

NELSON LANDFILL GAS PROJECT

ENERGY FOR INDUSTRY LIMITED(A Subsidiary of Pioneer Generation Limited)

ANNUAL REPORT - 2012

February 2013

CONTENTS

1	INTRO	DDUCTION	3
2	PERIO	DD SUMMARY	4
	2.1	GENERAL	4
	2.2	OPERATION	4
	2.3	EMISSION RELATED ACTIVITIES	4
	2.3.1	COAL DISPLACEMENT	4
	2.3.2	ELECTRICITY CONSUMPTION	4
	2.3.3	EMBODIED EMISSIONS	5
	2.3.4	GLOBAL WARMING POTENTIAL	5
	2.3.5	NET EMISSIONS	5
3	EMISS	SIONS REPORT	6
	3.1	(1) CONSTRUCTION EMISSIONS	6
	3.2	(2) OPERATIONAL EMISSIONS	6
	3.3	(3B) ENERGY OUTPUTS	6
	3.4	(4B) ENERGY OUTPUTS – NOT ATTRIBUTABLE TO THE PROJECT	7
	3.5	(5) TONNES OF METHANE COMBUSTED	7
	3.6	(6) CO2 EMITTED FROM METHANE COMBUSTED	7
	3.7	(7) EMISSION REDUCTION	
	3.8	(8) EMISSION UNITS CLAIMED	8
	3.9	(9A,B,C) ELECTRICITY METERING	8
4	EVIDE	ENCE AND STATEMENTS	9
	4.1	(10) CERTIFICATION OF EQUIPMENT	
	4.2	(11) MATERIAL IMPEDIMENT	9
	4.3	(14) REPORT COMPLIANCE	9
5	APPE	NDIX 1	10
	5.1	SUPPORTING DOCUMENTATION	10
	5.1.1	CO2 EMISSION REDUCTION CALCULATION	
	5.1.2	NMDHB STEAM AND COAL DATA SUMMARY	
	5.1.3	CALIBRATION CERTIFICATES	
6		NDIX 2	
-		(15) UNIT TRANSFER DETAILS	

1 INTRODUCTION

Energy for Industry developed the Nelson Landfill Gas project to utilise gas recovered from the York Valley landfill that would otherwise be flared.

The project is a collaboration between Energy for Industry (EFI), Nelson Marlborough District Health Board (NMDHB) and the Nelson City Council (NCC), and was committed to by all parties in May 2005.

The project comprises a gas treatment facility at York Valley, a buried pipeline from York Valley to Nelson Hospital, and a steam boiler at the hospital. Steam generated by the landfill gas (LFG) fired boiler displaces steam generated by the existing coal fired boilers, thus reducing coal consumption and therefore CO2 emissions.

The net project emissions also take into account the emissions from electricity used, and embodied emissions from construction materials.

The project was awarded 28,000 emission reduction units by the NZ Government for the 2008 – 2012 Commitment Period.

Conditions of this allocation include the submission of an annual report (which is the purpose of this report). The annual reporting requirements are;

- (a) tCO2-e Emission Reductions resulting from the Project during the Year;
- (b) Where another measure is used as a proxy measure to determine the Emission Reductions, then the quantum of that measure shall also be reported;
- (c) Information to support the information reported in (b);
- (d) Details of anything which the Participant is aware of that is, or has the potential to be, a material Impediment to achieving Emission Reductions during the Commitment Period.

2 PERIOD SUMMARY

2.1 GENERAL

This report is for the period January – December 2012 and is the eighth Annual Report submitted for the project. The project was committed by all parties in May 2005, construction commenced in August 2005 and was completed in December 2005. Commissioning was undertaken in January 2006, with the plant being available for operation in February 2006.

In April 2009 EFI committed to the Nelson LFG Utilisation Improvement project which saw the replacement of the original 1.5MWth LFG boiler with a higher capacity 2.5MWth LFG boiler. The original boiler was decommissioned in late August 2009 and the new boiler has been in full time operation since early September 2009.

