MONITORING REPORT

JI0078 - CMM utilisation on the Coal Mine № 22 "Kommunarskaya" of the State Holding Joint-Stock Company "GOAO Shakhtoupravlenye Donbass"

Monitoring Report 02 Monitoring period

01/04/2010 to 15/03/2011

Version 2 08 April 2011

CONTENTS

- A. General project activity and monitoring information
- B. Key monitoring activities
- C. Quality assurance and quality control measures
- D. Calculation of GHG emission reductions

Annexes

- Annex 1: References
- Annex 2: Technical drawing
- Annex 3: Energy and material flowchart including metering positions
- Annex 4: Differences between the determined PDD and implemented project
- Annex 5: History of the Document

SECTION A. General project activity information

A.1 Title of the project activity:

CMM utilisation on the Coal Mine Nr.22 Kommunarskaya of the State Holding Joint-Stock Company "GOAO Shakhtoupravlenye Donbass"

Table - 1 Parties involved in the project

Party involved (*) ((host) indicates a host Party)	Legal entity project participant (as applicable)	Please indicate if the Party involved wishes to be considered as project participant (Yes/No)
Netherlands	Carbon-TF B.V.	no
Ukraine (host)	State Holding Joint-Stock Company "GOAO Shakhtoupravlenye Donbass"	no

A.2. JI registration number:

UA2000013, JI0078

The project is approved as JI-project since 30/12/2009.

(http://ji.unfccc.int/JI Projects/DeterAndVerif/Verification/FinDet.html)

Details of the project approval can be found under Annex I of this Monitoring Report.

A.3. Short description of the project activity:

In this project CMM, which has been sucked out of the active coal mine Coal Mine Nr.22 Kommunarskaya, has been utilised in flares, a cogeneration unit, boilers and a ventilation air heater. The methane has been burned to less harmful CO₂. The cogeneration unit has generated power which has displaced conventionally produced power and gained an additional amount of CO₂ reductions.

In summer 2010 a second flare has been installed and started production at 10/08/2010. A third flare has been installed at the air shaft of the coal mine and started production at 29/10/2010.

Table - 2 Amount of methane utilised for heat and power generation and flaring

Unit period		CH₄ [t/period]	Heat and power generated [MWh]	
Flares	01/04/2010-15/03/2011	6,219	n.a.	
Boilers	01/04/2010-15/03/2011	978	7,452	
Ventilation air heater	01/04/2010-15/03/2011	124	1,703	
Cogeneration unit	01/04/2010-15/03/2011	1,355	5,750	
Total	2010-2011	8,676	n.a.	

A.4. Monitoring period:

Start date 01/04/2010

End date 15/03/2011

Start day and end day included.

A.5. Methodology applied to the project activity (incl. version number):

A.5.1. Baseline methodology:

The approved consolidated methodology ACM0008 / Version 03 "Consolidated baseline methodology for coal bed methane and coal mine methane capture and use for power (electrical or motive) and heat and/or destruction by flaring") has been used with some project specific adjustments to identify the baseline scenario of the proposed JI project [ACM0008].

According to ACM0008 the methodological "Tool to determine project emissions from flaring gases containing methane", EB 28 Meeting report, Annex 13, has been taken for the determination of the project emissions from flaring. In difference to the flaring tool, a combustion efficiency of 99.5%, according to the IPCC guidelines, has been taken into account instead of the default value of 90% as given in the flaring tool.

A.5.2. Monitoring methodology:

A monitoring plan provided by the "Approved consolidated baseline methodology ACM0008", Version 03, Sectoral Scope: 8 and 10, EB28 is applied to the project [ACM0008]. According to ACM0008 the methodological "Tool to determine project emissions from flaring gases containing methane", EB 28 Meeting report, Annex 13, has been taken for the determination of the project emissions from flaring. In difference to the flaring tool, a combustion efficiency of 99.5%, according to the IPCC guidelines, has been taken into account instead of the default value of 90% as given in the flaring tool.

Applicability requirements for the monitoring plan of the ACM008 methodology are identical to respective requirements of the baseline setting.

A.6. Status of implementation including time table for major project parts:

The project installation has not been installed as described in the PDD. Two further flares have been installed. The second cogeneration has not been installed. See A.7. for further details.

Table - 3 Status of Implementation

Unit: Flare 1				
Manufacturer: Pro2 Anlagentechnik GmbH				
Type: KGU 5/8				
Serial Number: 142301				
Capacity: 10 MW				
Efficiency methane destruction: 99.5%				
Combustion temperature: 850°C				
Activity Status				

Year of construction	2008
Last inspection	2009 – AS Wärmetechnik GmbH
Start of operation	20/12/2009

Unit: Flare 2

Manufacturer: Pro2 Anlagentechnik GmbH

Type: KGU 5/8

Serial Number: 1256

Capacity: 10 MW

Efficiency methane destruction: 99.5%

Combustion temperature: 850°C

Activity Status

Year of construction 2005

Last inspection 10/08/2010 – Eco Alliance

Start of operation 20/12/2010

Unit: Flare 3				
Manufacturer: Pro2 Anlagentechnik Gmb	ЭН			
Type: KGU 5/8				
Serial Number: 142401				
Capacity: 10 MW				
Efficiency methane destruction: 99.5%				
Combustion temperature: 850°C				
Activity	Status			
Year of construction 2008				
Last inspection 2009 – AS Wärmetechnik GmbH				
Start of operation 29/12/2010				

Unit: cogeneration unit					
Manufacturer: Pro2 Anlagentechnik GmbH using a gas engine from Deutz AG					
Type: NC620K16					
Serial Number: CHP unit:143901; Ga	as engine: 69886800270				
Capacity: 3.750 MW firing, 1.35 MW _e	0.93 MW _{th}				
Activity Status					
Year of construction	2004				
Last major overhaul June 2008					
Last inspection none					
Start of operation 29/01/2009					
Planned installation date [PDD]	06/2009				

Unit: boilers, 5 identical units, previously coal fired steam boilers, upgraded to hot water production
with CMM-burners
Manufacturer: Monastyrishchenskiy Mashzavod named after 60-years of October
Type: E-1,0-0,9

Serial Numbers:	Serial Numbers: Nr.1 - Serial (not visible, but stated in pass) 17998, Inventar (visible) 228648						
	Nr.2 - Serial 10364, Inventar 229444						
	Nr.3 - Inventar 229415						
	Nr.4 - Inventar 228576						
	Nr 5 - Inventar 228944						
Capacity: 5 x 1 G	Cal heat production						
Activity		Status					
Year of construction	on	2008 - 228648 and 229444					
		2009 - 229415, 228576, 228944					
Last major overha	ul	none					
Last inspection		none					
Start of operation		October 2008 - 228648 and 229444					
		October 2009 - 29415, 228576, 228944					
Planned installation date [PDD]		12/2007					

The ventilation air heater consists of three modules, two modules a 1.0 MW and one module of 0.75 MW. The modular technology provides better regulation response of the heat production depending on the heat demand.

Unit: ventilation air heater					
Manufacturer: Kamensky Zavod					
Type: VGS 1,0					
Serial Numbers: 245969, 245970 two ide	ntical modules				
Capacity: 2 x 1.0 MW heat production 24	5969				
Activity Status					
Year of construction	2009				
Last major overhaul	none				
Last inspection	none				
Start of operation	October 2009				
Planned installation date [PDD]	Planned installation date [PDD] 01/2008				

Unit: ventilation air heater					
Manufacturer: Promgazapparat					
Type: KRON - 6U					
Serial Numbesr: 246216					
Capacity: 1 x 0.75 MW heat productio	n				
Activity Status					
Year of construction	2009				
Last major overhaul	none				
Last inspection	none				
Start of operation	October 2009				
Planned installation date [PDD]	01/2008				

The coordinates given in the PDD uses the SK-42 reference system which uses a slightly different reference ellipsoid than the WGS84 system used by Google. The SK-42 system and the substantial cartography are still in use in the most CIS countries and Ukraine too.

