FIFTH MONITORING REPORT

(Version 2)

PROJECT: ACHEMA UKL-7 plant N₂O abatement project

Prepared by:

VERTIS FINANCE

November 21, 2012

Monitoring periods

Line 1 Project campaign 3

FROM: TO: ERUs	23/08/2011 21/03/2012 176,750
Line 2 Project campaign 6 FROM: TO: ERUs	09/12/2011 17/07/2012 162,864
Line 3 Project campaign 5 FROM: TO: ERUs	26/08/2011 26/07/2012 67,524
Line 4 Project campaign 5	

Project campa	ign 5
FROM:	21/10/2011
TO:	28/08/2012
ERUs	130,628

Line 5

Project campai	gn 5
FROM:	28/11/2011
TO:	10/07/2012
ERUs	103,952

Line 6

5*
10/08/2011
23/04/2012
175,218

Line 7

Project campaig	jn 5
FROM:	02/09/2011
TO:	07/05/2012
ERUs	149,336

Line 8

15*
01/09/2011
05/04/2012
89,809

Fifth monitoring pe	eriod start and	end:
---------------------	-----------------	------

August 10, 2011 – August 28, 2012

Fifth monitoring period ERUs in total:

1,056,081

Emission Reductions (year 2011): Emission Reductions (year 2012): Emission Reductions (total): 393,123 662,958 1,056,081

t CO2 equivalents t CO2 equivalents t CO2 equivalents

* Fifth project campaigns on lines 6 and 8 have started on the same calendar days as previous 4th project campaigns were completed. There is no overlap between 4th and 5th project campaigns as last valid hourly data of 4th project campaigns do not overlap with any first 5th project campaign data. Using same calendar day for end of the 4th project campaigns and start of the 5th project campaigns is true reflection of the reality at the plant and this way also calculation of emission reductions for purpose of this 5th monitoring report reflects this reality correctly.

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 1MONITORINGPERIOD:FROM:23/08/2011

TO: 21/03/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N ₂ O CONCENTRATION AND TAIL GAS VOLUME FLOW .1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	.2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS .1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	.2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 1 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the third project campaign on Line 1.

The first project campaign on Line 1 started on 11/11/2008. Secondary catalyst was installed on 30/10/2008. Total quantity of emission reductions generated during the third project period from 23/08/2011 through 21/03/2012 on Line 1 is **176 749 ERUs**.

T 1 Emission reduction calculations			
EMISSION REDUCTION			
Baseline Emission Factor	EF_BL	9.63	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	1.49	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 691	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	60 691	tHNO3
Nitric Acid Produced in the Project Campaign	NAP_P	70 044	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	176 749	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		90.3%)

EMISSION REDUCTION PER YEAR			
Year	2011	2012	2013
Date from	23 Aug 2011	01 Jan 2012	
Date to	31 Dec 2011	21 Mar 2012	
Nitric Acid Production	41 914	28 130	
Emission Reduction	105 767	70 983	
ER_YR = ER *NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 1 during baseline measurement carried from 14/03/2008 through 21/10/2008 is $9.63 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Project emission factor during the third project campaign after installation of secondary catalysts on Line 1, which started on 23/08/2011 and went through 21/03/2012 with secondary catalyst installed and commissioned on 30/10/2008, is $1.49 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 70 044 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 1 emission reductions including information on baseline emission factor setting for the Line 1.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 1 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 1 has been carried out from 14/03/2008 through 21/10/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$

where:

$\begin{array}{l} \textbf{Variable} \\ \textbf{EF}_{\text{BL}} \\ \textbf{BE}_{\text{BC}} \\ \textbf{NCSG}_{\text{BC}} \end{array}$	Definition Baseline N ₂ O emissions factor ($tN_2O/tHNO_3$) Total N ₂ O emissions during the baseline campaign (tN_2O) Mean concentration of N ₂ O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 1 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 1 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

b) Calculate the sample standard deviation (s)

c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)

d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

4.4 Leakage

No leakage calculation is required.

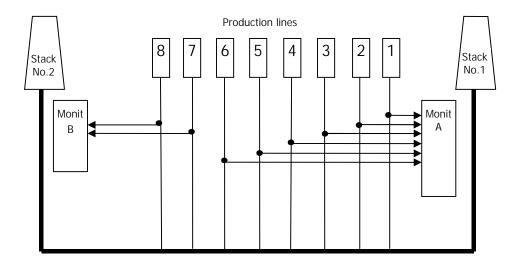
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF _{ma,n} and EF _n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO₃ (100%), it is necessary to include also HNO₃ measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

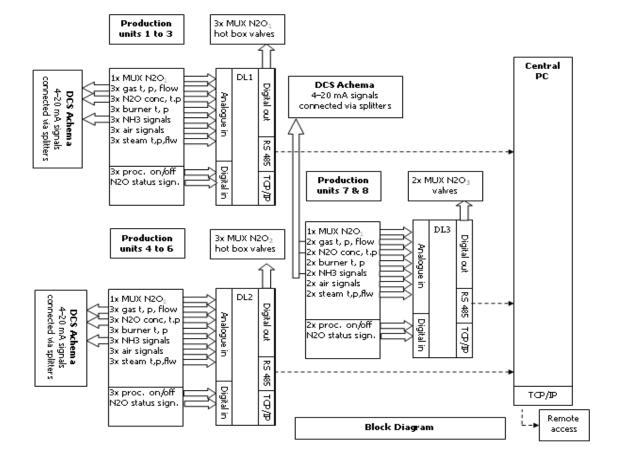
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

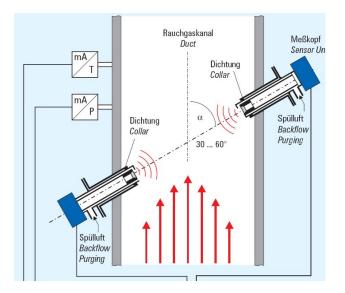
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

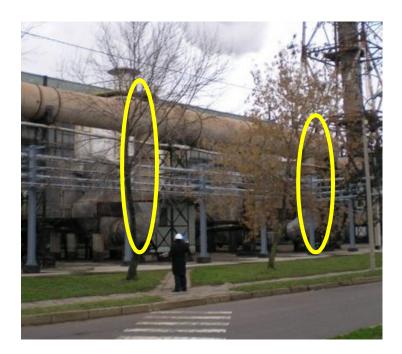
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula $Q=C^*sqrt(dp)$, where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

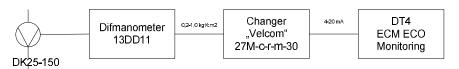
EN14181 compliance

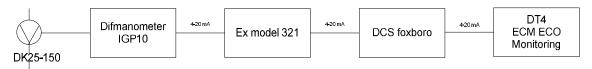
As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

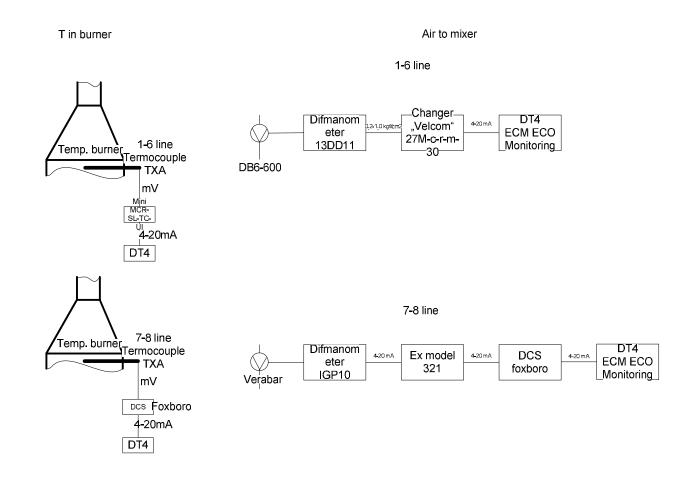
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure


All these parameters are measured by the plant monitoring system as presented on diagrams below:


P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 27/11/2007 and ending on 29/07/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0 $^{\circ}$ C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

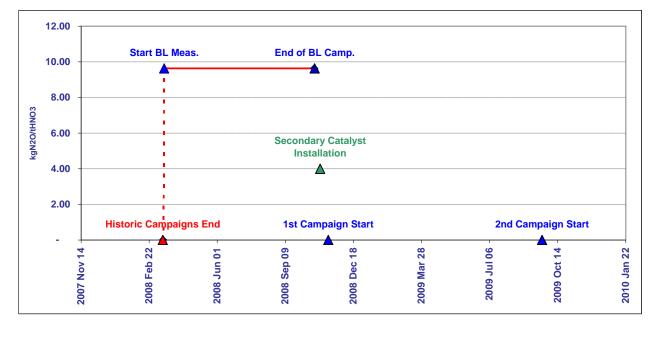
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 65 461 tHNO₃ and time duration was on average 261 days. Table contains also information on suppliers of primary catalysts for the line 1.

Line	ACHEMA UKL-1	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	61 581	29 Jul 2004	26 Apr 2005	271	227	Johnson Matthey	N/A *
	2 t HNO3	-	29 Apr 2005	24 Oct 2005	178	-	Heraeus	N/A *
	3 t HNO3	58 648	24 Oct 2005	20 Sep 2006	331	177	Johnson Matthey	N/A *
	4 t HNO3	65 266	21 Sep 2006	24 Jul 2007	306	213	Umicore	N/A *
	5 t HNO3	76 351	07 Aug 2007	13 Mar 2008	219	349	Johnson Matthey	N/A *
Average HNO3								
production	t HNO3	65 461			261	251	* Confidential but availa	able for the verification
Project Campaigns	BL t HNO3	60 691	14 Mar 2008	21 Oct 2008	221	275	Johnson Matthey	N/A *
	PL t HNO3	70 044	23 Aug 2011	21 Mar 2012	211	332	Johnson Matthey	N/A *

T 2 Historic campaigns

The project campaign production value of 70 044 tHNO3 was higher than historic nitric acid production set at level of 65 461 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 14/03/2008 and continued through 21/10/2008 when the 60 691 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-1	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2008 Mar 13	2008 Mar 14	2008 Oct 21	2008 Oct 21	2008 Oct 22
Baseline Factor kgN2O/tHNO3	-	-	9.63	9.63	9.63
Production tHNO3		-	60 691	60 691	-
Per Day Production tHNO3	250.8				
Baseline less Historic Production	(4 770.2)				
Baseline less Historic Days	(19.0)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 1 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 14/03/2008 through 21/10/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 620 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.670%, which is further modified by an uncertainty of 0.089% due to under-sampling. As a result we have arrived to the baseline emission factor of 9.63 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 1 during the project campaign. Project campaign started on 23/08/2011 and went through 21/03/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (*PE_n*) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.49 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission facto	Т	4	Baseline	emission	facto
-----------------------------	---	---	----------	----------	-------

	BASELINE EMIS Parameter	Operating Hours	Nitric Acid	N20	Cas Values	A	A	Ovidation	Ovidetie	AMC	Niteria A-1
	Parameter	Operating Hours	Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure	AM S in Operation	Nitric Aci Productic NCSG
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa	h	NAP t/h
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 933	4 999	4 989	4 921	5 054	5 028	5 275	5 275	4 483	4 9
as % of Dataset		93%	94%	94%	93%	95%	95%	99%	99%	85%	94
Minimum			-	0	80	1 246	-	0	0		-
Maximum			15.28	2 401	82 164	6 281	17.17	902	605		
Mean			12.14	1 806	67 547	5 825	10.28	857	554		
Standard Deviation			3.42	261	11 066	194	1.04	162	46		
Total			60 691						10		60 69
		000	4 1100								
N2O Emissions (VSG * NCSG * OH)			t N2O								
Emission Factor		9.35	kgN20 / tHNO3								
Permitted Range											
Minimum						4 500	0	880	0		
Maximum					-	7 500	11.70	910	800		
Data within the permitted range											
Count		4 926		4 627	4 627					4 483	
as % of Operating Hours		100%		94%	94%					91%	
Minimum				219	3 822						
Maximum				2 401	227 671						
Mean				1 752	69 348						
Standard Deviation				318	3 984						
N2O Emissions (VSG * NCSG * OH)		599	t N2O								
Emission Factor			kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound				1 130	61 538						
Upper bound				2 375	77 158						
Count				4 353	4 610						
as % of Operating Hours				88%	93%						
Minimum				1 320	65 098						
Maximum				2 374	73 692						
Maximum Mean				1 808	69 474						
Standard Deviation				218	1 214						
			4 1120		,						
N2O Emissions (VSG * NCSG * OH)			t N2O kgN2O / tHNO3								
Emission Factor (EF_BL)		9.63	KyNZU / THNU3								

T 5 Project emission factor

				MISSION FACTOR		-	L		
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa
Elimination of extreme values									
Lower limit			0	0	0	0	0	- 50	0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000
Raw Data Measured Range									
Count		2 910	4 777	4 500	4 515	5 065	4 648	5 057	5 01
as % of Dataset		57%	94%	89%	89%	100%	92%	100%	99
Minimum			0.94	46	70 014	-	4	0	
Maximum			18.51	543	83 328	6 301	17.62	914	65
Mean			14.66	300	74 999	5 382	10.72	821	56
Standard Deviation			2.63	32	2 075	1 508	0.47	242	10
Total			70 044						
N2O Emissions (VSG * NCSG * OH)			t N2O						
Emission Factor		0.94	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				238	70 932				
Upper bound				363	79 065				
Count				2 369	2 745				
as % of Operating Hours				81%					
Minimum				238	70 990				
Maximum				362	79 054				
Mean				303	79 054 74 588				
Standard Deviation				303 20	1 251				
				20	1251				
N2O Emissions (VSG * NCSG * OH)			t N2O						
Actual Project Emission Factor (EF_PActual)		0.94	kgN2O / tHNO3						
Abatement Ratio		90.3%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule					
	1	2.10	2.10]				
	2	1.43	1.77						
	3	0.94	1.49						
	4	-							
	5	-							
Project Emission Factor (EF_P)		1.49	kgN2O / tHNO3						
Abatement Ratio		84.5%							

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 2MONITORINGPERIOD:FROM:09/12/2011

TO: 17/07/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N ₂ O CONCENTRATION AND TAIL GAS VOLUME FLOW .1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	.2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS .1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	.2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 2 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the sixth project campaign on Line 2.

The first project campaign on Line 2 started on 30/05/2008. Secondary catalyst was installed on 07/11/2008. Total quantity of emission reductions generated during the sixth project period from 09/12/2011 through 17/07/2012 on Line 2 is **162 864 ERUs**.

T 1 Emission reduction calculations						
EMISSION REDUCTION						
Baseline Emission Factor	EF_BL	9.51	kgN2O/tHNO3			
Project Campaign Emission Factor	EF_P	1.72	kgN2O/tHNO3			
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 767	tHNO3			
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	60 767	tHNO3			
Nitric Acid Produced in the Project Campaign	NAP_P	67 441	tHNO3			
GWP	GWP	310	tCO2e/tN2O			
Emission Reduction	ER	162 864	tCOe			
ER=(EF_BL-EF_P)*NAP_P*GWP/1000						
Abatement Ratio		83.8%	I			

EMISSION REDU	CTION PER YEA	AR	
Year	2011	2012	2013
Date From	09 Dec 2011	01 Jan 2012	
Date To	31 Dec 2011	17 Jul 2012	
Nitric Acid Production	7 175	60 267	
Emission Reduction	17 326	145 538	
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 2 during baseline measurement carried from 09/11/2007 through 20/05/2008 is $9.51 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Project emission factor during the sixth project campaign after installation of secondary catalysts on Line 2, which started on 09/12/2011 and went through 17/07/2012 with secondary catalyst installed and commissioned on 07/11/2008, is $1.72 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 67 441 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 2 emission reductions including information on baseline emission factor setting for the Line 2.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 2 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 2 has been carried out from 09/11/2007 through 20/05/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$

where:

$\begin{array}{l} \textbf{Variable} \\ \textbf{EF}_{\text{BL}} \\ \textbf{BE}_{\text{BC}} \\ \textbf{NCSG}_{\text{BC}} \end{array}$	Definition Baseline N ₂ O emissions factor ($tN_2O/tHNO_3$) Total N ₂ O emissions during the baseline campaign (tN_2O) Mean concentration of N ₂ O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 2 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 2 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

b) Calculate the sample standard deviation (s)

c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)

d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

4.4 Leakage

No leakage calculation is required.