Emission reductions due to the project are from displaced coal consumption through the use of LFG as a fuel to generate steam. The quantity of coal displaced is determined from the baseline coal boiler efficiency and the quantity of steam generated by the LFG fired boiler. The reduction in CO2 emissions is then calculated from the quantity of coal displaced.

The net emission reductions achieved by the project during the 2012 calendar year were 3,901 tonnes CO2-e.

2.2 OPERATION

With the exception of planned maintenance periods and minor technical issues that are expected for this type of plant, the plant operated continuously for the entire reporting period.

The LFG utilisation and associated emission reductions for the reporting period were similar to the previous periods. This suggests that the LFG boiler continues to operate consistently and at a near optimal level in terms of utilisation.

The installation of the larger 2.5MWth LFG boiler has enabled the hospital to adopt a less conservative operating philosophy with their existing coal fired boilers. The proportion of total site steam generated from LFG was around 58%, down very slightly from the 60% for the previous reporting period. This remains consistent with the previous reporting periods of operation with the higher capacity LFG boiler.

2.3 EMISSION RELATED ACTIVITIES

2.3.1 COAL DISPLACEMENT

The coal consumption and steam generation data for period May 2005 – April 2006 was used as the basis for the coal displacement calculations. The coal displacement analysis for 2012 is included in Appendix 1.

Steam generated by the LFG fired boiler is measured with a dedicated steam flow meter.

During the current reporting period the plant has supplied 58% of the total hospital steam demand. This has resulted in the displacement of 1,931 tonnes of coal with a subsequent reduction in CO2 emissions of 3,985 tonnes for the period.

2.3.2 ELECTRICITY CONSUMPTION

Electricity is used in the treatment of the LFG, primarily for gas compression.

This electricity consumption of the treatment plant is metered, and CO2 emissions calculated directly from the consumption.

The plant consumed 132,985 kWh of electricity during the period, with the resulting CO2 emissions of 83 tonnes.

2.3.3 EMBODIED EMISSIONS

There was no construction activity undertaken during the period of this report.

2.3.4 GLOBAL WARMING POTENTIAL

The project utilises landfill gas, which would otherwise be flared, as fuel in a boiler to generate steam.

The same gas recovery system is used for both the existing flare and the boiler. Both processes involve the combustion of the landfill gas (which is approximately 55% methane by volume). Whenever the boiler is not in operation the flare is operating, and vice-versa. Therefore no additional methane is released or combusted as a result of the Project.

2.3.5 NET EMISSIONS

The net CO2 emissions from the Project are shown in Table 1 below (note that rounding may mean that columns do not appear to sum correctly). Negative numbers in Table 1 indicate reductions in CO2 emissions.

Table 1 Net CO₂ Emissions

	Report Period	Sum of Previous Periods	Total	
	2012	2005-2011	2005-2012	
		tonnes CO ₂		
Coal Displacement	-3985	-19675	-23660	
Electricity	83	467	550	
Embodied Emissions	0	39	39	
Global Warming Potential	0	0	0	
TOTAL	-3902	-19170	-23072	

3 EMISSIONS REPORT

FOR THE PERIOD JANUARY – DECEMBER 2012

3.1 (1) CONSTRUCTION EMISSIONS

Not applicable.

3.2 (2) OPERATIONAL EMISSIONS

Element	Annual Usage	Factor	tCO ₂ -e
Diesel	0	0.00271 tonnes CO2-e per litre	0
Petrol	0	0.00232 tonnes CO2-e per litre	0
Electricity purchased	0.139	625 tonnes CO2-e per GWh	83.1
Iron/Steel - produced in NZ	0	2.01 tonnes CO2-e per tonne	0
Aluminium - produced in NZ	0	1.62 tonnes CO2-e tonne	0
Cement	0	0.46 tonnes CO2-e tonne	0
Total			83.1

