										
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure	AMS in Operation	Nitric Acid Production NCSG
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa	h	NAP t/h
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 719	4 954	4 059	4 598	4 987	4 663	5 425	5 425	4 129	4 21
as % of Dataset		87%	91%	75%	84%	92%	86%	100%	100%	76%	77
Minimum			0.00	0	4	0	0	27	5		
Maximum			24.99	1 968	103 514	6 796	14.80	912	654		2
Mean			12.83	1 067	78 981	5 591	10.07	801	564		1
Standard Deviation			5.07	458	16 813	1 520	0.93	245	116		
Total			63 577			1 020	0.00	240	110		52 60
N2O Emissions (VSG * NCSG * OH)		398	t N2O								
Emission Factor			kgN2O / tHNO3								
Permitted Range											
Minimum						_	0	880	550		
Maximum						7 500	11.20	910	800		
Data within the permitted range											
Count		4 453		3 230	4 131					4 129	
as % of Operating Hours		94%		68%	88%					87%	
Minimum				781	-						
Maximum				1 732	96 663						
Mean				1 232	77 635						
Standard Deviation				206	16 881						
Na0 5 1 1 (1/00 + 1/00 + 0/1)		150	. 1100	1							
N2O Emissions (VSG * NCSG * OH) Emission Factor			t N2O kgN2O / tHNO3								
			Ŭ								
Data within the confidence interval 25% Confidence interval											
Lower bound				828	44 549						
Upper bound				1 637	110 722						
Count				3 167	3 949						
as % of Operating Hours				67%	84%						
Minimum				838	75 503						
Maximum				1 635	96 663						
Mean				1 227	81 213						
Standard Deviation				199	2 729						
N2O Emissions (VSG * NCSG * OH)		470	t N2O	1							
			kgN2O / tHNO3								
Emission Factor (EF_BL)											

T 5 Project emission factor

PROJECT EMISSION FACTOR											
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure		
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa		
	•	••					,,,,		4		
Elimination of extreme values								50			
Lower limit			0	0	0	0	•	- 50	0		
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		
Raw Data Measured Range											
Count		5 907	8 108	5 914	5 893	8 110	6 460	8 110	8 11		
as % of Dataset		73%	100%	73%	73%	100%	80%	100%	100		
Minimum			0.02	193	66 410	2	0	13			
Maximum			17.91	1 100	99 082	8 000	19.99	914	70		
Mean			10.70	388	78 705	4 865	9.44	672	56		
Standard Deviation			6.41	55	6 726	2 305	2.56	371	14		
Total			86 762								
N00 F : : (\)(00 * \)(000 * \)(1)		100	. NOO								
N2O Emissions (VSG * NCSG * OH)			t N2O								
Emission Factor		2.00	kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound				281	65 521						
Upper bound				495	91 889						
Count				5 704	5 564						
as % of Operating Hours				97%	94%						
Minimum				281	66 410						
Maximum				495	91 886						
Mean				388	78 034						
Standard Deviation				48	6 189						
Claridara Doviation				10	0.100						
N2O Emissions (VSG * NCSG * OH)			t N2O								
Actual Project Emission Factor (EF_PActual)											
Abatement Ratio		70.4%									
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ulo	1						
woving Average Emission Factor Correction	1	4.35	4.35	uie							
	2	4.26	4.30								
	3	2.06	3.56								
	4	-	3.00								
				'							
Project Emission Factor (EF_P)		2 5 6	kgN2O / tHNO3								
Abatement Ratio		48.9%									
ADDIE HIGHT VALID		40.9%	l								

2

© 2008, Vertis Finance

REVISIONS TO THE MONITORING PLAN

PROJECT: ACHEMA UKL nitric acid plant N₂O abatement project

Prepared by:

VERTIS FINANCE

As required by PROCEDURES REGARDING CHANGES DURING PROJECT IMPLEMENTATION (Version 01) issued by the Joint Implementation Supervisory Committee we are listing here all changes occurred to the Achema UKL-7 JI project from time when the PDD document including the Monitoring Plan was deemed to be final (November 27, 2009) until December 8, 2010:

Section D.1. (pages 18-19 and 57-58)

Updated information on the N_2O concentration measurements done on the switched basis. It does not relate to any change comparing to the Monitoring Plan as determined, it is just insertion of more detailed description.

Section D.1. (pages 20-21 and 59-60)

Achema injects steam into tail gas of the UKL-7 plant. This steam is eliminated fro the JI project calculations. Monitoring plan has been updated with detailed description of how this elimination is performed in practice.

Section D.1. (pages 21-23 and 62-64)

Achema measures nitric acid production by refractometers and also by laboratory analysis. Insertion into the Monitoring Plan describes in details how these measurements are performed and used.