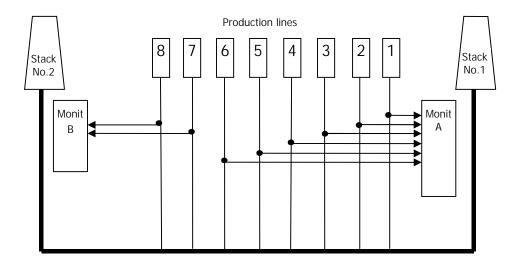
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF _{ma,n} and EF _n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO₃ (100%), it is necessary to include also HNO₃ measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

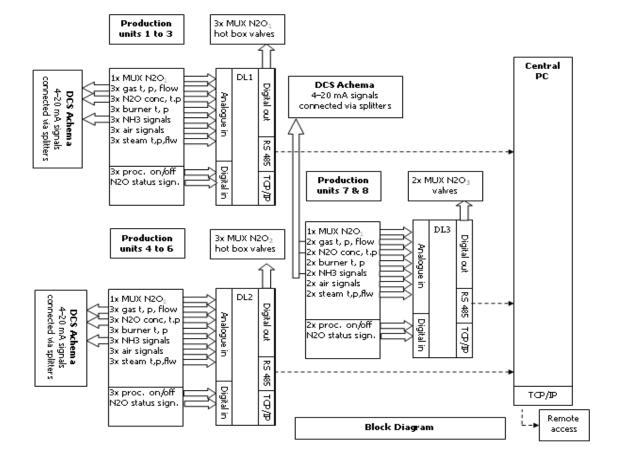
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

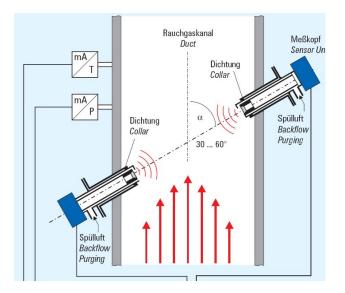
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

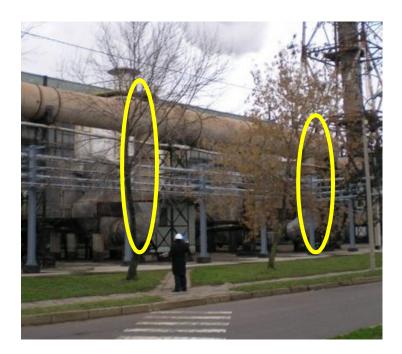
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula $Q=C^*sqrt(dp)$, where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

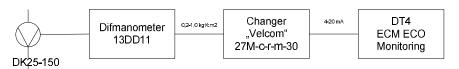
EN14181 compliance

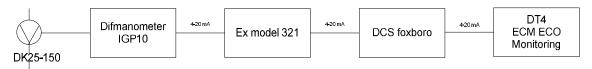
As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

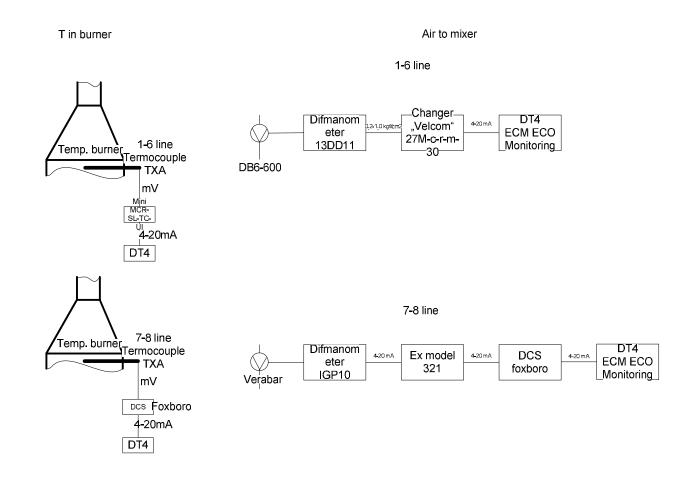
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure


All these parameters are measured by the plant monitoring system as presented on diagrams below:


P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 08/11/2007 and ending on 29/07/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

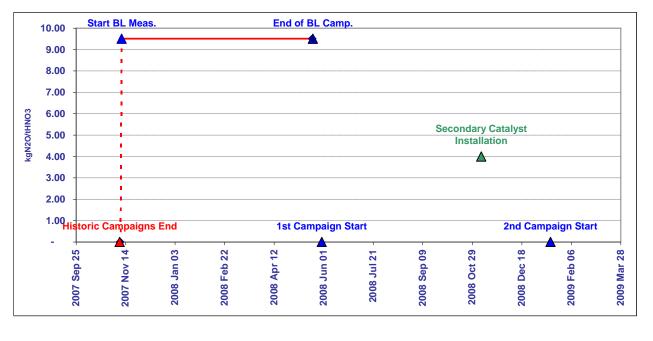
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 62 T10 tHNO₃ and time duration was on average 239 days. Table contains also information on suppliers of primary catalysts for the line 2.

Line	ACHEMA UKL-2	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	63 318	07 Jun 2004	26 Jan 2005	233	272	Heraeus	N/A *
	2 t HNO3	65 490	27 Jan 2005	21 Sep 2005	237	276	Umicore	N/A *
	3 t HNO3	51 101	22 Sep 2005	10 Apr 2006	200	256	Heraeus	N/A *
	4 t HNO3	63 008	11 Apr 2006	24 Jan 2007	288	219	Heraeus	N/A *
	5 t HNO3	70 635	14 Mar 2007	08 Nov 2007	239	296	Johnson Matthey	N/A *
Average HNO3								
production	t HNO3	62 710			239	262	* Confidential but availa	able for the verification
Project Campaigns	BL t HNO3	60 767	09 Nov 2007	20 May 2008	193	315	Johnson Matthey	N/A *
	PL t HNO3	67 441	09 Dec 2011	17 Jul 2012	222	304	Johnson Matthey	N/A *

T 2 Historic campaigns

The project campaign production value of 67 441 tHNO3 was higher than historic nitric acid production set at level of 62 710 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 09/11/2007 and continued through 20/05/2008 when the 60 767 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-2	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Nov 08	2007 Nov 09	2008 May 20	2008 May 20	2008 May 21
Baseline Factor kgN2O/tHNO3	-	-	9.51	9.51	9.51
Production tHNO3		-	60 767	60 767	-
Per Day Production tHNO3	261.9				
Baseline less Historic Production	(1 943.4)				
Baseline less Historic Days	(7.4)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 2 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 09/11/2007 through 20/05/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 618 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 6.460%, which is further modified by an uncertainty of 0.087% due to under-sampling. As a result we have arrived to the baseline emission factor of 9.51 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 2 during the project campaign. Project campaign started on 09/12/2011 and went through 17/07/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (*PE_n*) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.72 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor	Т	4	Baseline	emission	facto
------------------------------	---	---	----------	----------	-------

	BASELINE EMIS Parameter	Operating Hours	Nitric Acid	N20	Can Value	A	A	Owlidetter	Ordelation	AMO	Allen's Arts
	Parameter	Operating Hours	Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure	AM S in Operation	Nitric Aci Productio NCSG
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa	h	NAP t/h
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 254	4 633	4 353	4 216	4 296	4 277	4 606	4 576	3 828	4 6
as % of Dataset		92%	100%	94%	91%	93%	92%	99%	99%	83%	10
Minimum			-	0	140	2 069	-	42	5		-
Maximum			15.73	2 356	106 649	6 243	18.13	1 100	679		
Mean			13.12	1 576	83 679	5 815	9.78	843	604		
Standard Deviation			3.81	323	18 036	263	1.67	207	45		
Total			60 767	020	10 000	200	1.07	201	40		60 7
N2O Emissions (VSG * NCSG * OH)		504	4 1100								
			t N2O								
Emission Factor		8.64	kgN20 / tHNO3								
Permitted Range											
Minimum						4 500	0	880	0		
Maximum					-	7 500	11.70	910	800		
Data within the permitted range											
Count		3 710		3 710	3 710					3 828	
as % of Operating Hours		87%		87%	87%					90%	
Minimum				465	10 197						
Maximum				2 356	105 388						
Mean				1 588	85 591						
Standard Deviation				293	14 825						
N2O Emissions (VSG * NCSG * OH)		578	t N2O								
Emission Factor			kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound				1 014	56 534						
Upper bound				2 162	114 648						
Count				3 430	3 604						
as % of Operating Hours				81%	85%						
Minimum				1 118	77 416						
Maximum				2 156	105 388						
Maximum Mean				1 654	87 784						
Standard Deviation				173	7 591						
			4 1120		,						
N2O Emissions (VSG * NCSG * OH) Emission Factor (EF_BL)			t N2O kgN2O / tHNO3								
		9.51	rgi1207 ti 1103								

T 5 Project emission factor

				MISSION FACTOR			1		
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidatior Pressure
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 20.00	- 50 1 200	0 1 000
Raw Data Measured Range									
Count		4 200	5 169	4 132	4 161	4 846	4 811	5 315	5 21
as % of Dataset		79%		78%		91%		100%	
Minimum			0.70	207	46 350	824	6	15	
Maximum			17.70	913	83 047	6 718	19.70	1 100	73
Mean			13.05	369	70 225	5 622	10.68	734	59
Standard Deviation			3.82	75	2 615	1 601	0.71	332	9
Total			67 441						
N2O Emissions (VSG * NCSG * OH)			t N2O						
Emission Factor		1.61	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				222	65 100				
Upper bound				515	75 351				
Count				3 828	3 957				
as % of Operating Hours				91%					
Minimum				224	65 120				
Maximum				515	75 350				
Mean				353	70 093				
Standard Deviation				44	2 136				
N2O Emissions (VSG * NCSG * OH)		104	t N2O						
Actual Project Emission Factor (EF_PActual)		1.54	kgN2O / tHNO3						
Abatement Ratio		83.8%							
Noving Average Emission Factor Correction		Actual Factors	Moving Average R	ule]				
	1	1.80	1.80						
	2	1.84	1.84						
	3	1.99	1.99						
	4	1.67	1.83						
	5	1.47	1.75						
	6	1.54	1.72		l				
Project Emission Factor (EF_P)		1.72	kgN2O / tHNO3						
Abatement Ratio									
ADALEINEILL RALIU		81.9%	l						

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 3MONITORINGPERIOD:FROM:26/08/2011

TO: 26/07/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N ₂ O CONCENTRATION AND TAIL GAS VOLUME FLOW .1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	.2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS .1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	.2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 3 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the fifth project campaign on Line 3.

The first campaign on Line 3 started on 27/08/2008. Secondary catalyst was installed on 04/07/2008. Total quantity of emission reductions generated during the fifth project period from 26/08/2011 through 26/07/2012 on Line 3 is **67 523 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION				
Baseline Emission Factor	EF_BL	5.46	kgN2O/tHNO3	
Project Campaign Emission Factor	EF_P	2.51	kgN2O/tHNO3	
Nitric Acid Produced in the Baseline Campaign	NAP_BL	59 042	tHNO3	
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	59 042	tHNO3	
Nitric Acid Produced in the Project Campaign	NAP P	73 836	tHNO3	
GWP	GWP	310	tCO2e/tN2O	
Emission Reduction	ER	67 523	tCOe	
ER=(EF_BL-EF_P)*NAP_P*GWP/1000				
Abatement Ratio		72.2%)	

EMISSION REDUC	TION PER Y	EAR	
Year	2010	2011	2012
Date From		26 Aug 2011	01 Jan 2012
Date To		31 Dec 2011	26 Jul 2012
Nitric Acid Production		22 845	50 991
Emission Reduction		20 892	46 632
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 3 during baseline measurement carried using overlapping approach from 01/02/2008 to 04/07/2008 and from 01/09/2007 through 03/11/2007 is 5.46 kgN₂O/tHNO₃.

Project emission factor during fifth project campaign after installation of secondary catalysts on Line 3, which started on 26/08/2011 and went through 26/07/2012 with secondary catalyst installed and commissioned on 04/07/2008, is $2.51 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 73 836 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 3 emission reductions including information on baseline emission factor setting for the Line 3.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 3 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 3 has been carried out using overlapping approach from 01/02/2008 to 04/07/2008 and from 01/09/2007 through 03/11/2007.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$

where:

$\begin{array}{l} \textbf{Variable} \\ \textbf{EF}_{\text{BL}} \\ \textbf{BE}_{\text{BC}} \\ \textbf{NCSG}_{\text{BC}} \end{array}$	Definition Baseline N ₂ O emissions factor ($tN_2O/tHNO_3$) Total N ₂ O emissions during the baseline campaign (tN_2O) Mean concentration of N ₂ O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 3 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 3 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

b) Calculate the sample standard deviation (s)

c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)

d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

PEn = VSG * NCSG *
$$10^{-9}$$
 * OH (tN₂O)

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

Because this campaign was fifth project campaign on Line 3 there has been no minimum average emission factor established yet for this campaign. This factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

4.4 Leakage

No leakage calculation is required.