3.3 (3B) ENERGY OUTPUTS

Ele	ment and Measure	Total
i.	Electricity (GWh)	0
ii.	Steam (tonnes)	0
iii.	Steam (energy content)	0
iv.	Hot Water (tonnes)	0
V.	Hot water (energy content)	0
vi.	Heat Plant efficiency	0
vii.	Equivalent quantity of fuel displaced ¹	1931 tonnes coal

¹ Calculated after subtracting any figures recorded in 4 (b)

3.4 (4B) ENERGY OUTPUTS – NOT ATTRIBUTABLE TO THE PROJECT

Measure	Total
i. Steam (tonnes)	0
ii. Steam (energy content)	0
iii. Hot Water (tonnes)	0
iv. Water (energy content)	0

3.5 (5) TONNES OF METHANE COMBUSTED

Measure	Total
Tonnes methane combusted ²	0

3.6 (6) CO2 EMITTED FROM METHANE COMBUSTED

Measure	Total CH4	Total tCO2-e	
Tonnes CO ₂ emitted	0	0	

3.7 (7) EMISSION REDUCTION

Element	Annual Production	Factor	tCO2-e
Steam/hot water (tonnes) (3)(b)(ii)/(3)(b)(iv)	0	As per schedule	0
Steam/hot water Energy content (heat output) (3)(b)(iii)/(3)(b)(v)	0	As per schedule	0
Displaced Coal (3)(b)(vii)	1931 tonnes	2.064 t CO ₂ -e per tonne coal	3984.6
Methane Combusting (6)	0	21 t CO ₂ -e per tonne methane	0
		Total	3984.6
		Less construction emissions and/or other project emissions (1),(2)	0

² Corrected for temperature, pressure and water content

Nelson Landfill Gas Project Annual Report 2012 REV1 FINAL

		Less tonnes of CO ₂ emitted by the project as a result of methane combusted	0
Less other generation not part of the project, recorded by the meters (GWh) (4)(a)	0.133	625 tonnes per GWh	83.1
		Less steam/hot water energy content (heat output) not part of the project (4)(b)	0
		Net Emission Reductions for the year	3901.5

3.8 (8) EMISSION UNITS CLAIMED

Emission Units claimed for the year using the emission ratio "C" set out in Clause 5.1 of the Project Agreement.

 $3901.5 \text{ t CO}_2\text{-e x } 0.98 = 3823 \text{ Emission Units}$

3.9 (9A,B,C) ELECTRICITY METERING

Not applicable.

4 EVIDENCE AND STATEMENTS

4.1 (10) CERTIFICATION OF EQUIPMENT

Evidence that the metering and recording equipment has been certified by a reputable, independent quality assurance service provider.

Current calibration certificates for the steam meters used to determine steam generated by the landfill gas boiler were included in the 2007 report.

The certificate of accuracy of the weighbridge used to determine the quantity of coal delivered to the hospital is included in Appendix 1.

4.2 (11) MATERIAL IMPEDIMENT

A statement detailing anything that has, or has the potential, to be an impediment to achieving the agreed emission reductions during commitment period one.

We are not aware of any potential material impediment that will prevent continuing Emission Reductions by the Project during the Commitment Period.

4.3 (14) REPORT COMPLIANCE

A statement identifying that this report:

- Has been prepared using the methodology of Schedule 2 Measurement of Emission Reductions
- When considering the literal wording of Schedule 2, we have concluded that it is reasonable to describe the method applied as a "proxy method" as described in Schedule 4[b], in that the energy content of the steam generated by the project is calculated on the basis of Specific Enthalpy values obtained from internationally recognised Steam Tables rather than "metered" as prescribed by the Schedule. What is "metered" is the mass of the steam flow. The internationally accepted method of determining the energy content of steam is to measure the mass flow of the steam and convert this to energy as we have done. We are not aware of any on-line industrial scale instrument that directly measures Enthalpy.
- Meets all other requirements of Schedule 4 Contents for Annual Reports, of the Project Agreement.

As far as we are aware this report has been prepared as per the project methodology, and meets the requirements of the Project Agreement for annual reporting.