The WKS84 coordinates are:

Main Shaft: 48°07′10″ N, 38°13′03″ E Air Shaft: 48°06′58″ N, 38°16′05″ E

A.7. Intended deviations or revisions to the registered PDD:

There are some deviations to the project installation as described in the PDD. Two further flares have been installed at the coal mine.

The second flare has been originally installed at the coal mine Molodogvardeyskaya in August 2007. After one year of operation the flare has been moved to the coal mine Krasnoarmeyskaya-Zapadnaya Nr.1 in July 2008 but has not been put in operation by the coal mine. In Summer 2010 this flare has been installed by Eco-Alliance at the Coal Mine Nr.22 Kommunarskaya as flare Nr 2 and started operation at 10/8/2010.

The flare Nr.3 has been originally installed at the Coal Mine Shcheglovskaya-Glubokaya also owned by "GOAO Shakhtoupravlenye Donbass". Due to the lacking gas amount at the coal mine Shcheglovskaya-Glubokaya the flare has been moved to the Air Shaft of the «Coal Mine Nr.22 Kommunarskaya» and started operation at 29/10/2010.

The installation of the second cogeneration unit is still pending due to lacking funds.

Table - 4 Implementation plan

unit	Planned installation date (PDD)	firing capacity	Date of installation or envisaged new date of installation new timetable	realised firing capacity or envisaged firing capacity	
boiler No: 1 & 2	12.2007	2 x 3,150 kW 6,300 kW total	10.2008 – two units 10.2009 – three units	5 x 1,167 kW 5,835 kW total	
flare No: 1	12.2007	5,000 kW	12.2008	10,000 kW	
flare No: 2	-	-	08.2010	8,000 kW	
flare No: 3	-	-	10.2010	10,000 kW	
ventilation air heater	1.2008	3,000 kW	10.2009	2 x 1,000 kW 1 x 750 kW 2,750 kW total	
cogeneration unit 1	1.2008	1,350 kWel	01.2010	1,350 kWel	
cogeneration unit 2	ogeneration unit 2 1.2009 1,350 kWel		Spring 2011	1,350 kWel	

A.8. Intended deviations or revisions to the registered monitoring plan:

A revised monitoring plan has been provided. See <Revised Monitoring Plan-K22.pdf>

The calculation of the emission reductions is not calculated on a yearly basis, but for an individual period. See A.4. for detailed data.

Flow data and flare efficiency as well as the methane amount destroyed by flaring MD_{Fl} are calculated in 15 min. intervals in Excel sheets. The main emissions variables for project emissions, baseline emissions and emissions reductions are calculated on a monthly basis. Yearly sums and a total sum for the monitoring are calculated.

The formula for the calculation of project emissions from uncombusted methane has been updated. Formulae from the «Methodological "Tool to determine project emissions from flaring gases containing methane"» [AM_Tool_07]) have been applied, see Annex 4. The calculation of project emissions from uncombusted methane from flaring is now more accurate.

The heat amount produced by the ventilation air heater is not measured but calculated using the utilised methane amount.

Additionally monitoring procedures applied during the monitoring period are described in Annex 3.

A.9. Changes since last verification:

Two additional flares have been installed one at the main shaft, one at the air shaft.

An electronically monitoring system has been installed for the monitoring of the gas amount sent to boilers and to the ventilation air heater.

A.10. Person(s) responsible for the preparation and submission of the monitoring report:

Coal Mine Nr.22 Kommunarskaya

· Viktor Ivanovich Orlov, Chief Engineer

Eco-Alliance OOO

- Vladimir Kasyanov, Managing Director
- Pavel Shelegeda, Deputy Director
- · Aleksandr Didenko, Monitoring Assistant
- Viktor Avtonomov, Monitoring Assistant

Carbon-TF B.V

- Adam Hadulla, Director Business Development
- · Karl Wöste, Senior Consultant

SECTION B. Key monitoring activities

B.1. Monitoring equipment:

B.1.2. Table providing information on the equipment used (incl. manufacturer, type, serial number, date of installation, date of last calibration, information to specific uncertainty, need for changes and replacements):

Table - 5 Monitoring equipment

ID	Data	Method	Manufacturer	Classification	Serial number	Range	Frequency of Measurement	Installation	Uncertainty level of data	Calibration procedure	Last calibration	Calibrator
1	CH ₄ concentration	Infrared measurement	Pro2 Anlagentechnik GmbH using gas analysers from Emerson Process Management GmbH&Co. OHG	Pro2 SAS1 / BINOS 100	120482003016	0-100% CH ₄	Continuous record period 15 min.	2008	1.5%	Regular calibrations made using procedures of Eco Alliance OOO. Yearly calibration made using procedures of Sumy standard metrologya.	31/03/2010 01/12/2010 passport to gasanalizer № 120482003 016	Sumy Standart- metrologya Eco-Alliance
2	NMHC concentration	lab analysis Gas-phase Chromatograph	Gazohrom	LHM-8MD	75 307	0-100%.	yearly	n. n.	2.5%	The approved laboratory is responsible for regular recalibrations of the system.	14/09/2009 15/10/2010	Donetskstandart metrologya
3	CMM amount to flare 1	Standard orifice and pressure difference meter	Pro2 Anlagentechnik GmbH	calculation	n.a.	n.a.	Continuous record period 15 min.	2008	calculation	none	n.a.	n.a.
4	Gas flow	Standard orifice	Himpe AG	annular chamber standard orifice DIN 19205	Rings:361899 501871 (K22-F1)	0-2,500 m ³ /h	Continuous record period 15 min.	2008 Disk changed on 11/11/2009	0.75 % DIN EN ISO 5167-T.1-4	Yearly calibration made using procedures of Sumy Standard metrologya.	01/12/2010 passport to flow meter №501871 (K22-F1)	Sumy standart metrologya

n	ar	10	С
v	au	ıc	

ID	Data	Method	Manufacturer	Classification	Serial number	Range	Frequency of Measurement	Installation	Uncertainty level of data	Calibration procedure	Last calibration	Calibrator
5	Pressure difference	Pressure difference transmitter	Honeywell	ST3000	08W18 C30591540010 01	0-100 mbar	Continuous record period 15 min.	2008	0.25%	Yearly calibration made using procedures of Sumy Standard metrologya.	31/03/2010 20/12/2010 certificate № 2485	Sumy Standart Metrologya
6	Pressure	Pressure transmitter Dry ceramic sensor	Noeding	P 121	EX812126961	0-250 mbar, rel	Continuous record period 15 min.	2008	0.25%	Yearly calibration made using procedures of Sumy Standard metrologya.	31/03/2010 20/12/2010 certificate № 2486	Sumy Standart Metrologya
7	Temperature	Resistance thermometer	JUMO GmbH & Co. KG	Type 90.2002	4571	-50-250°C	Continuous record period 15 min.	2008	DIN EN 60 751, Class B 0.3+0.005T	Calibration made using procedures of Sumy Standard metrologya.	31/03/2010 01/12/2010 passport to Resistance thermome- ter № 4571	Sumy Standart Metrologya
8	Flame temperature, Flare 1	Thermo couple	Herth GmbH	DIN 43733 Type S, PtRh-Pt	71087 until 12/09/2010 56934 Since 12/09/2010	0-1,700°C	Continuous record period 15 min.	12/09/2009 12/09/2010	DIN 43733, Class 2 0°C - 600°C +/-1.5 K 600°C - 1600°C +/- 0.25%	Calibration made using procedures of manufacturer, according to DIN 43733.	01/09/2009	Herth
9	CMM amount to cogeneration unit	Standard orifice and pressure difference meter	Pro2 Anlagentechnik GmbH	calculation	none	n.a.	Continuous record period 15 min.	2008	calculation	none	n.a.	n.a.
10	Gas flow	Standard orifice	Himpe AG	annular chamber standard orifice DIN 19205	Rings:364581 491973	0-1,200 m³/h	Continuous record period 15 min.	2008	0.57 % DIN EN ISO 5167-T.1-4	Yearly calibration made using procedures of Sumy Standard metrologya.	19/11/2010 passport to flow meter № 491973	Sumy standart metrologya