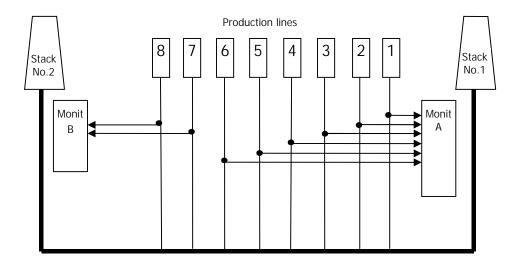
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of $EF_{ma,n}$ and EF_{n})


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO₃ (100%), it is necessary to include also HNO₃ measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

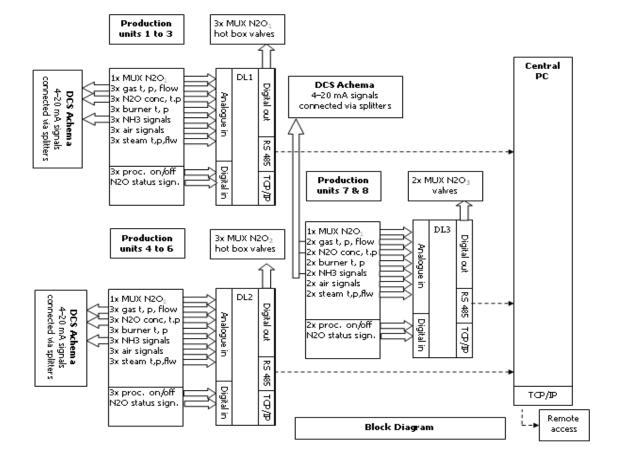
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

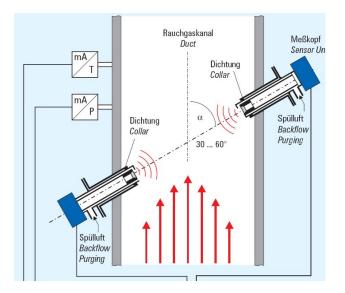
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

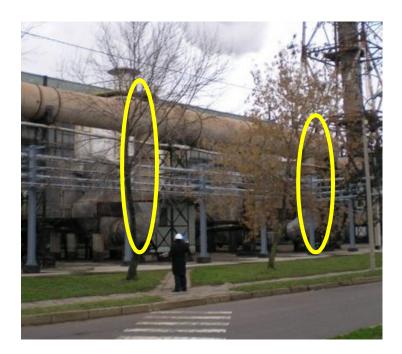
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF=Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

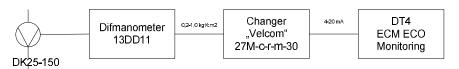
EN14181 compliance

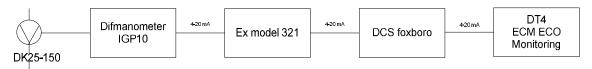
As required by the AM0034/Version 02 methodology the N_2O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N_2O AMS consists from the N_2O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N_2O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

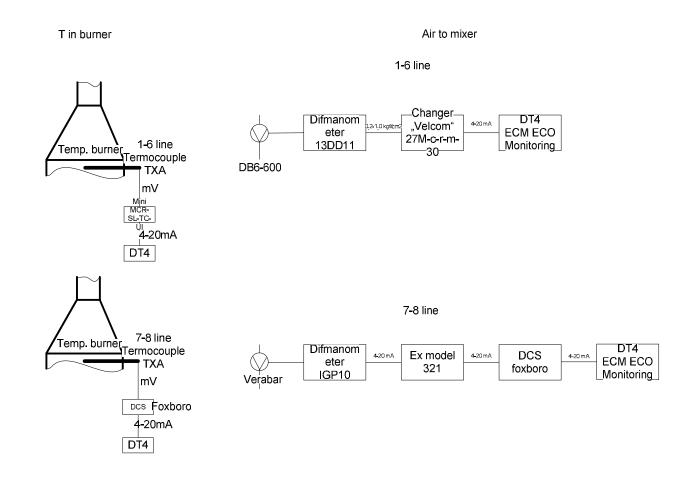
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure


All these parameters are measured by the plant monitoring system as presented on diagrams below:


P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 09/11/2007 and ending on 30/07/2008 project uses HNO3 concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 59 680 tHNO₃ and time duration was on average 316 days. Table contains also information on suppliers of primary catalysts for the line 3. As shown in the table, it is usual practice in Achema to use primary catalysts from various suppliers.

Line	ACHEMA UKL-3	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	64 017	05 Feb 2004	09 Oct 2005	612	105	Heraeus	N/A *
	2 t HNO3	63 115	10 Oct 2005	28 Jun 2006	261	242	Heraeus	N/A *
	3 t HNO3	59 912	01 Jul 2005	24 Jan 2006	207	289	Heraeus	N/A *
	4 t HNO3	56 702	25 Jan 2006	23 Nov 2006	302	188	Heraeus	N/A *
	5 t HNO3	54 654	24 Dec 2006	09 Jul 2007	197	277	Heraeus	N/A *
Average HNO3								
production	t HNO3	59 680			316	189	* Confidential but availa	able for the verification
Project Campaigns	BL t HNO3	59 042	01 Sep 2007	04 Jul 2008	308	192	Heraeus	N/A *
	PL t HNO3	73 836	26 Aug 2011	26 Jul 2012	336	220	Heraeus	N/A *

T 2 Historic campaigns

The project campaign production value of 73 836 tHNO3 was higher than historic nitric acid production set at level of 59 680 tHNO3.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started using overlapping approach from 01/02/2008 to 04/07/2008 then from 01/09/2007 through 03/11/2007 when the 59 042 tHNO₃ nitric acid production was reached. The baseline measurement for N2O concentration (NCSG) was carried out until the production of 59 042 tHNO₃ was reached.

We have two campaigns available that we can use for the baseline. AMS was installed in the middle of the first campaign, whereas the secondary catalyst was installed in the middle of the consecutive second one. We use these two campaigns to construct the baseline campaign using the overlapping approach as set out by the PDD. To get a clear start, that is, the baseline series has to start with a primary catalyst change, we use the beginning of the second campaign as the basis, until the secondary catalyst installation is reached. If this baseline turns out to be shorter than the project line, we use data available from the first campaign from the AMS installation to overlap the two series, and get a comparable baseline. Since we use the earliest available data from the first campaign, where emissions are generally lower, this is a conservative approach and fully in line with the PDD.

ACHEMA UKL-3	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jul 09	2007 Sep 01	2008 Jul 04	2008 Jul 04	2008 Jul 05
Baseline Factor kgN2O/tHNO3	-		5.46	5.46	5.46
Production tHNO3		-	59 042	59 042	-
Per Day Production tHNO3	189.0				
Baseline less Historic Production	(637.7)				
Baseline less Historic Days	(3.4)				
Baseline less Historic Days	(3.4)				

T 3 Baseline campaign length

C 1 Baseline campaign length

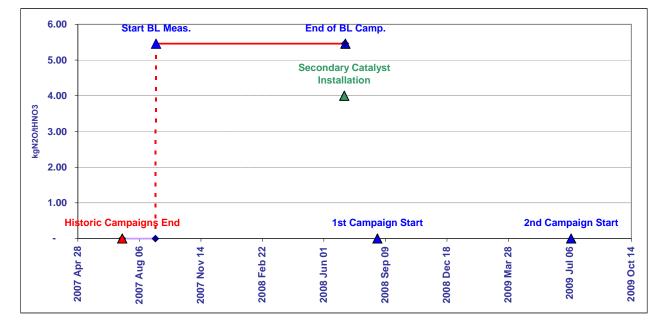


Table T 4 illustrates the calculation of the baseline emission factor on line 3 using the method as defined in the CDM methodology AM0034 and in the PDD.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

 $BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 342 tN_2O .

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.630%, which was further modified by an uncertainty of 0.090% due to under-sampling. As a result we have arrived to the baseline emission factor of 5.46 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 3 during the project campaign. Project campaign started on 26/08/2011 and went through 26/07/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.51 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

	BASELINE EMIS Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AM S in	Nitric Acid
	Parameter	Operating Hours	Production	Concentration	Flow	Flow Rate	to Air Ratio	Temperature	Pressure	Operation	Production NCSG
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT ℃	OP kPa	h	NAP t/h
Elimination of extreme values											
Lower limit			0	0	0	0	0 ·	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 524	5 074	4 743	4 623	5 148	4 843	5 235	5 232	4 155	5 07
as % of Dataset		86%	97%	90%	88%	98%	92%	100%	100%	79%	97
Minimum			-	0	10	1	0	0	0		-
Maximum			16.63	1 864	90 517	6 22 1	19.99	906	626		1
Mean			11.64	1 104	67 849	4 974	10.52	794	545		1:
Standard Deviation			5.03	291	11 542	1 802	1.62	258	118		
Total			59 042	201		. 302		200	.10		59 04
lota			59 042								39 04
N2O Emissions (VSG * NCSG * OH)		339	t N2O								
Emission Factor		5.42	kgN2O / tHNO3								
Permitted Range											
Minimum						4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		4 087		3 816	3 994					4 155	
as % of Operating Hours		90%		84%	88%					92%	
Minimum		0070		381	0070					5270	
Maximum				1 864	77 232						
Mean				1 118	64 988						
Standard Deviation				147	14 287						
N2O Emissions (VSG * NCSG * OH)			t N2O								
Emission Factor		5.26	kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound				829	36 985						
Upper bound				1 407	92 991						
Count				3 659	3 816						
as % of Operating Hours				81%	84%						
Minimum				830	48 852						
Maximum				1 407	77 232						
Mean				1 110	68 019						
Standard Deviation				125	2 721						
N2O Emissions (VSG * NCSG * OH)		240	t N2O								

T 5 Project emission factor

	_ 1			MISSION FACTOR			T		
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 20.00	- 50 1 200	0 1 000
Raw Data Measured Range									
Count		4 773	6 330	4 670	4 700	8 043	5 401	8 043	8 04
as % of Dataset		59%	79%	58%	58%	100%		100%	100
Minimum		0070	0.64	131	58 105	142	0	37	100
Maximum			16.63	1 074	79 024	7 933	19.94	1 100	70
Mean			11.66	360	68 560	4 068	10.57	659	46
Standard Deviation			5.01	122	2 362	2 720	2.00	325	23
Total			73 836	122	2 002	2720	2.00	525	20
N2O Emissions (VSG * NCSG * OH)		118	t N2O						
Emission Factor			kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				121	63 930				
Upper bound				599	73 189				
Count				4 388	4 432				
as % of Operating Hours				92%	93%				
Minimum				186	63 958				
Maximum				599	73 189				
Mean				342	68 630				
Standard Deviation				89	1 824				
N2O Emissions (VSG * NCSG * OH)			t N2O						
Actual Project Emission Factor (EF_PActual) Abatement Ratio		1.52 72.2%	kgN2O / tHNO3						
					1				
Moving Average Emission Factor Correction	1	Actual Factors 1.92	Moving Average R 1.92	lule					
	2	3.01	3.01						
	3	3.57	3.57						
	4	2.53	2.76						
	5	1.52	2.51						
	6	-							
Project Emission Factor (EF_P)		2.51	kgN2O / tHNO3						
Abatement Ratio		54.1%							

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 4MONITORINGPERIOD:FROM:21/10/2011

TO: 28/08/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N ₂ O CONCENTRATION AND TAIL GAS VOLUME FLOW .1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	.2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS .1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	.2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 4 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the fifth project campaign on Line 4.

The first project campaign on Line 4 started on 01/08/2008. Secondary catalyst was installed on 06/10/2008. Total quantity of emission reductions generated during the fifth project period from 21/10/2011 through 28/08/2012 on Line 4 is **130 628 ERUs**.

EMISSIC	ON REDUCTION		
Baseline Emission Factor	EF_BL	7.73	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	1.89	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	58 683	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	58 683	tHNO3
Nitric Acid Produced in the Project Campaign	NAP_P	72 154	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	130 628	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		90.6%	

T 1 Emission reduction	calculations
------------------------	--------------

EMISSION REDU	CTION PER YEA	AR	
Year	2011	2012	2013
Date From	21 Oct 2011	01 Jan 2012	
Date To	31 Dec 2011	28 Aug 2012	
Nitric Acid Production	15 819	56 335	
Emission Reduction	28 638	101 990	
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 4 during baseline measurement carried from 28/12/2007 through 31/07/2008 is 7.73 kgN₂O/tHNO₃.

Project emission factor during the fifth project campaign after installation of secondary catalysts on Line 4, which started on 21/10/2011 and went through 28/08/2012 with secondary catalyst installed and commissioned on 06/10/2008, is $1.89 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 72 154 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 4 emission reductions including information on baseline emission factor setting for the Line 4.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 4 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 4 has been carried out from 28/12/2007 through 31/07/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$

where:

$\begin{array}{l} \textbf{Variable} \\ \textbf{EF}_{\text{BL}} \\ \textbf{BE}_{\text{BC}} \\ \textbf{NCSG}_{\text{BC}} \end{array}$	Definition Baseline N ₂ O emissions factor ($tN_2O/tHNO_3$) Total N ₂ O emissions during the baseline campaign (tN_2O) Mean concentration of N ₂ O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 4 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 4 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

b) Calculate the sample standard deviation (s)

c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)

d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

4.4 Leakage

No leakage calculation is required.

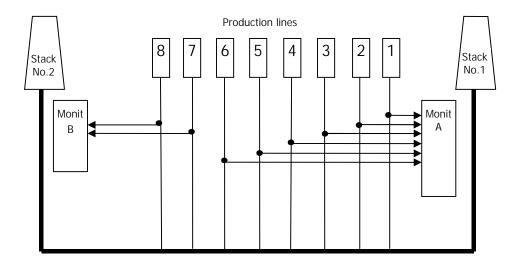
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF _{ma,n} and EF _n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO₃ (100%), it is necessary to include also HNO₃ measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

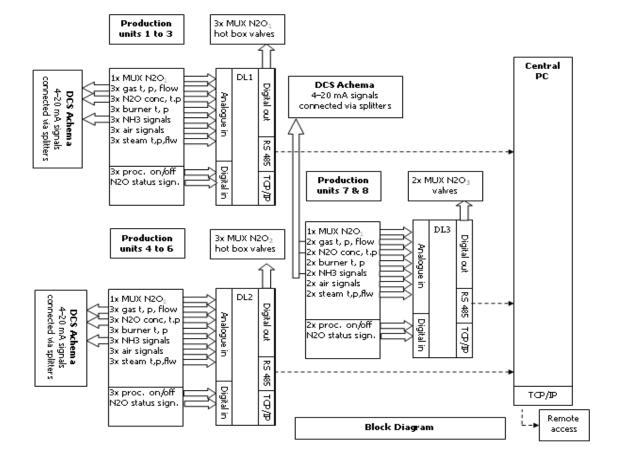
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

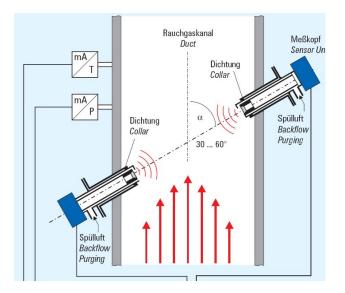
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

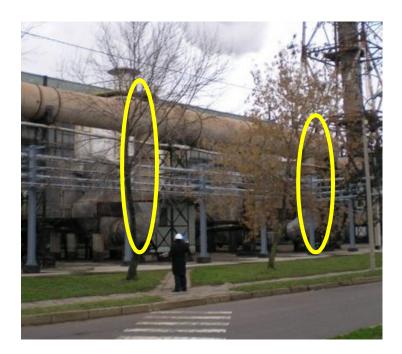
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula $Q=C^*sqrt(dp)$, where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

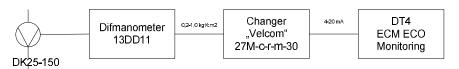
EN14181 compliance

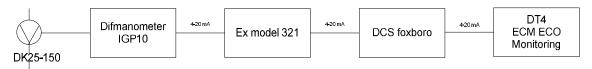
As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

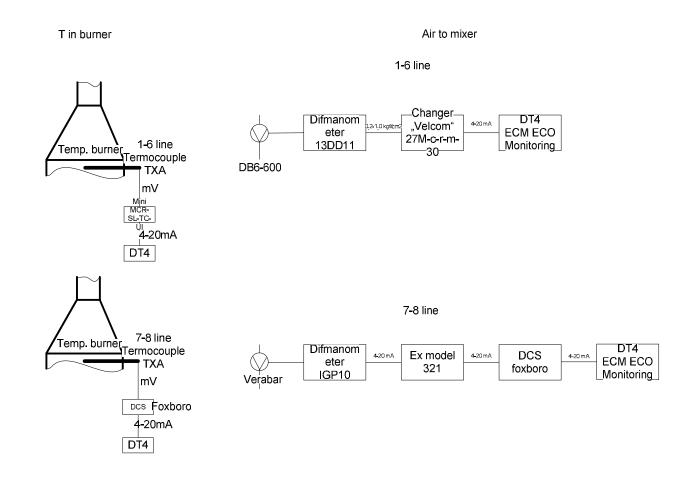
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure


All these parameters are measured by the plant monitoring system as presented on diagrams below:


P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 31/10/2007 and ending on 10/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

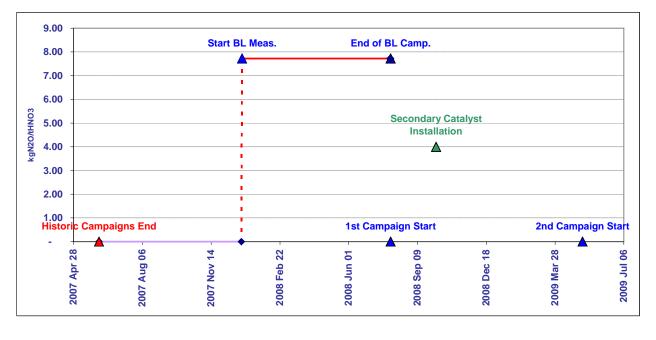
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 65 tHNO₃ and time duration was on average 275 days. Table contains also information on suppliers of primary catalysts for the line 4.

Line	ACHEMA UKL-4	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	69 782	18 Apr 2003	11 Dec 2003	237	294	Johnson Matthey	N/A *
	2 t HNO3	65 420	11 Dec 2003	06 Dec 2004	361	181	Johnson Matthey	N/A *
	3 t HNO3	66 129	07 Dec 2004	08 Nov 2005	336	197	Umicore	N/A *
	4 t HNO3	66 826	22 Mar 2006	23 Nov 2006	246	272	Johnson Matthey	N/A *
	5 t HNO3	60 959	23 Nov 2006	04 Jun 2007	193	316	Johnson Matthey	N/A *
Average HNO3								
production	t HNO3	65 823			275	240	* Confidential but availa	able for the verification
Project Campaigns	BL t HNO3	58 683	28 Dec 2007	31 Jul 2008	216	272	Johnson Matthey	N/A *
	PL t HNO3	72 154	21 Oct 2011	28 Aug 2012	312	231	Johnson Matthey	N/A *

T 2 Historic campaigns

The project campaign production value of 72 154 tHNO3 was higher than historic nitric acid production set at level of 65 823 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 28/12/2007 and continued through 31/07/2008 when the 58 683 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-4	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jun 04	2007 Dec 28	2008 Jul 31	2008 Jul 31	2008 Aug 01
Baseline Factor kgN2O/tHNO3	-	-	7.73	7.73	7.73
Production tHNO3		-	58 683	58 683	-
Per Day Production tHNO3	239.7				
Baseline less Historic Production	(7 140.4)				
Baseline less Historic Days	(29.8)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 4 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 28/12/2007 through 31/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 479 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.450%, which is further modified by an uncertainty of 0.104% due to under-sampling. As a result we have arrived to the baseline emission factor of 7.73 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 4 during the project campaign. Project campaign started on 21/10/2011 and went through 28/08/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (*PE_n*) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.89 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission facto	Т	4	Baseline	emission	facto
-----------------------------	---	---	----------	----------	-------

	BASELINE EMIS		Alfred a Andre	Nac			I	0.11.11			
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure	AM S in Operation	Nitric Acio Productio
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa	h	NAP t/h
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 564	4 906	4 891	4 467	4 733	5 086	5 161	4 755	4 028	4 9
as % of Dataset		88%	95%	94%	86%	91%	98%	100%	92%	78%	98
Minimum			-	0	-	266	-	1	3		-
Maximum			15.12	2 925	83 541	6 465	19.28	906	634		
Mean			11.96	1 485	66 846	5 7 1 8	9.71	791	572		
Standard Deviation			4.35	378	10 182	881	2.96	272	62		
Total			58 683	0/0	10 102	001	2.50	212	02		58 6
Total			30 003								50.0
N2O Emissions (VSG * NCSG * OH)			t N2O								
Emission Factor		7.30	kgN2O / tHNO3								
Permitted Range											
Minimum						4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		4 399		4 152	4 210					4 028	
as % of Operating Hours		96%		91%	92%					88%	
Minimum		0070		511	-					0070	
Maximum				2 208	75 876						
Maximum											
				1 511	67 275						
Standard Deviation				274	8 270						
N2O Emissions (VSG * NCSG * OH)			t N2O								
Emission Factor		7.47	kgN2O / tHNO3								
Data within the confidence interval											
5% Confidence interval											
Lower bound				973	51 066						
Upper bound				2 048	83 484						
Count				3 735	4 149						
as % of Operating Hours				82%	91%						
Minimum				1 108	59 513						
Maximum				2 046	75 876						
Maximum				1 540	68 235						
Standard Deviation				203	2 154						
N2O Emissions (VSG * NCSG * OH)			t N20								
Emission Factor (EF_BL)		(.73	kgN2O / tHNO3								

T 5 Project emission factor

	Dama i I	On another 11		MISSION FACTOR	0	A	1 A	Outlet at	Out the
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 20.00	- 50 1 200	0 1 000
Raw Data Measured Range									
Count		4 180	6 207	4 106	4 131	5 355	4 935	7 479	7 14
as % of Dataset		56%	83%	55%		72%		100%	95
Minimum			0.61	1	-	283	2	(7)	
Maximum			17.42	748	82 270	8 000	19.97	911	69
Mean			11.62	227	58 707	4 915		526	48
Standard Deviation			4.77	59	5 980	1 783	1.48	417	22
Total			72 154		0.000				
N2O Emissions (VSG * NCSG * OH)		56	t N2O						
Emission Factor		0.77	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				111	46 986				
Upper bound				344	70 428				
Count				3 838	3 749				
as % of Operating Hours				92%					
Minimum				111	48 051				
Maximum				344	70 409				
Mean				219	57 270				
Standard Deviation				49	3 983				
N2O Emissions (VSG * NCSG * OH)		53	t N20						
Actual Project Emission Factor (EF_PActual)		0.73	kgN2O / tHNO3						
Abatement R atio		90.6%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule					
	1	2.77	2.77						
	2 3	2.37	2.57						
		1.87	2.34						
	4	1.74	2.19						
	5 6	0.73	1.89						
Project Emission Factor (EF_P)		1.89	kgN2O / tHNO3						
Abatement Ratio		75.5%							

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 5MONITORINGPERIOD:FROM:28/11/2011

TO: 10/07/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.			3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS VOLUME FLOW .1 TAIL GAS N₂O CONCENTRATION	6 6
	3.1	.2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS .1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	.2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 5 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the fifth project campaign on Line 5.

The first project campaign on Line 5 started on 02/07/2008. Secondary catalyst was installed on 02/07/2008. Total quantity of emission reductions generated during the fifth project period from 28/11/2011 through 10/07/2012 on Line 5 is **103 952 ERUs**.

T 1 Emission reduction calculations

EMISSI	ON REDUCTION							
Baseline Emission Factor	EF_BL	6.61	kgN2O/tHNO3					
Project Campaign Emission Factor	EF_P	1.81	kgN2O/tHNO3					
Nitric Acid Produced in the Baseline Campaign	NAP_BL	55 079	tHNO3					
Nitric Acid Produced in the NCSG Baseline Campaign NAP_BL_NCSG 55 079 tHNO3								
Nitric Acid Produced in the Project Campaign	NAP_P	69 860	tHNO3					
GWP	GWP	310	tCO2e/tN2O					
Emission Reduction	ER	103 952	tCOe					
ER=(EF_BL-EF_P)*NAP_P*GWP/1000								
Abatement Ratio		79.0%						

EMISSION REDU	ICTION PER YEA	R	
Year	2011	2012	2013
Date From	28 Nov 2011	01 Jan 2012	
Date To	31 Dec 2011	10 Jul 2012	
Nitric Acid Production	8 677	61 183	
Emission Reduction	12 912	91 040	
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 5 during baseline measurement carried from 29/11/2007 through 17/06/2008 is 6.61 kgN₂O/tHNO₃.

Project emission factor during the fifth project campaign after installation of secondary catalysts on Line 5, which started on 28/11/2011 and went through 10/07/2012 with secondary catalyst installed and commissioned on 02/07/2008, is $1.81 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 69 860 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 5 emission reductions including information on baseline emission factor setting for the Line 5.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 5 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 5 has been carried out from 29/11/2007 through 17/06/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$

where:

Variable EF _{BI}	Definition Baseline N ₂ O emissions factor ($tN_2O/tHNO_3$)
	Total N ₂ O emissions during the baseline campaign (tN_2O)
	Mean concentration of N_2O in the stack gas during the baseline campaign $(m_2O)^3$
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 5 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 5 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

4.4 Leakage

No leakage calculation is required.

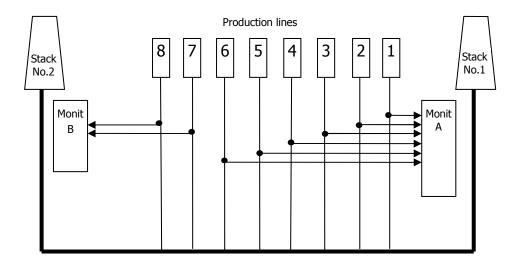
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO_2e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF _{man} and EF _n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO₃ (100%), it is necessary to include also HNO₃ measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

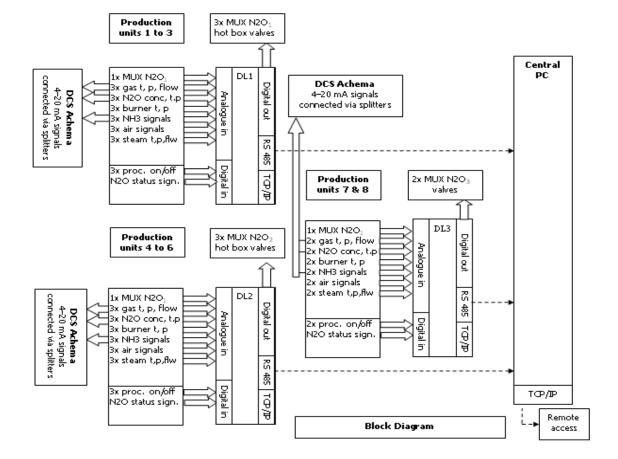
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

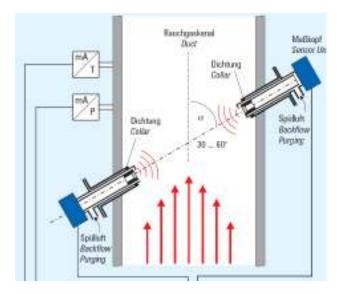
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

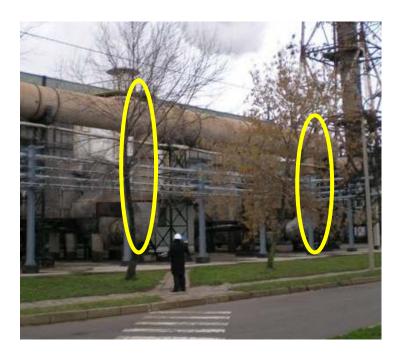
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula $Q=C^*sqrt(dp)$, where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

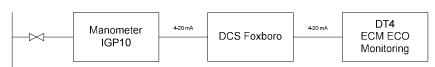
EN14181 compliance

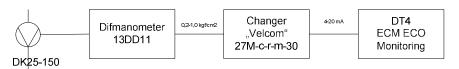
As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

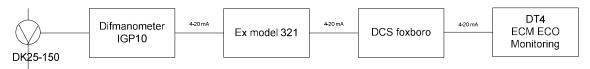
Operating conditions

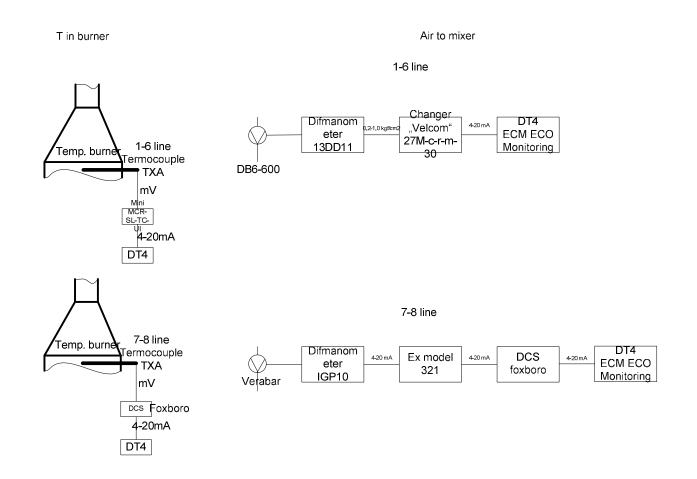

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure




All these parameters are measured by the plant monitoring system as presented on diagrams below:


P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 15/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

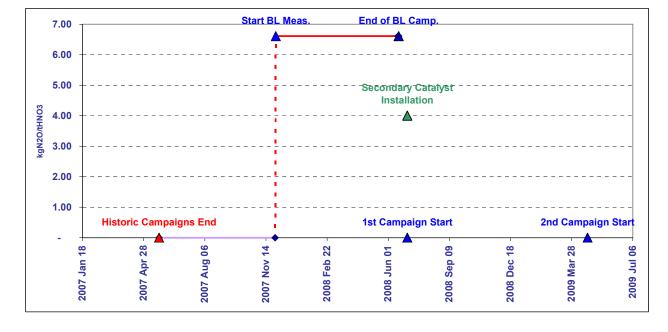
The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 64 818 tHNO₃ and time duration was on average 238 days. Table contains also information on suppliers of primary catalysts for the line 5.