nage	1	٢
vauc	- 1	u

ID	Data	Method	Manufacturer	Classification	Serial number	Range	Frequency of Measurement	Installation	Uncertainty level of data	Calibration procedure	Last calibration	Calibrator
11	Pressure difference	Pressure difference transmitter	Honeywell	ST3000	08W30 C30881000010 01	0-100 mbar	Continuous record period 15 min.	2008	0.25%	Yearly calibration made using procedures of Sumy Standard metrologya.	31/03/2010 18/11/2010 certificate № 2279	Sumy Standart Metrologya
12	Pressure	Pressure transmitter Dry ceramic sensor	Noeding	P 121	EX812127126	0-250 mbar	Continuous record period 15 min.	2008	0.25%	Yearly calibration made using procedures of Sumy Standard metrologya.	31/03/2010 18/11/2010 certificate № 2278	Sumy Standart Metrologya
13	Temperature	Resistance thermometer	JUMO GmbH & Co. KG	Type 90.2002	TN005115988 01264830010 0837003 (98026 for calibration)	-40-120°C	Continuous record period 15 min.	2008	DIN EN 60 751, Class B 0.3+0.005T	Yearly calibration made using procedures of Sumy Standard metrologya.	31/03/2010 passport to Resistance thermomete r № 98026	Sumy Standart Metrologya
14	Power production	Electricity meter	Actaris	SL7000 Type – SL761C07	5302	n.a	Continuous, cumulative value Read period monthly	2009	0.5%	Initial calibration made by manufacturer using procedures according to IEC61036.	03/2009 passport to Electricity meter Calibration is spent 1 time in 6 years	Manufacturer
14a	Power production	Electronical load counter	DEIF	PPU	103461 G 203450000B	n.a.	Continuous, cumulative value	2008	1%	Initial calibration made using procedures of manufacturer.	Initial unknown.	Manufacturer
15	CMM amount to flare 3	Standard orifice and pressure difference meter	Pro2 Anlagentechnik GmbH	calculation	none	n.a.	Continuous record period 15 min.	29/10/2010		Calculation	None	none
16	Gas flow	Standard orifice	Himpe AG	annular chamber standard orifice DIN 19205	501871 (SG-F1)	0-2,500 m ³ /h	Continuous record period 15 min.	29/10/2010	0.75% DIN EN ISO 5167-T.1-4	Yearly calibration made using procedures of Sumy Standard metrologya.	27/10/2010 passport to flow meter № 501871 (SG-F1)	Sumy Standart Metrologya

nage	1 ב	1

ID	Data	Method	Manufacturer	Classification	Serial number	Range	Frequency of Measurement	Installation	Uncertainty level of data	Calibration procedure	Last calibration	Calibrator
17	Pressure difference	Pressure difference transmitter	Honeywell	STD-3000	C30591540010 03	0-100 mbar	Continuous record period 15 min.	29/10/2010	0.25%	Initial calibration made using procedures of manufacturer.	27/10/2010 certificate № 2135	Sumystandart- metrologya
										Further calibration made using procedures of Sumy standard metrologya.		
18	Pressure	Pressure transmitter	Noeding	P 121 E02-311	EX812126966	0-250 mbar, rel	Continuous record period 15 min.	29/10/2010	0.25%	Initial calibration made using procedures of manufacturer.	31/03/2010	Sumystandart- metrologya
										Further calibration made using procedures of Sumy standard metrologya.	02/11/2010 certificate № 2171	
19	Temperature	Resistance thermometer	JUMO GmbH	dTRANS TO1 Typ 90.2820/10	4571/1	-50-250°C	Continuous record period 15 min.	29/10/2010	DIN EN 60 751, Class B 0.3+0.005T	Initial calibration made using procedures of manufacturer.	27/10/2010 passport to Resistance thermome-	Sumystandart- metrologya
										Further calibration made using procedures of Sumy standard metrologya.	ter № 4571/1	
20	CH ₄ concentration	Infrared meter	Pro 2 Anlagen- technik GmbH	BINOS 100	120482003017	0-100% CH ₄	Continuous record period 15 min.	29/10/2010	1.5%	Regular calibrations are made using procedures of Eco Alliance OOO.	31/03/2010 01/12/2010 passport to gasanalizer №	Eco-Alliance OOO Sumystandart- metrologya
										Yearly calibration made using procedures of Sumy standard metrologya.	120482003 017	

page	1	2
Dauc	- 1	_

ID	Data	Method	Manufacturer	Classification	Serial number	Range	Frequency of Measurement	Installation	Uncertainty level of data	Calibration procedure	Last calibration	Calibrator
21	Flame temperature, flare 3	Thermo couple	Herth GmbH	DIN 43733, Type S, PtRh-Pt	66315	0-1,700°C	Continuous record period 15 min.	11/10/2010	DIN 43733, Class 2 0°C - 600°C +/-1.5 K 600°C - 1600°C +/- 0.25%	Calibration made using procedures of manufacturer. No recalibration, thermocouple is supposed to be changed at least one time per year, according to the flaring tool	01/09/2009	Herth
22	CMM amount to flare 2	Standard orifice and pressure difference meter	Pro2 Anlagentechnik GmbH	calculation	none	n.a.	Continuous record period 15 min.	08/2010		Calculation	none	none
23	Gas flow	Standard orifice	Himpe AG	annular chamber standard orifice DIN 19205	486343	0-2,500 m ³ /h	Continuous record period 15 min.	13/11/2009	0.75% DIN EN ISO 5167-T.1-4	Yearly calibration made using procedures of Sumy standard metrologya.	19/11/2010 passport to flow meter № 486343	Sumy Standart Metrologya
24	Pressure difference	Pressure difference transmitter	Honeywell	STD-3000	0609 C28014130010 01	0-100 mbar	Continuous record period 15 min.	03/2009	0.25%	Yearly calibration made using procedures of Sumy standard metrologya.	18/11/2010 certificate № 2280	Sumy Standart Metrologya
25	Pressure	Pressure transmitter	Noeding	P 121-EB4-311	Ex612124593	0-250 mbar, rel	Continuous record period 15 min.	03/2009	0.25%	Yearly calibration made using procedures of Sumy standard metrologya.	18/11/2010 certificate № 2277	Sumy Standart Metrologya
26	Temperature	Resistance thermometer	JUMO GmbH	dTRANS TO1 Typ 90.2820/10	98026/2	-50-150°C	Continuous record period 15 min.	03/2009	DIN EN 60 751, Class B 0.3+0.005T	Yearly calibration made using procedures of Sumy standard metrologya.	16/11/2010 passport to Resistance thermome- ter № 92026/2	Sumy Standart Metrologya

2222	1	2
page	- 1	c

ID	Data	Method	Manufacturer	Classification	Serial number	Range	Frequency of Measurement	Installation	Uncertainty level of data	Calibration procedure	Last calibration	Calibrator
27	CH ₄ concentration	Infrared meter	Pro 2 Anlagen- technik GmbH	BINOS 100	49939003	0-100% CH ₄	Continuous record period 15 min.	03/2009	1.5%	Yearly calibration made using procedures of Sumy standard metrologya.	20/12/2010 passport to gasanalizer № 49939003	Sumy Standart Metrologya
										Regular calibrations are made using procedures of Eco Alliance OOO.		Eco-Alliance OOO
28	Flame temperature, flare 2	Thermo couple	Herth GmbH	DIN 43733, Type S, PtRh-Pt	66503	0-1,700°C	Continuous record period 15 min.	08/2010	DIN 43733, Class 2 0°C - 600°C +/-1.5 K 600°C - 1600°C +/- 0.25%	Calibration made using procedures of manufacturer. No recalibration, thermocouple is supposed to be changed at least one time per year, according to the flaring tool	n.a.	Herth
29	CMM amount to boilers	Standard orifice and pressure difference meter	ECO-Alliance OOO	calculation	none		Continuous record period 15 min.	05/2010	n.a.	Calculation	n.a	n.a.
30	Gas flow	Standard orifice	PRPE "Energoteh"	Annular chamber standard orifice DIN 19205	none	0-2000 m³/h,	Continuous record period 15 min.	05/2010	none	Initial calibration made using procedures of manufacturer.	11/05/2010	PRPE "Energoteh"
				DIN 17203						Further calibration made using procedures of Sumy standard metrologya.	Calibration will be spent in April 2011	Sumy standard metrologya.