Line	ACHEMA UKL-5	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	65 664	06 Jun 2003	23 Dec 2003	200	328	Heraeus	N/A *
	2 t HNO3	63 844	23 Dec 2003	24 Aug 2004	245	261	Heraeus	N/A *
	3 t HNO3	58 961	01 Sep 2004	10 May 2005	251	235	Johnson Matthey	N/A *
	4 t HNO3	66 432	12 May 2005	06 Mar 2006	298	223	Johnson Matthey	N/A *
	5 t HNO3	69 189	06 Nov 2006	23 May 2007	198	349	Heraeus	N/A *
Average HNO3								
production	t HNO3	64 818			238	272	* Confidential but availa	able for the verification
Project Campaigns	BL t HNO3	55 079	29 Nov 2007	17 Jun 2008	201	274	Umicore	N/A *
	PL t HNO3	69 860	28 Nov 2011	10 Jul 2012	226	310	Umicore	N/A *

T 2 Historic campaigns


The project campaign production value of 69 860 tHNO3 was higher than historic nitric acid production set at level of 64 818 tHNO3.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 29/11/2007 and continued through 17/06/2008 when the 55 079 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-5	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 May 23	2007 Nov 29	2008 Jun 17	2008 Jun 17	2008 Jun 18
Baseline Factor kgN2O/tHNO3	-	-	6.61	6.61	6.61
Production tHNO3		-	55 079	55 079	-
Per Day Production tHNO3	271.9				
Baseline less Historic Production	(9 739.2)				
Baseline less Historic Days	(35.8)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 5 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 29/11/2007 through 17/06/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 385 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.450%, which is further modified by an uncertainty of 0.126% due to under-sampling. As a result we have arrived to the baseline emission factor of 6.61 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 5 during the project campaign. Project campaign started on 28/11/2011 and went through 10/07/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (*PE_n*) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.81 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

BAS	BASELINE EMISSION F/	SION FACTOR									
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Batio	Oxidation Temperature	Oxidation Pressure	AMS in Operation	Nitric Acid Production NCSC
	Code Unit	он h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	от °С	ОР КРа	٩	NAP t/h
Elimination of extreme values											
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	1 000		0 50
Raw Data Measured Range											
Count		4 5 1 9 0 4 6 1	4 571	4 660	4 558	4 701	4 414	4 797	4 698	4 064	4 571
as % of Dataset Minimum		94%	~GA	%/A	94%	97% 315	92%	%66	%/6	84%	95%
Maximum			15.02	2 289	- 82 389	6 4 8 2	- 19.73	908 908			- 15
Mean Standard Deviation Total			12.05 3.12 55 079	1 239 268	65 232 15 041	5 932 990	10.24 0.81	844 195			12 3 55 079
N2O Emissions (VSG * NCSG * OH)		365	t N20								
		6.27	KgN2U / THNU3								
Permitted Kange						100	c	000	c		
Minimum Maximum						4 500 7 500	0 11.70	880 910	0 0800 O		
Data within the permitted range											
Count		4 2 4 9		4 211	4 211					4 064	
as % of Operating Hours		94%		63%	93%					%06	
Minimum				717	6 728						
Maximum Mean				2 289	78 602 68 731						
Standard Deviation				225	2 256						
N2O Emissions (VSG * NCSG * OH) Emission Factor		383 6.58	t N2O kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound Upper bound				793 1 675	64 309 73 153						
Count				4 009	4 063						
as % of Operating Hours Minimum				89% 796	90% 64 317						
Maximum				1 674	73 152						
Mean Standard Deviation				1 240 204	68 711 1 796						
N2O Emissions (VSG * NCSG * OH) Emission Factor (EF_BL)		385 6.61	t N2O kgN2O / tHNO3								

 \geq

T 5 Project emission factor

F Elimination of extreme values Lower limit	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation
Elimination of extreme values Lower limit			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure
Elimination of extreme values Lower limit	Code Unit	ЧЧ	NAP t/h	N CSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	ОР КРа
Lower limit									
I Inner I imit			0	000 6	0	00001	- 0000	50 1 200	0 0
			0		00007	0000	0007	-	-
Raw Data Measured Range		1011	1071	900 1	000 1	2000	000	1 1	200
Count as % of Dataset		4 434 82%	4 9/4 92%	4 336 80%	4 388 81%	%86 667.9	4 893 90%	100%	100%
Minimum			0.66	18	53 326	275		(0)	-
Maximum			17.93	702	78 195	6721		205	760
Mean Standard Deviation			14.05 4.39	341 49	64 65/ 3 077	5 549 1 618	10.49 1.08	747 312	653 75
Total			69 860						
N2O Emissions (VSG * NCSG * OH) Emission Factor		98 1.40	t N20 kgN20 / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				245	58 626				
Upper bound				438	70 688				
Count				4 023	4 141				
as % of Operating Hours				91%	93%				
Minimum				245	58 671				
Maan				438	70 660				
standard Deviation				39	2 635				
N2O Emissions (VSG * NCSG * OH)			t N20	_					
Actual Project Emission Factor (EF_PActual) Abatement Ratio		1.39	kgN20 / tHN03						
Moving Avenue Emission Easter Courseion		Activel Ecotoric	Moving Average Bulo		-				
		168	MUVIIIG AVERAGE N	ann					
	0	2.90	2.90						
	ω.	1.39	1.99						
	4 v	1.72	1.92						
	9 0	<u>יסמ</u>	10.1						
Project Emission Factor (EF_P)		1.81	kgN2O / tHNO3						
Abatement Ratio		72.5%							

2

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N₂O abatement projectLINE:Line 6MONITORINGPERIOD:FROM:10/08/2011

TO: 23/04/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N ₂ O CONCENTRATION AND TAIL GAS VOLUME FLOW .1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	.2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS .1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	.2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 6 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the fifth project campaign on Line 6.

The first project campaign on Line 6 started on 21/07/2008. Secondary catalyst was installed on 25/07/2008. Total quantity of emission reductions generated during the fifth project period from 10/08/2011 through 23/04/2012 on Line 6 is **175 218 ERUs**.

T 1 Emission re	duction calculations					
EMISSIC	ON REDUCTION					
Baseline Emission Factor	EF_BL	10.34	kgN2O/tHNO3			
Project Campaign Emission Factor	EF_P	3.74	kgN2O/tHNO3			
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 850	tHNO3			
Nitric Acid Produced in the NCSG Baseline Campaign NAP_BL_NCSG 60 850 tHNO3						
Nitric Acid Produced in the Project Campaign	NAP_P	85 639	tHNO3			
GWP GWP 310						
Emission Reduction	ER	175 218	tCOe			
ER=(EF_BL-EF_P)*NAP_P*GWP/1000						
Abatement Ratio		74.9%				

EMISSION REDU	CTION PER YEA	\R	
Year	2011	2012	2013
Date From	10 Aug 2011	01 Jan 2012	
Date To	31 Dec 2011	23 Apr 2012	
Nitric Acid Production	47 145	38 494	
Emission Reduction	96 459	78 759	
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 6 during baseline measurement carried from 11/01/2008 through 21/07/2008 is 10.34 kgN₂O/tHNO₃.

Project emission factor during the fifth project campaign after installation of secondary catalysts on Line 6, which started on 10/08/2011 and went through 23/04/2012 with secondary catalyst installed and commissioned on 25/07/2008, is $3.74 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 85 639 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 6 emission reductions including information on baseline emission factor setting for the Line 6.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 6 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 6 has been carried out from 11/01/2008 through 21/07/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$

where:

$\begin{array}{l} \textbf{Variable} \\ \textbf{EF}_{\text{BL}} \\ \textbf{BE}_{\text{BC}} \\ \textbf{NCSG}_{\text{BC}} \end{array}$	Definition Baseline N ₂ O emissions factor ($tN_2O/tHNO_3$) Total N ₂ O emissions during the baseline campaign (tN_2O) Mean concentration of N ₂ O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 6 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 6 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

b) Calculate the sample standard deviation (s)

c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)

d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

4.4 Leakage

No leakage calculation is required.

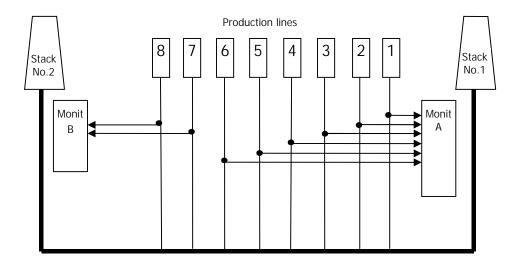
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO₃ (100%), it is necessary to include also HNO₃ measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

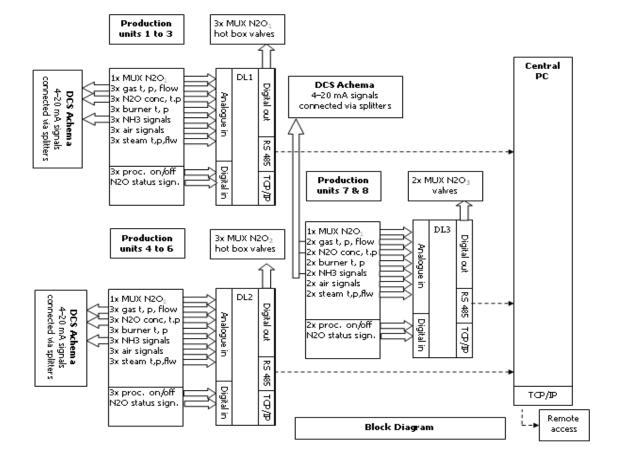
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

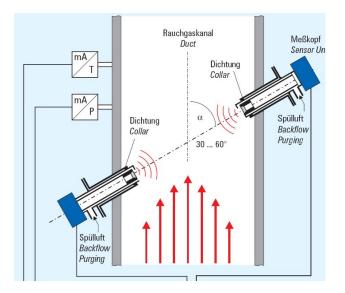
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

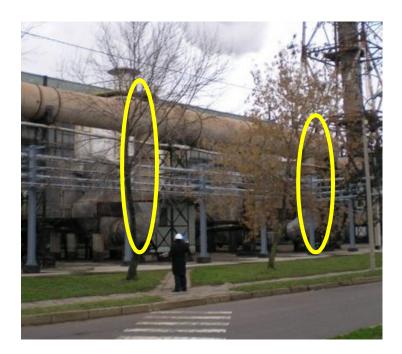
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula $Q=C^*sqrt(dp)$, where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

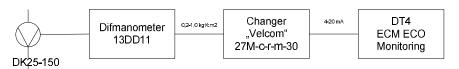
EN14181 compliance

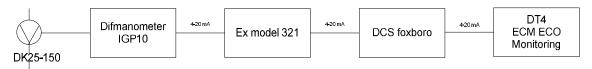
As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

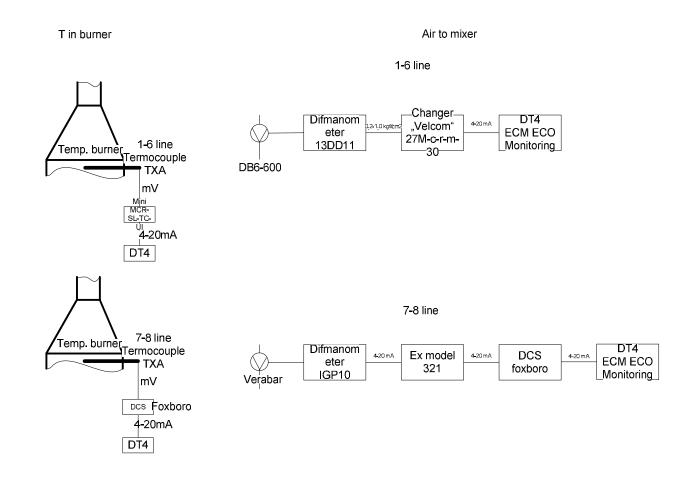
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure


All these parameters are measured by the plant monitoring system as presented on diagrams below:


P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 08/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

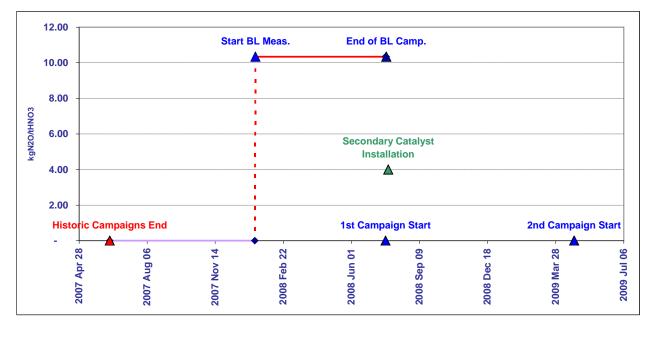
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 61 599 tHNO₃ and time duration was on average 241 days. Table contains also information on suppliers of primary catalysts for the line 6.

Line	ACHEMA UKL-6	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	62 918	28 Aug 2003	25 Mar 2004	210	300	Heraeus	N/A *
	2 t HNO3	61 366	01 Apr 2004	02 Feb 2005	307	200	Johnson Matthey	N/A *
	3 t HNO3	64 872	26 Jul 2005	10 Mar 2006	227	286	Johnson Matthey	N/A *
	4 t HNO3	55 693	10 Mar 2006	29 Nov 2006	264	211	Umicore	N/A *
	5 t HNO3	63 148	29 Nov 2006	12 Jun 2007	195	324	Heraeus	N/A *
Average HNO3								
production	t HNO3	61 599			241	256	* Confidential but availa	able for the verification
Project Campaigns	BL t HNO3	60 850	11 Jan 2008	21 Jul 2008	192	317	Heraeus	N/A *
	PL t HNO3	85 639	10 Aug 2011	23 Apr 2012	257	333	Heraeus	N/A *

T 2 Historic campaigns

The project campaign production value of 85 639 tHNO3 was higher than historic nitric acid production set at level of 61 599 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 11/01/2008 and continued through 21/07/2008 when the 60 850 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-6	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jun 12	2008 Jan 11	2008 Jul 21	2008 Jul 21	2008 Jul 22
Baseline Factor kgN2O/tHNO3	-	-	10.34	10.34	10.34
Production tHNO3		-	60 850	60 850	-
Per Day Production tHNO3	256.0				
Baseline less Historic Production	(749.3)				
Baseline less Historic Days	(2.9)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 6 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 11/01/2008 through 21/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 667 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.620%, which is further modified by an uncertainty of 0.105% due to under-sampling. As a result we have arrived to the baseline emission factor of 10.34 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 6 during the project campaign. Project campaign started on 10/08/2011 and went through 23/04/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (*PE_n*) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 3.74 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

Т	4	Basel	ine	emiss	sion	factor

		Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AM S in	Nitric Aci
			Production	Concentration	Flow	Flow Rate	to Air Ratio	Temperature	Pressure	Operation	Productio NCSG
	Code Unit		NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa	h	NAP t/h
limination of extreme values											-
Lower limit			0	0	0	0	0 -	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 233	4 363	4 494	4 290	4 324	4 361	4 585	4 564	3 944	4 3
as % of Dataset		92%	95%	98%	93%	94%	95%	100%	99%	86%	9
Minimum			-	1	2	568	-	(1)	0		
Maximum			16.37	2 303	117 970	6 423	15.58	905	634		
Mean			13.95	1 422	99 960	6 050	10.50	833	583		
Standard Deviation			3.18	416	17 673	456	1.70	201	44		
Total			60 850		11 010	-100	1.70	201			60 8
i otta			00000								00 0
N2O Emissions (VSG * NCSG * OH)			t N2O								
Emission Factor		9.33	kgN2O / tHNO3								
Permitted Range											
Minimum						4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		4 1 1 6		4 015	4 015					3 944	
as % of Operating Hours		97%		95%	95%					93%	
Minimum				7	10 156					00/0	
Maximum				2 074	110 925						
Mean				1 456	103 058						
Standard Deviation				312	2 541						
Standard Deviation				512	2 341						
N2O Emissions (VSG * NCSG * OH)			t N2O								
Emission Factor		9.85	kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound				844	98 078						
Upper bound				2 068	108 039						
Count				3 695	3 991						
as % of Operating Hours				87%	94%						
Minimum				997	98 180						
Maximum				2 062	108 018						
Mean				1 528	103 105						
Standard Deviation				201	1 728						
				201	1720						
N2O Emissions (VSG * NCSG * OH)			t N2O								
Emission Factor (EF_BL)		10.34	kgN2O / tHNO3								

T 5 Project emission factor

				MISSION FACTOR			. .		
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	OH h	NAP t/h	NCSG mg N2O <i>I</i> Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 20.00	- 50 1 200	0 1 000
			00.00	0.000	120 000	10 000	20.00	1200	1000
Raw Data Measured Range Count		5 643	5 969	5 583	5 625	6 132	5 676	6 133	6 12
as % of Dataset		92%		5 583 91%		99%		99%	999
Minimum		52 70	-	15	11	-	32 <i>7</i> 8	-	-
Maximum			- 16.66	591	98 281	7 957	16.51	1 100	- 704
Mean			14.35	473	81 911	5 962	10.31	860	61
Standard Deviation			2.86	473	9 177	1 370	0.26	176	8
				43	9 177	1 370	0.20	170	0
Total			85 639						
N2O Emissions (VSG * NCSG * OH)			t N2O						
Emission Factor		2.55	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				388	63 924				
Upper bound				558	99 899				
Count				5 143	5 569				
as % of Operating Hours				91%					
Minimum				389	67 579				
Maximum				558	98 281				
Mean				476	82 817				
Standard Deviation				30	4 416				
N2O Emissions (VSG * NCSG * OH)			t N2O						
Actual Project Emission Factor (EF_PActual)		223	kgN20 / tHNO3						
Abatement Ratio		74.9%							
Mauina Avance Emission Factor Connection			Maring Average D	ule.	1				
Moving Average Emission Factor Correction	1	Actual Factors 4.94	Moving Average R 4.94	ule	1				
	2	4.39	4.67						
	3	4.31	4.55						
	4	2.48	4.03						
	5	2.60	3.74						
	6	-	0						
Project Emission Factor (EF_P)		3.74	kgN2O / tHNO3						
Abatement Ratio		63.8%							

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 7MONITORINGPERIOD:FROM:02/09/2011

TO: 07/05/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N ₂ O CONCENTRATION AND TAIL GAS VOLUME FLOW .1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	.2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS .1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	.2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 7 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the fifth project campaign on Line 7.

The first project campaign on Line 7 started on 28/03/2008. Secondary catalyst was installed on 03/07/2008. Total quantity of emission reductions generated during the fifth project period from 02/09/2011 through 07/05/2012 on Line 7 is **149 336 ERUs**.

EMISSIC	ON REDUCTION		
Baseline Emission Factor	EF_BL	9.09	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	1.88	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	55 626	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	55 626	tHNO3
Nitric Acid Produced in the Project Campaign	NAP_P	66 814	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	149 336	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		85.1%	

T 1	Emission	reduction	calculations

EMISSION REDU	CTION PER YE	AR	
Year	2011	2012	2013
Date From	02 Sep 2011	01 Jan 2012	
Date To	31 Dec 2011	07 May 2012	
Nitric Acid Production	25 709	41 105	
Emission Reduction	57 462	91 874	
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 7 during baseline measurement carried from 12/09/2007 through 27/03/2008 is $9.09 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Project emission factor during the fifth project campaign after installation of secondary catalysts on Line 7, which started on 02/09/2011 and went through 07/05/2012 with secondary catalyst installed and commissioned on 03/07/2008, is $1.88 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 66 814 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 7 emission reductions including information on baseline emission factor setting for the Line 7.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 7 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 7 has been carried out from 12/09/2007 through 27/03/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$

where:

$\begin{array}{l} \textbf{Variable} \\ \textbf{EF}_{\text{BL}} \\ \textbf{BE}_{\text{BC}} \\ \textbf{NCSG}_{\text{BC}} \end{array}$	Definition Baseline N ₂ O emissions factor ($tN_2O/tHNO_3$) Total N ₂ O emissions during the baseline campaign (tN_2O) Mean concentration of N ₂ O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 7 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 7 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

b) Calculate the sample standard deviation (s)

c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)

d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

4.4 Leakage

No leakage calculation is required.

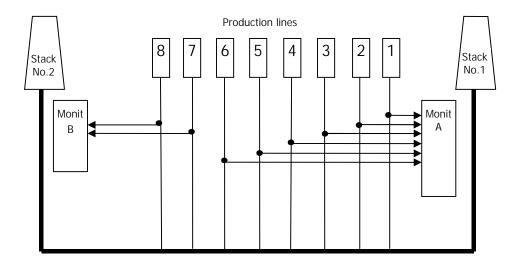
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF _{ma,n} and EF _n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO₃ (100%), it is necessary to include also HNO₃ measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

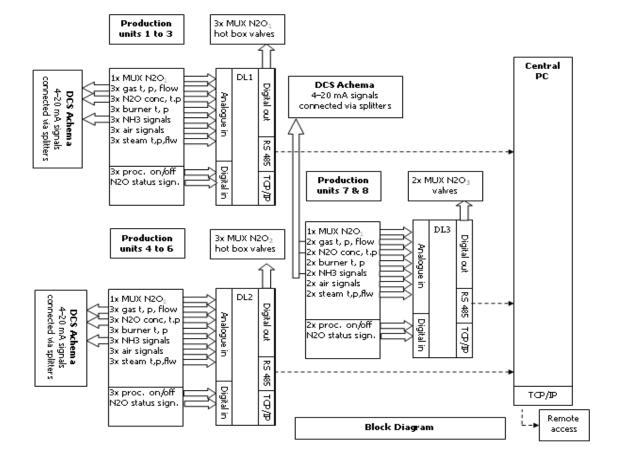
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

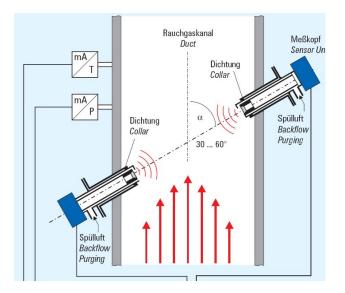
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

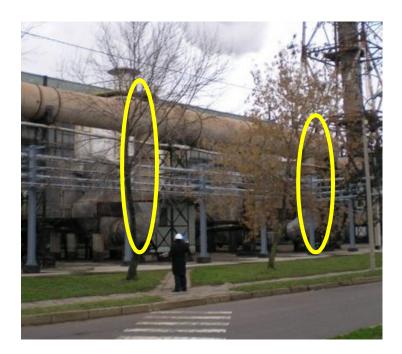
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula $Q=C^*sqrt(dp)$, where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

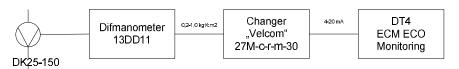
EN14181 compliance

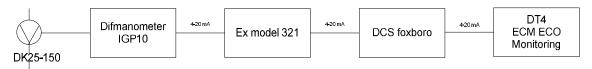
As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

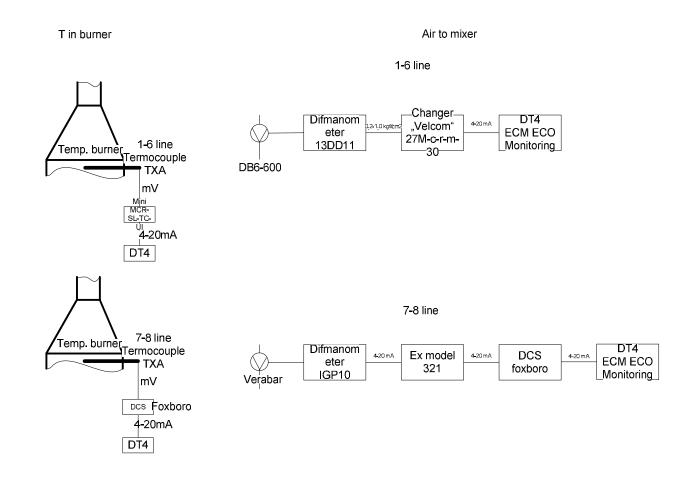
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure


All these parameters are measured by the plant monitoring system as presented on diagrams below:


P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 04/05/2008 and ending on 18/08/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0 $^{\circ}$ C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

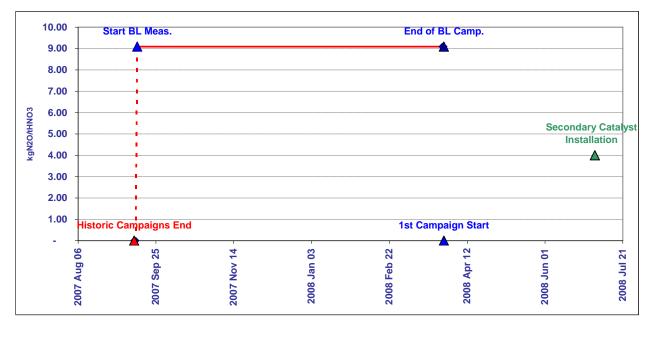
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 64 tHNO₃ and time duration was on average 218 days. Table contains also information on suppliers of primary catalysts for the line 7.

Line	ACHEMA UKL-7	Production	Start	End	Days	Production per day	Primary Catalyst	Composition	
Historic Campaigns	1 t HNO3	57 671	10 Sep 2004	16 Mar 2005	187	308	Heraeus	N/A *	
	2 t HNO3	70 015	16 Mar 2005	07 Nov 2005	236	297	Johnson Matthey	N/A *	
	3 t HNO3	55 426	08 Nov 2005	20 May 2006	193	287	Heraeus	N/A *	
	4 t HNO3	67 588	24 May 2006	04 Jan 2007	225	300	Johnson Matthey	N/A *	
	5 t HNO3	70 670	04 Jan 2007	11 Sep 2007	250	283	Umicore	N/A *	
Average HNO3									
production	t HNO3	64 274			218	295	* Confidential but available for the verification		
Project Campaigns	BL t HNO3	55 626	12 Sep 2007	27 Mar 2008	197	282	Heraeus	N/A *	
	PL t HNO3	66 814	02 Sep 2011	07 May 2012	248	269	Heraeus	N/A *	

T 2 Historic campaigns

The project campaign production value of 66 814 tHNO3 was higher than historic nitric acid production set at level of 64 274 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 12/09/2007 and continued through 27/03/2008 when the 55 626 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement 2008 Mar 27	End of Baseline Campaign	
2007 Sep 11	2007 Sep 12	2008 Mar 27		2008 Mar 28	
-	-	9.09	9.09	9.09	
	-	55 626	55 626	-	
294.6					
(8 647.4)					
(29.4)					
	2007 Sep 11 294.6 (8 647.4)	2007 Sep 11 2007 Sep 12 294.6 (8 647.4)	2007 Sep 11 2007 Sep 12 2008 Mar 27 9.09 - 55 626 294.6 (8 647.4)	2007 Sep 11 2007 Sep 12 2008 Mar 27 2008 Mar 27 9.09 9.09 - 55 626 55 626 294.6 (8 647.4)	

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 7 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 12/09/2007 through 27/03/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 536 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.640%, which is further modified by an uncertainty of 0.124% due to under-sampling. As a result we have arrived to the baseline emission factor of 9.09 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 7 during the project campaign. Project campaign started on 02/09/2011 and went through 07/05/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (*PE_n*) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.88 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor	Т	4	Baseline	emission	facto
------------------------------	---	---	----------	----------	-------

	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMISin	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air Ratio	Temperature	Pressure	Operation	Productio
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa	h	NAP t/h
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	150 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 097	4 238	4 385	4 238	4 708	4 485	4 708	4 708	3 890	4 2
as % of Dataset		87%	90%	93%	90%	100%	95%	100%	100%	82%	90
Minimum			0.00	0	1 728	0	0	33	3		
Maximum			16.41	1 933	112 864	6 476	18.83	915	667		
Mean			13.13	1 250	81 347	5 394	9.92	811	590		
Standard Deviation			4.69	448	24 945	1 806	1.37	228	112		
Total			55 626								55 62
N2O Emissions (VSG * NCSG * OH)		417	t N2O								
Emission Factor			kgN2O / tHNO3								
Permitted Range Minimum						-	0	880	550		
Maximum						7 500	11.20	910	800		
Data within the permitted range											
Count		3 1 4 5		2 856	2 856					3 890	
as % of Operating Hours		77%		70%	70%					95%	
Minimum				722	57 328					00/0	
Maximum				1 933	99 189						
Mean				1 433	89 644						
Standard Deviation				281	5 811						
N2O Emissions (VSG * NCSG * OH)		500	t N2O	l							
Emission Factor			kgN20 / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound				882	78 254						
Upper bound				1 984	101 034						
Count				2 753	2 841						
as % of Operating Hours				67%	69%						
Minimum				913	78 697						
Maximum				1 933	99 189						
Mean				1 457	89 755						
Standard Deviation				257	5 588						
N2O Emissions (VSG * NCSG * OH)		EDE	t N2O								
Emission Factor (EF_BL)			kgN2O / tHNO3								

T 5 Project emission factor

				MISSION FACTOR			. .		
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	0 3 000	0 150 000	0 10 000	0 20.00	- 50 1 200	0 1 000
			00.00	0000			20.00	. 200	
Raw Data Measured Range Count		4 548	5 930	4 525	4 534	5 942	5 670	5 942	5 94
as % of Dataset		76%	100%	76%	76%	100%		100%	100
Minimum			0.02	113	2	5	0	34	
Maximum			17.60	710	79 630	8 000	14.26	913	672
Mean			11.27	289	67 616	4 678	10.21	714	570
Standard Deviation			6.04	54	2 322	2 302	1.32	332	12
Total			66 814	-	-				
N2O Emissions (VSG * NCSG * OH)		89	t N2O						
Emission Factor		1.33	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				183	63 066				
Upper bound				396	72 166				
Count				4 142	4 460				
as % of Operating Hours				91%	98%				
Minimum				183	63 319				
Maximum				396	72 163				
Mean				294	67 559				
Standard Deviation				43	1 683				
N2O Emissions (VSG * NCSG * OH)		90	t N2O						
Actual Project Emission Factor (EF_PActual)		1.35	kgN2O / tHNO3						
Abatement Ratio		85.1%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule					
	1	2.18	2.18						
	2	2.93	2.93						
	3	1.83	2.31						
	4	1.11	2.01						
	5 6	1.35 -	1.88						
Project Emission Factor (EF_P)		1.88	kgN2O / tHNO3						
Abatement Ratio		79.3%							

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N₂O abatement projectLINE:Line 8MONITORINGPERIOD:FROM:01/09/2011

TO: 05/04/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.	EXECUTIVE SUMMARY				
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4		
3.		BASELINE SETTING	5		
	3.1 3.1	MEASUREMENT PROCEDURE FOR N ₂ O CONCENTRATION AND TAIL GAS VOLUME FLOW .1 TAIL GAS N ₂ O CONCENTRATION	6 6		
	3.1	.2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6		
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6		
	3.3	HISTORIC CAMPAIGN LENGTH	7		
4.	4.1	PROJECT EMISSIONS .1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8		
	4.1	.2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8		
	4.2	MINIMUM PROJECT EMISSION FACTOR	8		
	4.3	PROJECT CAMPAIGN LENGTH	8		
	4.4	LEAKAGE	9		
	4.5	EMISSION REDUCTIONS	9		
5.		MONITORING PLAN	10		
6.		QAL 2 CALIBRATION ADJUSTMENTS	20		
	6.1	APPLIED PRINCIPLE	20		
	6.2	STACK GAS VOLUME FLOW	21		
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21		
	6.4	STACK GAS TEMPERATURE	21		
	6.5	STACK GAS PRESSURE	21		
7.		EMISSION REDUCTION CALCULATIONS	22		

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 8 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the fifth project campaign on Line 8.

The first project campaign on Line 8 started on 17/04/2008. Secondary catalyst was installed on 11/06/2008. Total quantity of emission reductions generated during the fifth project period from 01/09/2011 through 05/04/2012 on Line 8 is **89 808 ERUs**.

T 1 Emission re	duction calculations		
EMISSI	ON REDUCTION		
Baseline Emission Factor	EF_BL	7.23	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	2.83	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	63 577	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	63 577	tHNO3
Nitric Acid Produced in the Project Campaign	NAP_P	65 842	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	89 808	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		71.8%	

EMISSION REDU	JCTION PER YEA	AR	
Year	2011	2012	2013
Date From	01 Sep 2011	01 Jan 2012	
Date To	31 Dec 2011	05 Apr 2012	
Nitric Acid Production	39 345	26 497	
Emission Reduction	53 667	36 142	
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 8 during baseline measurement carried from 01/09/2007 through 15/04/2008 is 7.23 kgN₂O/tHNO₃.

Project emission factor during the fifth project campaign after installation of secondary catalysts on Line 8, which started on 01/09/2011 and went through 05/04/2012 with secondary catalyst installed and commissioned on 11/06/2008, is 2.83 kgN₂O/tHNO₃.