222	1/
nade	! 4

ID	Data	Method	Manufacturer	Classification	Serial number	Range	Frequency of Measurement	Installation	Uncertainty level of data	Calibration procedure	Last calibration	Calibrator
31	Pressure difference	Pressure difference transmitter	Honeywell	STD-3000	09W33C31808 72001002	0-100 mbar	Continuous record period 15 min.	05/2010	0.0375 %	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandartmetrologya.	Calibration will be spent in April 2011	Honeywell Sumy standard metrologya.
32	Pressure	Pressure transmitter	Noeding	P 121 E02-311	E812127127	0-250 mbar rel	Continuous record period 15 min.	05/2010	0.25%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrologya.	Calibration will be spent in April 2011	Noeding Sumy standard metrologya.
33	Temperature	Resistance thermometer	AOZT «TERA»	TSP U 1-3 PT-100	09453	-50-250°C	Continuous record period 15 min.	05/2010	0.5%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrologya.	Calibration will be spent in April 2011	AOZT «TERA» Sumy standard metrologya.
34	Heat production boilers	Calculation	ECO-Alliance OOO	none	none	n.a.	Continuous record period 15 min.	11/2010	none	calculation	n.a.	n.a.
35	Hot water flow	Standard orifice	PRPE "Energoteh"	Annular chamber standard orifice DIN 19205	none	46,42-250 m³/h	Continuous record period 15 min.	11/2010	none	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrologya.	Calibration will be spent in April 2011	"Energoteh" Sumystandart- metrologya

nana	1	F
page	- 1	

ID	Data	Method	Manufacturer	Classification	Serial number	Range	Frequency of Measurement	Installation	Uncertainty level of data	Calibration procedure	Last calibration	Calibrator
36	Pressure of hot water (the - chamber)	Pressure difference transmitter	Siemens	SITRANS P Serie Z 7MF1564	AZB/XD18838 8	0-10 bar abs	Continuous record period 15 min.	11/2010	0.25%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandartmetrologya.	Calibration will be spent in April 2011	Siemens Sumystandart- metrologya
37	Pressure of hot water (the + chamber)	Pressure transmitter	Siemens	SITRANS P Serie Z 7MF1564	AZB/XD18838 7	0-10 bar abs	Continuous record period 15 min.	11/2010	0.25%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandartmetrologya.	Calibration will be spent in April 2011	Sumystandart- metrologya
38	Temperature on an input	Resistance thermometer	AOZT «TERA»	TSP U 1-3 PT-100	09454	-50-250°C	Continuous record period 15 min.	11/2010	0.5%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrologya.	Calibration will be spent in April 2011	AOZT «TERA» Sumystandart- metrologya
39	Temperature of hot water	Resistance thermometer	AOZT «TERA»	TSP U 1-3 PT-100	09439	-50-250°C	Continuous record period 15 min.	11/2010	0.5%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrologya.	Calibration will be spent in April 2011	AOZT «TERA» Sumystandart- metrologya
40	CMM amount to VAH	Standard orifice and pressure difference meter	ECO-Alliance OOO	none	none	n.a.	Continuous record period 15 min.	05/2010	none	calculation	n.a.	n.a.

			4	,
na	a	e	1	t

ID	Data	Method	Manufacturer	Classification	Serial number	Range	Frequency of Measurement	Installation	Uncertainty level of data	Calibration procedure	Last calibration	Calibrator
41	Gas flow	Standard orifice	PRPE "Energoteh"	Annular chamber standard orifice DIN 19205	none	0-800 m ³ /h	Continuous record period 15 min.	05/2010	none	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandartmetrologya.	Calibration will be spent in April 2011	"Energoteh" Sumystandart- metrologya
42	Pressure difference	Pressure difference transmitter	Honeywell	STD-3000	09W33C31808 72001003	0-100 mBar	Continuous record period 15 min.	05/2010	0.0375 %	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrologya.	Calibration will be spent in April 2011	Honeywell Sumy standard metrologya.
43	Pressure	Pressure transmitter	Noeding	P 121 EE5-311	Ex812127139	-500-250 mBar, rel	Continuous record period 15 min.	05/2010	0.25%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrologya.	Calibration will be spent in April 2011	Noeding Sumystandart- metrologya
44	Temperature	Resistance thermometer	AOZT «TERA»	TSP U 1-3 PT-100	09441	-50-250°C	Continuous record period 15 min.	05/2010	0.5%	Initial calibration made using procedures of manufacturer. Further calibrations made using procedures of Sumystandart- metrologya.	Calibration will be spent in April 2011	AOZT «TERA» Sumystandart- metrologya

Monitoring Report Nr. 02 - Coal Mine Nr.22 Kommunarskaya

B.1.3. Involvement of Third Parties:

- The lab analysis for the determination of the NMHC concentration has been done by MAKNII
- The gas chromatograph has been calibrated by Donetskstandartmetrologya
- Initial calibrations have been provided by the manufacturers, further calibrations have been done by Sumystandartmetrologya.
- Regular calibration of CH₄-concentration has been done by Eco Alliance OOO
- Eco-Alliance OOO supported the coal mine with the collecting of the monitoring data.
- Carbon-TF B.V. supervised the data for plausibility and completeness.

B.2. Data collection (accumulated data for the whole monitoring period):

B.2.1. List of fixed default values:

Table - 6 List of ex-ante fixed values

ID number	Data variable	Source of data	Data unit	Comment
P8, B49 CEF _{ELEC,PJ}	Carbon emission factor of CONS _{ELEC,PJ}	SenterNovem	tCO _{2eq} /MWh	SenterNovem data as accepted by JISC in other verifications, [SG, KD, ZAS] taken instead of not available Ukrainian data, according to the information given in the PDD: 2008: 0.695 2009: 0.680 2010: 0.666 2011: 0.651 2012: 0.636
P13 Eff _{FL}	Flare combustion efficiency	PDD / revised monitoring plan (T _{flare})	t CH₄	Set to: 99.5 % for: T _{Flame} > 850°C [PDD, IPCC] 90% for: 500°C < T _{Flame} < 850°C [AM_Tool_07] 0% for: T _{Flame} < 500°C [AM_Tool_07]
P16 Eff _{ELEC}	Efficiency of methane destruction / oxidation in power plant	ACM0008 / IPCC 1996	%	set at 99.5% (IPCC 1996)
P19 Eff _{HEAT}	Efficiency of methane destruction / oxidation in heat plant	ACM0008 / IPCC 1996	%	set at 99.5% (IPCC 1996)
P23, B19 CEF _{CH4}	Carbon emission factor for combusted methane	ACM0008 / IPCC 2006	t CO₂eq/t CH₄	set at 2.75 t CO₂eq/t CH₄
P28, B18 GWP _{CH4}	Global warming potential of methane	ACM0008 / IPCC 2006	t CO₂eq/t CH₄	set at 21

Monitoring Report Nr. 02 - Coal Mine Nr.22 Kommunarskaya

B55 EF _{CO2,Coal}	CO ₂ emission factor of fuel used for captive power or heat	IPCC 2006 1 Introduction Table 1.2	tCO ₂ /MWh	Set to 0.3406 tCO ₂ /MWh Using the value for "Other Bituminous Coal" of 94,600 kg CO ₂ /TJ
B57 Ef _{heat}	Energy efficiency of heat plant	Boiler pass	%	73.5 % old coal boiler 90.6 % upgraded boiler (measured value)
Eff _{HEAT,VAH}	Efficiency of the heat generation by ventilation air heater	VAH pass	%	Set to 98.5 %
HV _{CH4}	Heating value of methane	DIN ISO 6976	kWh/m³ MWh/kg	set to 9.965 kWh/m³ equal to 13.899 MWh/kg

B.2.2. List of variables:

Table - 7 List of variables

ID number	Data variable	Source of data	Data unit	Comment
P1 PE	Project emissions	monitored data	t CO _{2eq}	calculated using formulae from the PDD
P2 PE _{ME}	Project emissions from energy use to capture and use methane	monitored data	t CO _{2eq}	calculated using formulae from the PDD
P3 PE _{MD}	Project emissions from methane destroyed	monitored data	t CO _{2eq}	calculated using formulae from the PDD
P4 PE _{UM}	Project emissions from uncombusted methane	monitored data	t CO _{2eq}	calculated using formulae from the PDD
P5 CONS _{ELEC,PJ}	Additional electricity consumption by project	power meter	MWh	
P11 MD _{FL}	Methane destroyed by flaring	monitored data	t CH₄	calculated using formulae from the PDD
P12 MM _{FL}	Methane sent to flare	flow meter	t CH₄	
P14 MD _{ELEC}	Methane destroyed by power generation	monitored data	t CH₄	calculated using formulae from the PDD
P15 MM _{ELEC}	Methane sent to power plant	flow meter	t CH₄	
P17 MD _{HEAT}	Methane destroyed by heat generation	monitored data	t CH₄	calculated using formulae from the PDD
P18 MM _{HEAT}	Methane sent to heat generation	flow meter	t CH₄	
P24 CEF _{NMHC}	Carbon emission factor for combusted non methane hydrocarbons (various)	lab analysis	-	Calculated if applicable
P25 PC _{CH4}	Concentration of methane in extracted gas	IR measurement	%	
P26 PC _{NMHC}	NMHC concentration in coal mine gas	lab analysis	%	Used to check if more than 1% of emissions and to calculate r, if applicable

P27	Relative proportion of NMHC	lab	%	Calculated if applicable,
r	compared to methane	analysis		based on the lab
	·			analysis.
B1 BE	Baseline emissions	monitored data	t CO _{2eq}	calculated using formulae from the PDD
B3	Baseline emissions from	monitored	t CO _{2eq}	calculated using formulae
BE _{MR}	release of methane into the	data		from the PDD
	atmosphere that is avoided			
	by the project activity			
B4	Baseline emissions from the	monitored	t CO _{2eq}	calculated using formulae
BE _{Use}	production of power, heat or	data		from the PDD
	supply to gas grid replaced by			
	the project activity			
B14	CMM captured and destroyed	flow meter	t CH₄	equal to P17,MD _{HEAT}
CMM _{PJ}	in the project activity			
B46	electricity generation by	power	MWh	
GEN	project	meter		
B47	Heat generation by project	heat	MWh	
HEAT		meter		
PE _{Flare}	Project emissions from flaring		t CO _{2eq}	Calculated using
		data		formula from the flaring
				Tool (AM_Tool_07)
$MD_{HEAT,VAH}$	Methane destroyed through	monitored	t CH₄	
	heat generation by ventilation	data		
	air heater			

B.2.3. Data concerning GHG emissions by sources of the project activity

Table - 8 GHG emissions by sources of the project activity

ID number	Data variable	Source of data	Data unit	Comment
P12 MM _{FL}	Methane sent to flare	flow meter	t CH₄	calculated using formulae from the PDD
P15 MM _{ELEC}	Methane sent to power plant	flow meter	t CH₄	calculated using formulae from the PDD
P18 MM _{HEAT}	Methane sent to heat generation	flow meter	t CH₄	calculated using formulae from the PDD
P25 PC _{CH4}	Concentration of methane in extracted gas	IR measurement	%	

B.2.4. Data concerning GHG emissions by sources of the baseline

Table - 9 GHG emissions by sources of the baseline

ID	Data variable	Source of	Data unit	Comment
number		data		
B14 CMM _{PJ}	CMM captured and destroyed in the project activity	Sum of flow meters	t CH₄	sum of boilers, VAH, flare and cogeneration

Monitoring Report Nr. 02 - Coal Mine Nr.22 Kommunarskaya

B47 HEAT	Heat generation by project	monitored data	MWh	sum of heat generated by boiler + VAH
B46 GEN	electricity generation by project	monitored data	MWh	

B.2.5. Data concerning leakage

Not applicable.

B.2.6. Data concerning environmental impacts

SU Donbass is the owner of two coal mines, coal mine Shcheglovskaya-Glubokaya and Coal Mine Nr 22 Kommunarskaya. SU Donbass started works on reducing greenhouse gas emissions already in 2006. As first pilot CMM utilisation two previously coal fired boilers at the coal mine Shcheglovskaya-Glubokaya have been upgraded with CMM burning systems. This early action has been verified as Greening AAU's. In the second phase further CMM utilisation units followed and the second JI project at Coal Mine Nr 22 Kommunarskaya was initiated. At the time nearly all of the CMM from the suction system of both coal mines is utilised and no longer blown into atmosphere.

B.3. Data processing and archiving (incl. software used):

Three different but similar systems are used for electronically data collection.

Data from the boilers and the VAH are collected, processed and stored using a Siemens SIMATIC PLC S7 system and Siemens WINCC programming software. All data is stored in the internal memory about 2 GB. One time per hour the data are sent via GPS to an Internet-based Server data base. Eco-Alliance ensures regular back up's and archiving. The data can be read any time from the internet data base by authorised personnel. The utilised methane amount is automatically calculated and stored in the PLC. As all input data are stored, the automatically calculation can by checked in retrospect any time.

Data from the flare and the cogeneration unit are collected, processed and stored using a Siemens SIMATIC PLC S7 system and Siemens WINCC programming software. All data is stored in the internal memory about 2 GB. The data are read daily by Kuhse GmbH via GPS and stored in the Kuhse database in Germany. The data can be viewed any time using special access software provided by Kuhse. Kuhse ensures regular back ups and archiving. The data are regularly reviewed by Carbon-TF and Eco-Alliance OOO. Carbon-TF provides regularly storing and archiving of the data as well as regularly transfer to Excel sheets for analysis, evaluation and reporting procedures.

The data can be read any time from the Kuhse data base by authorised personnel. The utilised methane amount is automatically calculated and stored in the PLC. As all input data are stored, the automatically calculation can by checked in retrospect any time.

The CMM flow to the cogeneration unit is not registered by the PLC of the unit. The data are recorded by a DAVID System (Data acquisition and visualisation device) developed by the Fraunhofer Institute UMSICHT. The data are stored in the internal memory of the DAVID. One time per day the data are

Monitoring Report Nr. 02 - Coal Mine Nr.22 Kommunarskaya

recalled via GPS to the central data base at the Fraunhofer Institute and are available via an internet front end. The server provider ensures regular back ups and archiving.

For plausibility checks and potential data back up, data recorded by coal mine personnel in hand written journals can be taken. The journals are stored by the coal mine.

B.4. Special event log:

The available utilisable CH_4 amount has significantly risen, so two additional flares have been installed. The reason is a change to a new coal seam, which has high CH_4 concentration.

Two flares have been moved to the Coal Mine Nr.22 Kommunarskaya: one flare has been shut down at another JI project of the project owner at coal mine Scheglovskaya-Glubokaya, the second flare was supplied by Eco-Alliance.

SECTION C. Quality assurance and quality control measures

C.1. Documented procedures and management plan:

C.1.1. Roles and responsibilities:

The general project management is implemented by the Technical Director of Shakhtoupravlenye Donbass, the Holding Company of the Coal Mine Nr.22 Kommunarskaya, through supervision and coordination of activities of his subordinates, such as deputy director on surface degasification, heat technician, and heads of safety engineering departments.

Daily a group of mechanics and electricians who are responsible for the measures and maintenance of all technological equipment and measuring instruments are present on-site. The operation and maintenance of the plant is provided by Eco Alliance OOO.

Overview calculations about the methane amount utilised are made on a monthly and yearly basis and notified in the journal. The monitoring system is supervised by the administration of the coal mine under the existing control and reporting system. The general supervision of the electronically monitoring system is executed by Carbon-TF.

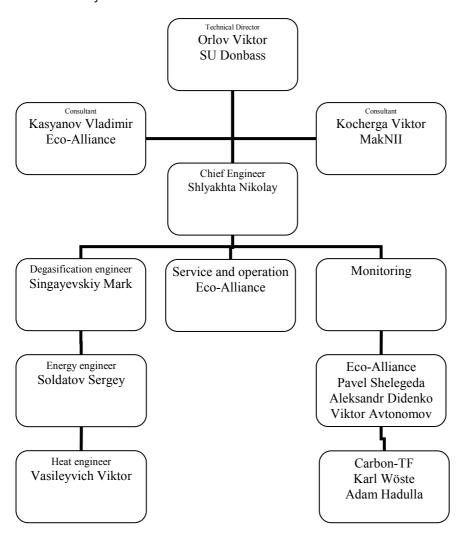


Figure 1 - Organigram

C.1.2. Trainings:

The employees responsible for the monitoring control have been trained on–the–job during the installation of the system.

The responsible personnel of Eco-Alliance has been trained on the handling with CMM-utilisation units and the applied monitoring systems, during an eight week long practical course in Germany in the autumn of 2005 and a two-week practical course in August/September 2008. In this courses which has been carried out by A-TEC Anlagentechnik GmbH, a Joint-Venture participant of Eco-Alliance, also the basic principles of emissions trading and the background of the monitoring has been explained. A-TEC Anlagentechnik GmbH is already running several CMM utilisation plants and monitoring systems in Germany.

These trained personnel is the basis of a team of engineers, which should establish a specialised service team in the Ukraine and instruct further operating and monitoring personnel, as well for this project.

C.2. Involvement of Third Parties:

- MakNII Institute, the "State Makeyevka Institute for Research and Education for Safe Work in the Coal Mining Industry", a subsidiary of the "Ukrainian Ministry for Fuel and Energy", has been involved for the lab analysis (NMHC) of the CMM.
- Donbasvugleavtomatyka OOO has been involved for the service of the boilers and for the regular calibrations and service of the measurement and control equipment of the boilers and VAH.
- Sumystandardmetrologya has been involved for the regular calibrations and service of the monitoring devices

C.3. Internal audits and control measures:

Methane concentration and CMM flow data of the flares are compared with the indication of the meters from the vacuum pump station for plausibility. The coal mine personnel have been instructed by Eco-Alliance.

QM procedure:

- Electronic data are stored at Eco-Alliance and Carbon-TF.
- Back-ups are made regularly by Eco-Alliance and Carbon-TF.
- A monitoring engineer from Eco-Alliance checks the data from web-site every day and makes internal weekly reports.
- Eco Alliance prepares monthly reports which are checked by Carbon-TF B.V.
- Carbon-TF prepares the monitoring report, which is checked by Eco-Alliance and the coal mine.
- Additionally data are recorded manually in journals by the coal mine personnel
- The journals are checked daily by the chief heat technician and cross-checked monthly by Eco Alliance OOO
- The paper data are stored at the coal mine.
- Every 2 weeks a monitoring engineer from Eco-Alliance makes audits and remarks this in the operation journal.
- The mechanic on duty from the coal mine makes daily audits.
- Eco-Alliance makes service audits every month.

C.4. Troubleshooting procedures:

The general troubleshooting for the boilers and the VAH are available at the coal mine. The coal mine personnel are instructed to follow the procedures. In case of disturbance the gas supply to the boilers and the ventilation air heater are shut down by a quick acting valve and the CMM supplied by the degasification system of the coal mine is blown to the atmosphere. The flares and the cogeneration unit are is also automatically shut down in case of faults.

SECTION D. Calculation of GHG emission reductions

D.1. Table providing the formulas used:

Table - 10 Formulae used taken from the PDD.

ID number	Data variable	Formula
number		
P1 PE	Project emissions	$PE = PE_{ME} + PE_{MD} + PE_{UM}$
P2 PE _{ME}	Project emissions from energy use to capture and use methane	$PE_{ME} = CONS_{ELEC,PJ} \times CEF_{ELEC,PJ}$
P3 PE _{MD}	Project emissions from methane destroyed	$PE_{MD} = (MD_{FL} + MD_{ELEC} + MD_{HEAT}) \times (CEF_{CH4} + r \times CEF_{NMHC})$
P4 PE _{UM}	Project emissions from uncombusted methane	$PE_{UM} = GWP_{CH4} \times [MM_{ELEC} \times (1 - Eff_{ELEC}) + MM_{HEAT} \times (1 - Eff_{HEAT})] + PE_{Flare}$
PE _{Flare}	Project emissions from flaring	$PE_{Flare} = (MM_{Fl} - MD_{Fl}) \times GWP_{CH4}$
P11 MD _{FL}	Methane destroyed by flaring	$MD_{FL} = \sum_{i=1}^{n} MM_{FL,i} x \eta_{flare,i}$
P17 MD _{HEAT}	Methane destroyed by heat generation	$MD_{HEAT} = MM_{HEAT} \times Eff_{HEAT}$
P18 MM _{HEAT}	Methane sent to heat generation	$MM_{HEAT} = MM_{BOILERS} + MM_{HEAT,VAH}$
P27 r	Relative proportion of NMHC compared to methane	r = PC _{NMHC} / PC _{CH4}
B1 BE	Baseline emissions	BE = BE _{MR} + BE _{Use}
B3 BE _{MR}	Baseline emissions from release of methane into the atmosphere that is avoided by the project activity	$BE_{MR} = CMM_{PJ}$, x GWP_{CH4}
B4 BE _{Use}	Baseline emissions from the production of power, heat or supply to gas grid replaced by the project activity	BE _{Use} , = GEN x EF _{ELEC} + (HEAT / Eff _{HEAT,coal}) x EF _{HEAT}
B14 CMM _{PJ}	CMM captured and destroyed in the project activity	$CMM_{PJ} = \sum_{i=1}^{n} MM_{i}$
B47 HEAT	Heat generation by project	HEAT = HEAT _{Boilers} + MD _{HEAT,VAH} x Eff _{HEAT,VAH} x HV _{CH4}
ER	Emission reductions	ER = BE - PE

D.2. Description and consideration of measurement uncertainties and error propagation:

Some minor errors which have been identified in hand written operation journals have been corrected. Mistakes were made during the writing the DATA from the monitor into journals. During checking the DATA, the monitoring engineer has made adjustments to the time of measurement, namely: record the exact time (hours and minutes).

D.3. GHG emission reductions (referring to B.2. of this document):

D.3.1. Project emissions:

period	project emissions [t CO _{2eq}]
01/04/2010-31/12/2010	17,646
01/01/2011-15/03/2011	8,093
Total 2010-2011	25,739

D.3.2. Baseline emissions:

period	baseline emissions [t CO _{2eq}]
01/04/2010-31/12/2010	129,911
01/01/2011-15/03/2011	59,539
Total 2010-2011	189,449

D.3.3. Leakage:

Not applicable.

D.3.4. Summary of the emissions reductions during the monitoring period:

Period	Emission reductions [t CO _{2eq}]
01/04/2010-31/12/2010	112,265
01/01/2011-15/03/2011	51,446
Total 2010-2011	163,711

Annex 1

REFERENCES

- [PDD], Project Design Document; Version 06, dated 2009-08-06
- Final Determination Report for the project: JI0078 CMM utilisation on the Coal Mine Nr.22
 Kommunarskaya of the State Holding Joint-Stock Company "GOAO Shakhtoupravlenye Donbass"
 Report No: 2008-1643 Rev 01, by DNV Det Norske Veritas, dated 2009-08-02
- Letter of Approval, Nr. M000016, issued on 2008-03-26 by the Ukraine (host party)
- Letter of Approval, Nr. 2008JI05, issued on 2008-04-22 by the Kingdom of the Netherlands (investor party)
- The project is approved as JI-project since 30/12/2009
 (http://ji.unfccc.int/JI_Projects/DeterAndVerif/Verification/FinDet.html)

 Registration numbers UA2000013, JI0078
- [IPCC], Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Reference Manual (Volume 3), Chapter Energy, 1.4.1 Unoxidized Carbon, Page 1.32, 1996, http://www.ipcc-nggip.iges.or.jp/public/gl/invs6a.htm
- [ACM0008], Approved consolidated baseline methodology ACM0008 Consolidated baseline methodology for coal bed methane and coal mine methane capture and use for power (electrical or motive) and heat and/or destruction by flaring, version 03, EB28
 http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html
- [AM_Tool_07], Methodological "Tool to determine project emissions from flaring gases containing methane", EB 28, Meeting report, Annex 13
- Determination and verification manual (version 01), undated http://ji.unfccc.int/Ref/Guida/index.html
- supporting evidence documents provided by the coal mine