During the project campaign 65 842 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 8 emission reductions including information on baseline emission factor setting for the Line 8.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 8 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 8 has been carried out from 01/09/2007 through 15/04/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$

where:

$\begin{array}{l} \textbf{Variable} \\ \textbf{EF}_{\text{BL}} \\ \textbf{BE}_{\text{BC}} \\ \textbf{NCSG}_{\text{BC}} \end{array}$	Definition Baseline N ₂ O emissions factor ($tN_2O/tHNO_3$) Total N ₂ O emissions during the baseline campaign (tN_2O) Mean concentration of N ₂ O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 8 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 8 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

b) Calculate the sample standard deviation (s)

c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)

d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

4.4 Leakage

No leakage calculation is required.

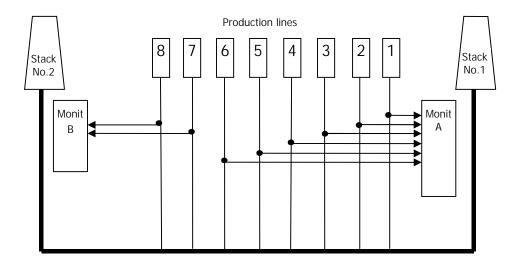
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO₃ (100%), it is necessary to include also HNO₃ measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

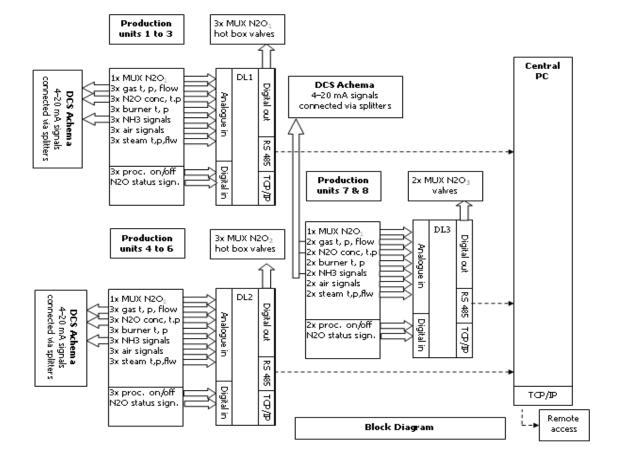
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

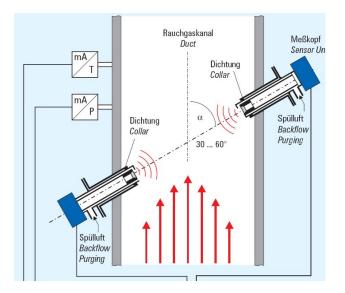
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

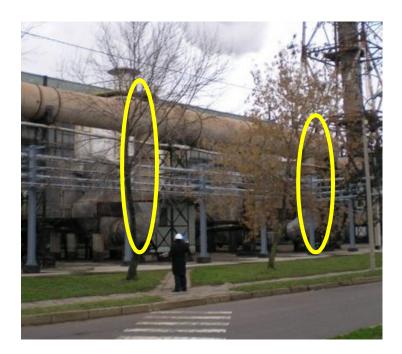
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula $Q=C^*sqrt(dp)$, where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

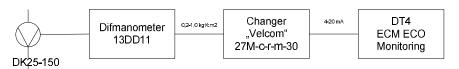
EN14181 compliance

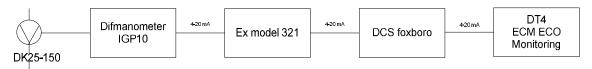
As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

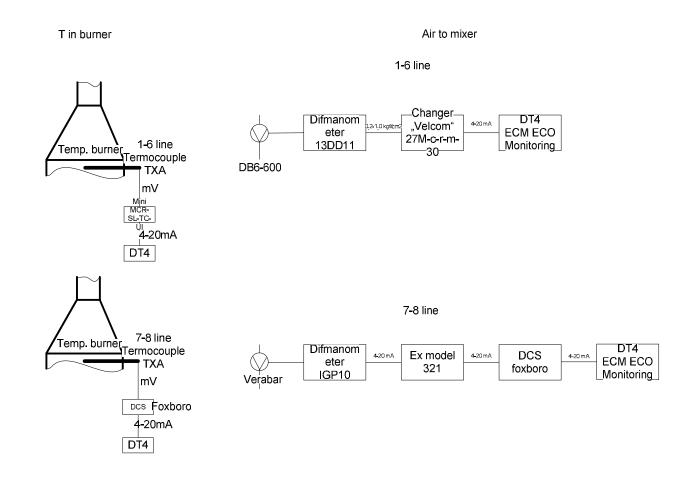
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure


All these parameters are measured by the plant monitoring system as presented on diagrams below:


P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 20/10/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

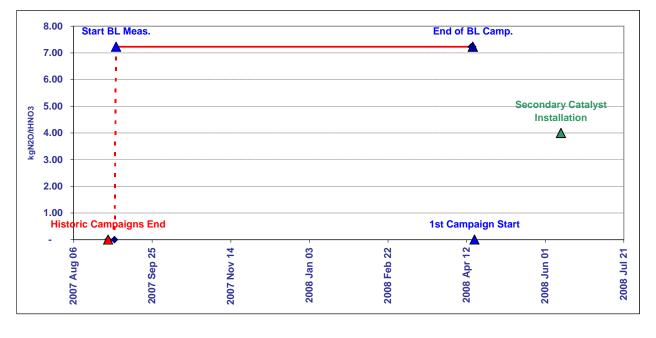
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 63 620 tHNO₃ and time duration was on average 228 days. Table contains also information on suppliers of primary catalysts for the line 8.

Line	ACHEMA UKL-8	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
listoric Campaigns	1 t HNO3		00 Jan 1900	00 Jan 1900	-	n/a		0 N/A *
	2 t HNO3	62 575	10 Dec 2004	17 Aug 2005	250	250	Heraeus	N/A *
	3 t HNO3	63 418	02 Nov 2005	14 Jun 2006	224	283	Umicore	N/A *
	4 t HNO3	63 138	15 Jun 2006	01 Feb 2007	231	273	Johnson Matthey	N/A *
	5 t HNO3	65 347	02 Feb 2007	28 Aug 2007	207	316	Johnson Matthey	N/A *
Average HNO3								
production	t HNO3	63 620			228	279	* Confidential but avail	able for the verification
Project Campaigns	BL t HNO3	63 577	01 Sep 2007	15 Apr 2008	227	280	Umicore	N/A *
	PL t HNO3	65 842	01 Sep 2011	05 Apr 2012	217	304	Umicore	N/A *

T 2 Historic campaigns

The project campaign production value of 65 842 tHNO3 was higher than historic nitric acid production set at level of 63 620 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 01/09/2007 and continued through 15/04/2008 when the 63 577 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-8	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Aug 28	2007 Sep 01	2008 Apr 15	2008 Apr 15	2008 Apr 16
Baseline Factor kgN2O/tHNO3	-	-	7.23	7.23	7.23
Production tHNO3		-	63 577	63 577	-
Per Day Production tHNO3	279.0				
Baseline less Historic Production	(42.6)				
Baseline less Historic Days	(0.2)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 8 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 01/09/2007 through 15/04/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 488 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.890%, which is further modified by an uncertainty of 0.087% due to under-sampling. As a result we have arrived to the baseline emission factor of 7.23 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 8 during the project campaign. Project campaign started on 01/09/2011 and went through 05/04/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (*PE_n*) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.83 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

Т	4	Baseline	emission	factor

	BASELINE EMIS Parameter	Operating Hours	Nitric Acid	N2O	Cas Value	A	A	Owldetter	Ondeterter	AMO	NIGHT ALL
	Parameter	Operating Hours	Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure	AM S in Operation	Nitric Aci Productic NCSG
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa	h	NAP t/h
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 719	4 954	4 801	4 598	4 987	4 663	5 4 2 5	5 425	4 129	4 9
as % of Dataset		87%	91%	88%	84%	92%	86%	100%	100%	76%	9
Minimum			0.00	0	4	0	0	27	5		
Maximum			24.99	1 968	103 514	6 7 9 6	14.80	912	654		
Mean			12.83	1 120	78 981	5 591	10.07	801	564		
Standard Deviation			5.07	440	16 813	1 520	0.93	245	116		
Total			63 577		10010	1 020	0.00	240	110		63 5
N2O Emissions (VSG * NCSG * OH)		417	t N2O								
Emission Factor			kgN2O / tHNO3								
		0.10	ight20 / inited								
Permitted Range Minimum							0	880	550		
Maximum						7 500	11.20	910	800		
Data within the permitted range											
Count		4 453		3 949	4 131					4 129	
as % of Operating Hours		94%		84%	88%					87%	
Minimum		••••		781	-					0770	
Maximum				1 732	96 663						
Mean				1 264	77 635						
Standard Deviation				201	16 881						
		100	t N2O								
N2O Emissions (VSG * NCSG * OH) Emission Factor			t N20 kgN20 / tHNO3								
			<u> </u>								
Data within the confidence interval 95% Confidence interval											
Lower bound				871	44 549						
Upper bound				1 658	110 722						
Count				3 795	3 949						
as % of Operating Hours				80%	84%						
Minimum				878	75 503						
Maximum				1 658	96 663						
Maximum Mean				1 275	81 213						
Standard Deviation				186	2 729						
N2O Emissions (VSG * NCSG * OH)		488	t N2O								
Emission Factor (EF_BL)			t N20 kgN20 / tHNO3								
		1.25	Ng11207 111103								

T 5 Project emission factor

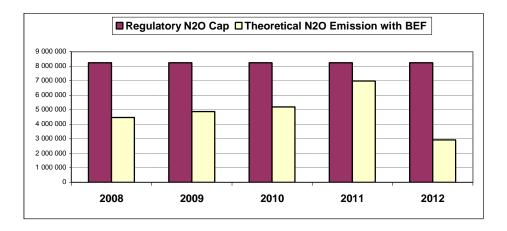
				MISSION FACTOR	-	1	1 ·		
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	OH h	NAP t/h	NCSG mg N2O <i>I</i> Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 20.00	- 50 1 200	0 1 000
			30.00	5 000	120 000	10 000	20.00	1200	1 000
Raw Data Measured Range		4 376	E 400	4.200	4 070	E 100	4 470	E 100	E 10
Count as % of Dataset		4 376 84%	5 183 <i>10</i> 0%	4 368 <i>84%</i>	4 270 82 <i>%</i>	5 196 <i>100%</i>	4 472 86%	5 196 <i>100</i> %	5 19 <i>100</i> 9
Minimum		04%	0.02	38	64 260	3		15	
Maximum			18.03	2 006	93 286	د 7 791	19.43	1 090	(747
Mean			12.70	412	93 280 76 960	5 163	19.43	802	627
Standard Deviation			5.56	412 144	5 723	1 555	10.09	241	148
				144	5723	1 555	1.25	241	140
Total			65 842						
N2O Emissions (VSG * NCSG * OH)			t N2O						
Emission Factor		2.11	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				130	65 742				
Upper bound				695	88 177				
Count				4 169	4 284				
as % of Operating Hours				95%	98%				
Minimum				130	66 073				
Maximum				694	88 165				
Mean				400	76 825				
Standard Deviation				114	5 515				
N2O Emissions (VSG * NCSG * OH)		124	t N20						
Actual Project Emission Factor (EF_PActual)		2.04	kgN20 / tHNO3						
Abatement Ratio		71.8%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R		1				
Noving Average Emission Factor Conection	1	4.35	4.35	uic					
	2	4.26	4.30						
	3	2.06	3.56						
	4	1.43	3.03						
	5	2.04	2.83						
	6	-	2.00						
Project Emission Factor (EF_P)		2.83	kgN2O / tHNO3						
Abatement Ratio		60.9%							

Comparison of the baseline emission factors against N₂O mass limit in the IPPC permit

The N2O cap is defined in the IPPC permit on a yearly basis for the whole UKL-7 plant. The emission can be distributed among lines irregularly, as long as the total emission in each year stays under the yearly limit.

The regulatory emission factor EFReg is defined as the emission factor which would result in hitting the emission cap on a plant level.

We apply a method to attribute EFReg values to each campaign in a way that can be considered fair, and demonstrates a balanced scenario. The yearly N2O caps are allocated to campaigns proportionate to the amount of Nitric Acid they produced compared to other lines during the same year. The total cap of a campaign is the sum of such yearly limits. This way the total amount of plant level limit is always allocated. If each and every campaign would operate with those emission levels, the plant would just hit its yearly N2O caps in each year.


In incomplete years, the initial EFReg values will be high for the first campaigns, but will be lowered and balanced out as new campaigns are finished. These values serve informational purposes, and the real IPPC cap is checked on a plant level.

The main indicator of staying under the IPPC limit is the plant level yearly N2O emission calculated with baseline emission factors. Whenever an overflow of N2O emission would occur on plant level in a year, the sum of the product of baseline emission factors and yearly campaign NAP values would immediately indicate this and the projects would not be able to generate more ERU-s in that year.

```
Campaign_N2O_Cap =
    sum( Campaign_NAP[y] / Total_NAP[y] * Plant_N2O_Cap[y]
    for y in [2008,2009,2010,2011,2012] )
Campaign_EFReg = Campaign_N2O_Cap / Campaign_NAP
Plant_N2O_Emission[y] =
    sum( Campaign_BEF[c] * Campaign_NAP[c,y] for c in campaigns )
```

- where Campaign_NAP[y] is the Nitric Acid Produced on a given campaign in year "y"
- Total_NAP is the total production on all lines in that year.
- the campaign EFReg is the campaigns emission cap divided by the campaign's actual production.
- Plant_N2O_Emission[y] is the theoretical level of N2O emitted in year "y" by using the Baseline Emission Factors of each campaign, and calculating the "sumproduct" of BEF-s and yearly Nitric Acid Production of the lines

Regulatory values		2008	2009	2010	2011	2012	
Regulatory N2O Cap	kgN2O	8 494 200	9 266 400	9 266 400	9 266 400	9 266 401	
Excluding Line 9	kgN2O	8 236 800	8 236 800	8 236 800	8 236 800	8 236 801	
Plant emissions under baseline	conditions	2008	2009	2010	2011	2012	
Total Nitric Acid Produced	tHNO3	587 784	592 413	617 892	838 757	363 002	
Theoretical N2O Emission with BEF	kgN2O	4 472 161	4 871 985	5 194 928	6 984 596	2 925 577	
Weighted average BEF	kgN2O/tHNO3	7.61	8.22	8.41	8.33	8.06	
Critical BEF to reach cap with actual NAP	kgN2O/tHNO3	14.01	13.90	13.33	9.82	22.69	
N2O emission overflow	kgN2O	0	0	0	0	0	