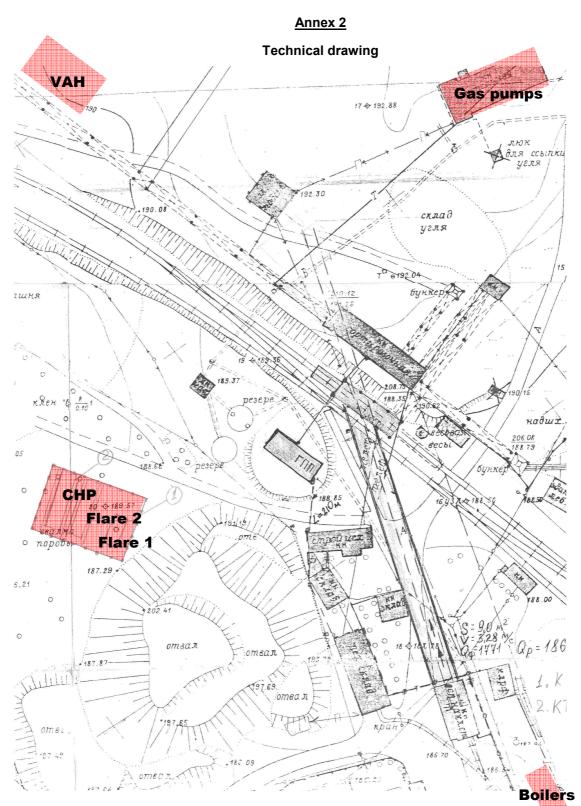


Figure-2 Installation scheme – Coal Mine Nr.22 Kommunarskaya – Main shaft

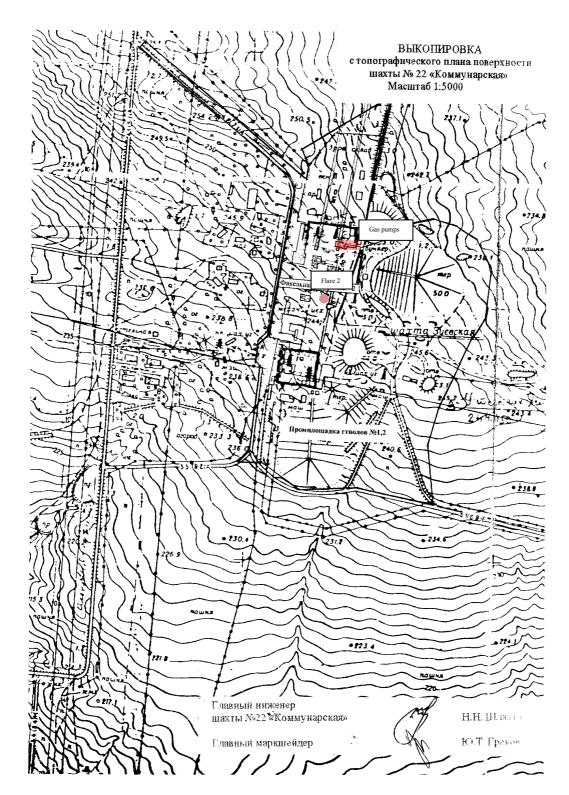


Figure-3 Installation scheme – Coal Mine Nr.22 Kommunarskaya – Air shaft

Annex 3

Energy and material flowchart including metering positions

A3.1 Monitoring procedure:

The electronically data storage system is fully in operation. Manual records (journals) are still used by the coal mine and can be taken for backup. The heat produced by the VAH is not measured but calculated using the utilised methane amount. The general installation schemes are given in Figure-3 for the main shaft and Figure-4 for the air shaft.

A3.2 Project emissions from flaring

The formula for the calculation of project emissions from uncombusted methane has been updated. The calculation of project emissions from uncombusted methane from flaring are now more accurate.

In the PDD the formula for project emissions from uncombusted methane is given as per:

$$PE_{UM} = GWP_{CH4} \times \left[\left(MM_{FL} \times (1 - Eff_{FL}) + MM_{ELEC} \times (1 - Eff_{ELEC}) + MM_{HEAT} \times (1 - Eff_{HEAT}) \right]$$
(9) old

In the revised monitoring plan the formula (9) has been replaced by the following formula:

$$PE_{UM} = GWP_{CH4} \times [MM_{ELEC} \times (1 - Eff_{ELEC}) + MM_{HEAT} \times (1 - Eff_{HEAT})] + PE_{flare}$$
(9) new

 PE_{Flare} is calculated using adopted formulae from the «Methodological "Tool to determine project emissions from flaring gases containing methane"» [AM_Tool_07] and ACM0008 Version 5. The original formulae refers to a yearly basis. The formulae have been adapted in the revised monitoring plan to variable monitoring periods:

The original formulae are:

$$PE_{flare} = \sum_{i=1}^{n} TM_{RG,i} x (1 - \eta_{flare,i}) x \frac{GWP_{CH4}}{1000}$$
(9a)

where:

 PE_{flare} Project emissions from flaring in the regarded period (t CO_2eq) $TM_{RG,i}$ Mass flow rate of methane in the regarded interval i (kg/interval)

 $\eta_{\mathit{flare},i}$ flare efficiency in the interval i

GWP_{CH4} Global warming potential of methane (21 tCO₂eq/tCH₄) number of samples (intervals) in the regarded period

and

$$MD_{FI} = MM_{FI} - (PE_{flare}/GWP_{CH4})$$

$$(5)$$

where:

MD_{FL} Methane destroyed through flaring in the regarded period (t CH₄)

MM_{FL} Methane sent to flaring in the regarded period (t CH₄)

PE_{flare} Project emissions from flaring in the regarded period (t CO₂eq)

GWP_{CH4} Global warming potential of methane (21 tCO₂eq/tCH₄)

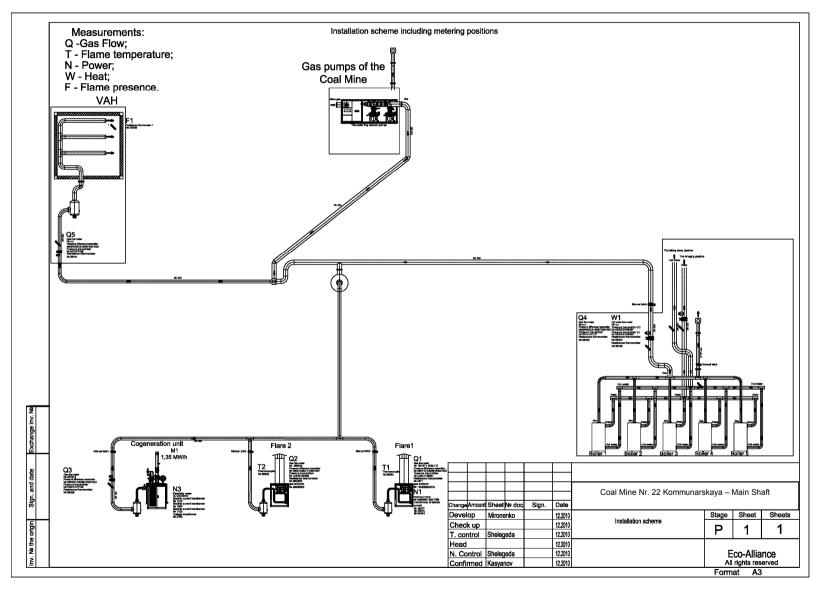


Figure -4 General installation scheme at main shaft

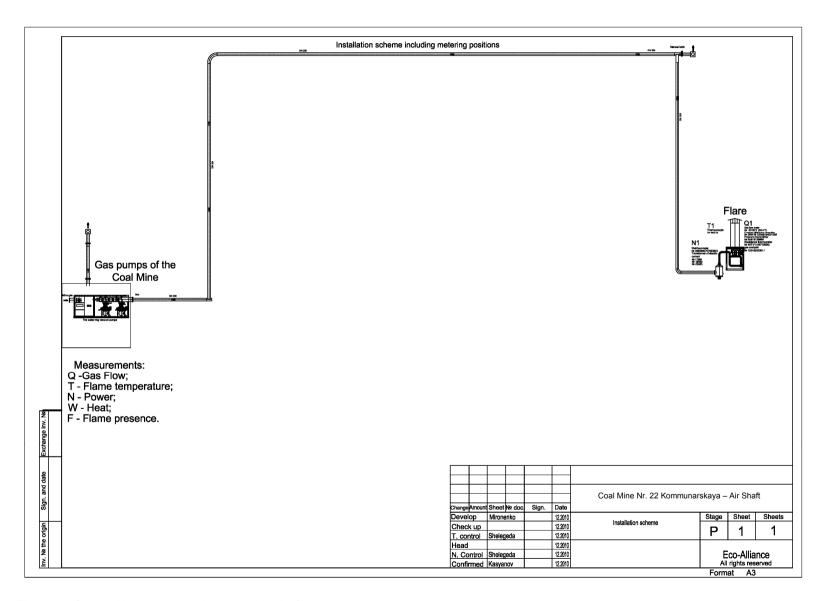


Figure -5 General installation scheme at air shaft

In the revised monitoring plan and this monitoring report, formulae 9a and 5, see above have been resolved to fit better to the monitored data.

The project emissions from flaring are calculated using the equation:

$$PE_{flare} = (MM_{Fl} - MD_{FL}) * GWP_{CH4}$$
(9a)

where:

PE_{flare} Project emissions from flaring in the regarded period (t CO₂eq)

MD_{ELEC} Methane destroyed through power generation (t CH₄)
MM_{ELEC} Methane measured sent to power plant (t CH₄)

GWP_{CH4} Global warming potential of methane (21 tCO₂eg/tCH₄)

The formula for the methane destroyed through flaring is:

$$MD_{FL} = \sum_{i=1}^{n} MM_{FL,i} x \eta_{flare,i}$$
(5)

where:

 $\begin{array}{ll} \text{MD}_{\text{FL}} & \text{Methane destroyed through flaring (t CH}_{\text{4}}) \\ \text{MM}_{\text{FL},i} & \text{Methane sent to flaring in the interval i (t CH}_{\text{4}}) \\ \end{array}$

 $\eta_{\it flare,i}$ Efficiency of methane destruction/oxidation in flare in the interval i, see below

n number of samples (intervals) in the regarded period

The interval is set to 15 min during the monitoring period, which is more accurate than the 1 h intervals from the "Methodological "Tool to determine project emissions from flaring gases containing methane"» [AM_Tool_07])

For $\eta_{flare,i}$ three different values are taken, depending on the current combustion temperature $T_{Flame,i}$ of the flare in the interval i:

$T_{Flame,i}$	$oldsymbol{\eta}_{\mathit{flare},i}$	Source
> 850°C	99.5%	[PDD, revised monitoring plan Section D.1.1 and Annex 3]
500-850°C	90.0%	[AM_Tool_07-15]
< 500°C	0%	[AM_Tool_07-15]

where:

 $T_{Flame,i}$ Flame temperature of the flare in the regarded interval i (°C)

 $\eta_{\mathit{flare.i}}$ flare efficiency in the interval i

A.3.3 Cogeneration unit

There are two power meters installed. The first power meter DEIF PPU (ID 14a) is an electronically counter, which is counting the produced power amount directly at the generator.

The second power counter ACTARIS SL-7000 (ID 14) is a smart power meter, which is counting the power amount, which is fed-in into the grid after the transformer. This counter is taken as GEN for the calculation of BE_{Use}.

Monitoring Report Nr. 02 - Coal Mine Nr.22 Kommunarskaya

A3.5 Heat generation by VAH

The heat amount produced by the VAH has can not be measured, so it is calculated using the utilised CH₄ amount and the combustion efficiency.

 $HEAT_{VAH} = MD_{HEAT,VAH} \times Eff_{HEAT,VAH} \times HV_{CH4}$

with

HEAT_{VAH} heat generated by the ventilation air heater [MWh]

 $\begin{array}{ll} \text{MD}_{\text{HEAT,VAH}} & \text{methane amount destroyed by ventilation air heater [t CH}_4] \\ \text{Eff}_{\text{HEAT,VAH}} & \text{efficiency of heat production in ventilation air heater; set to 98.5\%} \\ \text{HV}_{\text{CH4}} & \text{heating value of methane [9.965 kWh/m}^3 equals to 13.899 MWh/t]} \end{array}$

Annex 4

Differences between the determined PDD and implemented project

The differences of the project installation as described in the PDD and the implemented project are listed in the table below.

unit	difference	justification
boilers No: 1 & 2	delay	The installation of the boilers was delayed due to lacking funds especially due to the Global Financial Crisis.
boilers No: 1 & 2	changed number of units and changed capacity 5 units a 1,167 kW with a total of 5,835 kW instead of 2 units with 3,150 kW and a total of 6,300 kW	There have been multiple proposals at the time of the PDD preparation. A proposal different to that one described in the PDD has been realised. Instead of the installation of two new boilers as described in the PDD, five small coal boilers have been purchased from another coal mine and have been upgraded with a CMM burner system. Five smaller boilers instead of two bigger provide better adoption of the heat production depending on the heat demand, especially during the changes from winter to summer period. Ukrainian units have been chosen for economical reasons like better support with spare parts and already existing experience at the coal mine.
		The difference between the planned and installed heat production capacity is negligible as the actually heat demand of the coal mine is the leading factor for the heat production.
boilers No: 1 & 2	missing monitoring system	The installation of the monitoring system was delayed due to lacking funds and has been completed after the end of the monitoring period.
flare No: 1	delay	The installation of the flare was delayed due to lacking funds due to delayed project registration.
flare No: 1	changed firing capacity 10 MW instead of 5 MW	In the PDD a flaring capacity of 5 MW was given. The installed flare has originally a capacity of up to 8.525 MW and has been slightly modified to reach an extended capacity of up to 10 MW. This allowed a higher utilisation of CH ₄ in the beginning of the project while the installation of the other units was delayed.
ventilation air heater	delay	The installation of the ventilation air heater was delayed due to lacking funds especially due to the Global Financial Crisis.
ventilation air heater	changed capacity 2.7 MW instead of 3.0 MW	Instead of the installation of three identical modules as stated in the PDD, two bigger modules a 1 MW and one smaller module with 0.75 MW, with a total of 2.75 MW have been installed. Newer planning status showed that 2.7 MW is sufficient for the coal mine. The difference between the planned and installed heat production capacity is negligible as the actually heat demand of the coal mine is the leading factor for the heat production.

ventilation air heater	missing monitoring system	The installation of the monitoring system was delayed due to lacking funds and has been completed after the end of the monitoring period.
cogeneration unit	delay	The installation of the cogeneration unit was delayed due to lacking funds especially due to the Global Financial Crisis.
cogeneration unit 2	delay	The installation of the second cogeneration unit is still pending due to lacking funds.
flare 2	additional implementation	The second flare has been installed due to the big amount of still unused methane at the coal mine. The utilisation of methane has increased and additional environmental benefit is gained.
flare 3	additional implementation	The third flare has been installed at the Air Shaft of the Coal Mine Nr. 22 Kommunarskaya. The CH ₄ production of the coal mine is actually much higher than expected. For safety reasons a second degasification station has been installed at the Air Shaft in addition to the Main Shaft. A part of this gas is utilised in the third flare. The utilisation of methane by the project activity has increased and additional environmental benefit is gained. The flare Nr.3 has been originally installed at the Coal Mine Shcheglovskaya-Glubokaya also owned by "GOAO Shakhtoupravlenye Donbass". Due to the lacking gas amount at the coal mine Shcheglovskaya-Glubokaya the flare has been moved to the Air Shaft of the «Coal Mine Nr.22 Kommunarskaya» and started operation at 29/10/2010.

Monitoring Report Nr. 02 - Coal Mine Nr.22 Kommunarskaya

Annex 5

History of the Document

Version	Date	Nature of Revision
1	07/03/2011	Initial adoption
2	08/04/2011	Updated version, Published at the JISC website