	Nitric acid pr	oduced du	ring project cam	paigns	2008	2009	2010	2011	2012	2013
Line	Campaign	BEF	Start	End	NAP					
1	0	9.63	14 Mar 2008	21 Oct 2008	60 691					
2	0	7.92	09 Nov 2007	20 May 2008	28 951					
3	0	4.42	01 Feb 2008	30 Jun 2008	42 999					
4	0	7.20	28 Dec 2007	31 Jul 2008	57 815					
5	0	6.61	29 Nov 2007	17 Jun 2008	47 192					
6	0	10.34	11 Jan 2008	21 Jul 2008	60 850					
7	0	7.85	12 Sep 2007	27 Mar 2008	26 856					
8	0	6.61	02 Sep 2007	15 Apr 2008	34 7 16					
1	1	9.63	04 Nov 2008	10 May 2010	1 913	55 103	37 831			
2	1	7.92	07 Nov 2008	16 Jan 2009	12 151	241				
3	1	4.42	04 Jul 2008	27 Aug 2008	13 520					
4	1	7.20	06 Oct 2008	28 Apr 2009	11 753	27 403				
5	1	6.61	02 Jul 2008	22 Apr 2009	39 871	20 358				
6	1	10.34	25 Jul 2008	21 Apr 2009	41 416	26 902				
7	1	7.85	03 Jul 2008	22 Oct 2008	31 4 4 5	20 702				
8	1	6.61	11 Jun 2008	26 Nov 2008	45 181					
0 1	2	9.63	13 Sep 2010	20 NOV 2008 21 Aug 2011	40 101		36 738	72 938		
2	2	9.51	16 Jan 2009	12 Oct 2009		61 628	JU 130	12 730		
2	2	5.45	27 Aug 2008	12 Oct 2009 16 Jun 2009	24 950	31 372				
4	2	7.73	27 Aug 2008 07 May 2009	06 May 2010	24 7 30	42 744	22 505			
4 5	2	6.61	23 Apr 2009	14 Jan 2010		42 744 66 630	4 642			
6	2	10.34	23 Apr 2009 27 Apr 2009	25 Nov 2009		66 297	4 042			
7	2	9.09				58 897				
			29 Jan 2009	01 Nov 2009	E E 10					
8	2	6.96	09 Dec 2008	20 Nov 2009	5 5 1 3	53 779			00 400	
1	3	9.63	23 Aug 2011	21 Mar 2012			10 10 1	41 914	28 130	
2	3	9.51	13 Oct 2009	21 Oct 2010		17 444	68 634			
3	3	5.45	17 Jun 2009	16 Nov 2010		35 016	49 304			
4	3	7.73	03 Aug 2010	09 Mar 2011			38 627	20 608		
5	3	6.61	12 Aug 2010	17 Mar 2011			48 928	27 358		
6	3	10.34	27 Nov 2009	20 Sep 2010		9 863	76 524			
7	3	9.09	03 Nov 2009	08 Dec 2010		8 079	63 581			
8	3	6.96	21 Nov 2009	25 Oct 2010		10 657	76 105			
1	4									
2	4	9.51	22 Oct 2010	12 May 2011			25 426	41 966		
3	4	5.46	19 Nov 2010	25 Aug 2011			12 366	70 693		
4 5	4	7.73	16 Mar 2011	05 Oct 2011				61 337		
5 6	4 4	6.61 10.34	18 Mar 2011 01 Oct 2010	09 Nov 2011 10 Aug 2011			31 515	58 570 78 822		
7	4	9.09	10 Dec 2010	30 Aug 2011			6 843	67 872		
8	4	7.23	09 Nov 2010	01 Sep 2011			18 323	67 589		
1	5	1.23	571404 2010	51 30p 2011			10 323	07 307		
2	5	9.51	13 May 2011	08 Dec 2011				62 374		
3	5	5.46	26 Aug 2011	26 Jul 2012				22 845	50 991	
4	5	7.73	21 Oct 2011	28 Aug 2012				15 819	56 335	
5	5	6.61	28 Nov 2011	10 Jul 2012				8 677	61 183	
6	5	10.34	10 Aug 2011	23 Apr 2012				47 145	38 494	
7	5	9.09	02 Sep 2011	07 May 2012				25 709	41 105	
8	5	7.23	01 Sep 2011	05 Apr 2012				39 345	26 497	
1	6									
2	6	9.51	09 Dec 2011	17 Jul 2012				7 175	60 267	
3	6									
4	6									
5	6									
6	6									
7	6									
8	6									

NAP N2O Cap EFReg N2O with BEP 60 691 850 482 14.01 584 45 28 951 405 704 14.01 229 29 42 999 602 557 14.01 1900 55 57 815 810 180 14.01 1401 42 999 602 557 14.01 1900 55 58 15 810 180 14.01 416 26 47 192 661 323 14.01 2018 23 34 716 486 487 14.01 2018 23 71 292 575 371 14.01 2018 23 714.01 804 13 12 37246 13.86 913 37 13.99 811 80 954 14 13.97 13 520 189 455 14.01 246 44 14.01 246 44 14 13 520 189 454 13.97 398 11 66 33 32 14.01 246 44 14 13 520 189 454 13.90 556 32 986 11 1006 18 1006 16 1206 008 11.00 1056 18 66 55 52 785 819	NAP Prop	ortionate Reg	ulator y Emi:	ssion Factor
$\begin{array}{c} 28 \ 951 \ 405 \ 704 \ 14.01 \ 229 \ 29 \ 42 \ 999 \ 602 \ 557 \ 14.01 \ 190 \ 65 \ 7815 \ 8101 \ 80 \ 14.01 \ 416 \ 26 \ 47 \ 192 \ 661 \ 323 \ 14.01 \ 311 \ 94 \ 66 \ 850 \ 852 \ 711 \ 14.01 \ 629 \ 170 \ 82 \ 376$				
$\begin{array}{c} 42 \ 999 & 602 \ 557 & 14.01 & 190 \ 65 \\ 57 \ 815 & 810 \ 180 & 14.01 & 416 \ 24 \\ 60 \ 850 & 852 \ 711 & 14.01 & 629 \ 19 \\ 26 \ 856 & 376 \ 347 & 14.01 & 210 \ 82 \\ 34 \ 716 & 486 \ 487 & 14.01 & 229 \ 47 \\ 94 \ 846 & 1 \ 297 \ 246 & 13.88 & 913 \ 37 \\ 12 \ 392 & 173 \ 627 & 14.01 & 98 \ 14 \\ 13 \ 520 & 189 \ 455 & 14.01 & 97 \ 75 \\ 39 \ 157 & 545 \ 713 & 13.94 & 281 \ 92 \\ 60 \ 229 & 841 \ 780 & 13.98 & 398 \ 11.99 \ 706 \ 40 \\ 31 \ 445 & 440 \ 647 & 14.01 & 266 \ 44 \\ 45 \ 181 & 633 \ 132 & 14.01 & 296 \ 44 \\ 45 \ 181 & 633 \ 132 & 14.01 & 296 \ 44 \\ 45 \ 181 & 633 \ 132 & 14.01 & 296 \ 44 \\ 45 \ 1628 & 856 \ 664 & 13.90 & 566 \ 06 \\ 56 \ 322 & 785 \ 819 & 13.95 & 306 \ 95 \\ 65 \ 249 & 994 \ 308 & 13.71 & 13.64 \ 37 \ 71 \ 273 & 988 \ 299 & 13.87 & 4711 \ 13.45 & 818 \ 60 \\ 84 \ 321 & 1441 \ 13 \ 15.57 & 459 \ 51.499 \ 575 \ 57 \ 59 \ 213 \ 71 \ 273 \ 75 \ 75 \ 75 \ 75 \ 75 \ 75 \ 75 \ $	60 691	850 482	14.01	584 454
57 815 810 18.01 44.61 44.6 47 192 661 323 14.01 311 94 60 852 711 14.01 229 14.01 210 82 34 716 4864 14.01 229 83 716 14.01 297 48 129724 13.68 713 32 12.392 173.627 14.01 98 14 13 520 189.455 14.01 97 76 40 34 814 13.97 70.64 41 45 18 63 31.2 14.01 298 44 13.97 70.64 41 45 18 63 31.2 14.01 298 44 13.97 70.64 41 45 18 63 31.2 14.01 246 44 14.01 298 44 13.97 70.64 45 66 249 84.008 13.71 545 31 </td <td>28 951</td> <td>405 704</td> <td>14.01</td> <td>229 295</td>	28 951	405 704	14.01	229 295
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42 999	602 557	14.01	190 055
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57 815	810 180	14.01	416 268
60 850 852 711 14.01 629 19 26 856 376 347 14.01 210 82 34 716 486 487 14.01 210 82 34 716 486 487 14.01 229 47 94 846 1297 246 13.88 913 37 13 392 173 647 14.01 98 14 13 520 189 455 14.01 98 14 60 229 841780 13.98 398 11 63 31 8 954 414 13.97 706 40 31 445 440 647 14.01 246 84 409 676 1 206 008 11.00 1056 18 61 628 856 684 13.90 566 50 56 229 98 4308 13.71 564 37 71 273 988 299 13.87 471 11 62 92 921 824 982 13.91 412 64 70 044 149 897 13.90 565 53 70 241 706 149 99 674 52 86 079 1157 471 13.45 818 60 84	47 192	661 323		311 942
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				629 190
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c} 94\ 846 \ 1\ 297\ 246 \ 13.68 \ 913\ 37\\ 12\ 392 \ 173\ 627 \ 14.01 \ 98\ 14\\ 13\ 520 \ 189\ 455 \ 14.01 \ 97\ 5\\ 39\ 157 \ 545\ 713 \ 13.94 \ 281\ 92\\ 60\ 229 \ 841\ 780 \ 13.98 \ 398\ 11\\ 68\ 318 \ 954\ 414 \ 13.97 \ 706\ 40\\ 31\ 445 \ 440\ 647 \ 14.01 \ 246\ 84\\ 45\ 181 \ 633\ 132 \ 14.01 \ 298\ 44\\ 45\ 181 \ 633\ 132 \ 14.01 \ 298\ 44\\ 45\ 181 \ 633\ 132 \ 14.01 \ 298\ 44\\ 45\ 181 \ 633\ 132 \ 14.01 \ 298\ 44\\ 45\ 181 \ 633\ 132 \ 14.01 \ 298\ 44\\ 45\ 181 \ 633\ 132 \ 14.01 \ 298\ 44\\ 45\ 181 \ 633\ 132 \ 14.01 \ 298\ 44\\ 45\ 181 \ 633\ 132 \ 14.01 \ 298\ 44\\ 45\ 181 \ 633\ 132 \ 14.01 \ 298\ 44\\ 45\ 181 \ 633\ 132 \ 14.01 \ 298\ 44\\ 5181 \ 632\ 278\ 5819 \ 13.95 \ 306\ 95\\ 55\ 49\ 894\ 308 \ 13.71 \ 504\ 37\\ 71\ 273 \ 988\ 299 \ 13.87 \ 41.99 \ 64\ 55\\ 58\ 897 \ 81\ 894 \ 13.90 \ 553\ 57\\ 59\ 291 \ 824\ 982\ 13.91 \ 412\ 66\\ 70\ 044 \ 10\ 498\ 51\ 499 \ 51\ 499 \ 64\ 55\\ 59\ 235\ 71\ 72\ 11\ 13\ 45\ 88\ 66\ 85\\ 59\ 235\ 71\ 72\ 11\ 13\ 45\ 81\ 80\ 63\ 80\ 15\ 83\ 86\ 76\ 11\ 144\ 113\ 15\ 73\ 81\ 80\ 60\ 83\ 86\ 76\ 11\ 144\ 13\ 87\ 45\ 45\ 86\ 70\ 75\ 77\ 71\ 82\ 37\ 15\ 10\ 337 \ 11\ 15\ 45\ 14\ 10\ 82\ 14\ 13\ 85\ 70\ 57\ 77\ 71\ 82\ 37\ 15\ 11\ 33\ 71\ 81\ 71\ 11\ 14\ 11\ 81\ 82\ 71\ 10\ 14\ 14\ 13\ 85\ 70\ 75\ 77\ 71\ 82\ 77\ 71\ 71\ 71\ 71\ 71\ 71\ 71\ 71\ 71$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61 628	856 864	13.90	586 082
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56 322	785 819	13.95	306 953
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65 249	894 308	13.71	504 375
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71 273	988 299	13.87	471 111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66 297	921 776	13.90	685 507
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
0 67 392 751 061 11.14 640 90 83 058 059 059 10.34 643 49 61 337 602 343 9.82 474 13 58 570 575 177 9.82 387 15 110 337 1 194 164 10.82 1140 88 74 715 757 741 10.14 679 16 85 912 907 990 10.57 621 140 0 62 374 612 530 9.82 593 17 73 836 1 381 377 18.71 403 14 73 836 1 381 377 18.71 403 14 73 836 1 381 377 18.71 403 14 73 836 1 343 441 19.87 557 75 69 860 1 473 494 21.09 461 77 85 639 1 336 439 15.61 885 51 66 814 1 185 177 17.74				
83 058 859 059 10.34 453 49 61 337 602 343 9.82 474 13 58 570 575 177 9.82 387 15 110 337 1 194 164 10.82 1 140 88 74 715 575 177 10.14 679 16 85 970 907 990 10.57 621 14 0 - - 62 374 612 530 9.82 593 17 73 836 1 381 377 18.71 434 19.87 557 75 69 860 1 473 494 21.09 461 7 75 836 1 336 439 15.61 885 51 66 814 1 185 177 17.74	0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
58 570 575 177 9.82 337 15 110 337 1 194 164 10.82 1 140 88 74 715 757 741 10.14 679 16 85 912 907 990 10.57 621 14 62 374 612 530 9.82 593 17 73 836 1 381 377 18.71 4031 72 154 1 433 641 1 9.87 557 75 69 860 1 473 494 21.09 461 7 76 85 91 136 439 15.61 885 51 66 814 1 185 177 17.7.4 607 34				453 498
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				474 134
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				387 151
85 912 907 990 10.57 621 14 0 62 374 612 530 9.82 593 17 73 836 1 381 377 18.71 403 14 72 154 1 433 641 19.87 557 75 69 860 1 473 494 21.09 461 77 85 639 1 336 439 15.61 885 51 66 814 1 185 177 17.74 607 34				
0 62 374 612 530 9.82 593 17 73 836 1 381 377 18.71 403 14 72 154 1 433 641 19.87 557 75 69 860 1 473 494 21.09 461 77 85 639 1 336 439 15.61 885 51 66 814 1 185 177 17.74 607 34				
73 836 1 381 377 18.71 403 14 72 154 1 433 641 19.87 557 75 69 860 1 473 494 21.09 461 77 85 639 1 336 439 15.61 885 51 66 814 1 185 177 17.74 607 34		907 990	10.57	621 141
72 154 1 433 641 19.87 557 75 69 860 1 473 494 21.09 461 77 85 639 1 336 439 15.61 885 51 66 814 1 185 177 17.74 607 34	62 374	612 530	9.82	593 179
72 154 1 433 641 19.87 557 75 69 860 1 473 494 21.09 461 77 85 639 1 336 439 15.61 885 51 66 814 1 185 177 17.74 607 34	73 836	1 381 377	18.71	403 146
85 639 1 336 439 15.61 885 51 66 814 1 185 177 17.74 607 34	72 154			557 753
85 639 1 336 439 15.61 885 51 66 814 1 185 177 17.74 607 34	69 860	1 473 494	21.09	461 774
66 814 1 185 177 17.74 607 34	85 639			885 510
65 842 987 613 15.00 476 03	66 814	1 185 177	17.74	607 341
	65 842	987 613	15.00	476 037

All the EFReg values are green, which indicates that none of the campaigns resulted in excess emission relative to others given their production levels and the plant IPPC limit, and the regulatory emission factor is higher than the baseline emission factor of the campaigns.

The summary table "Plant emission under baseline conditions" contain yearly emission figures, and as all of the "Theoretical N2O Emission with BEF" stay under the yearly caps (made visible by the chart), none of the IPPC limits were ever violated. By taking the currently finished campaigns into account, all the ERU-s can be claimed so far.