Signature:

Jonathan Suggete

Position:

Commercial Manager - Industrial Energy Solutions

Date:

20-FEB-13

5 APPENDIX 1

5.1 SUPPORTING DOCUMENTATION

5.1.1 CO2 EMISSION REDUCTION CALCULATION

January - December 2012

5.1.2 NMDHB STEAM AND COAL DATA SUMMARY

2004 - 2012

5.1.3 CALIBRATION CERTIFICATES

Coal Weighbridge – Supplied by Toltec Scale Ltd Expiry date 31/03/12

Energy for Industry Nelson Landfill Gas Project

CO₂ Emission Reduction Calculation

14 February 2013

January - December 2012

	Januar	y - Decemb	er 2012	
Coal Displacement				
Steam Produced by LFG Boiler			12,351	tonnes steam
Boiler Efficiency Rate			0.1563	t coal / t steam Note 1
Coal Displaced by LFG Boiler			1,931	tonnes coal
Coal CO ₂ Emission Factor			2.064	tonnes CO _{2-e} / tonne coal
CO ₂ Emissions			- 3,984.6	tonnes CO 2
Electricity Consumption				
Electricity Consumption			132,985	kWh
Electricity CO ₂ Emission Factor			625	tonnes CO _{2-e} / GWh
CO ₂ Emissions			83.1	tonnes CO 2
Construction		Embodied		
	Quantity Used	Emission Factor	CO ₂ Emissions	
	tonnes	tonnes CO _{2-e} / tonne	tonnes CO _{2-e}	
Cement - locally produced	-	0.46	-	
Steel - imported	-	-	-	
Steel - locally produced	-	2.01	-	
Aluminium - imported	-		-	
Aluminium - locally produced	-	1.62	-	
CO ₂ Emissions			-	tonnes CO ₂
Net Project CO ₂ Emissions			- 3,901.5	tonnes CO 2
Emission Reductions (2012)			3,901.49	tonnes CO ₂
Emission Units			3,823	
Emission Reductions (2005 - 2011)			19,170.06	tonnes CO ₂
Emission Units			18,787	
Emission Reductions (2005 - 2012)			23,071.54	tonnes CO ₂
Emission Units			22,610	

Note 1 : For baseline period May 2005 - April 2006

Coal

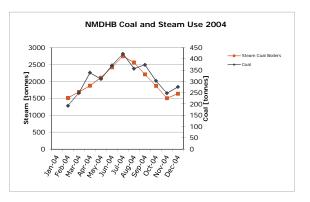
Total 2004 - 2010	16,629		103,905		48,115	152,020
Average 2004 - 2010				0.1600		
Baseline Period May 2005 - April 2006	3,444		22,031	0.1563		
2004						
Jan-04						
Feb-04	192		1,512			1,512
Mar-04	249		1,691			1,691
Apr-04	339		1,876			1,876
May-04	311		2,114			2,114
Jun-04	371		2,421			2,421
Jul-04	423		2,750			2,750
Aug-04	357	21.43	2,562			2,562
Sep-04	374	21.81	2,212			2,212
Oct-04	303	21.96	1,874			1,874
Nov-04	248		1,505			1,505
Dec-04	276		1,642			1,642
Total 2004	3,443	21.73	22,159	0.1554	-	22,159

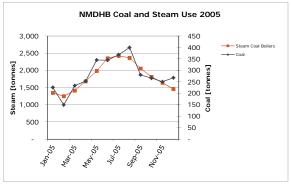
Steam -Coal

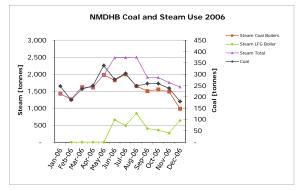
tonnes

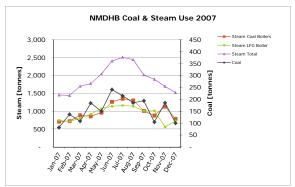
Coal/

Steam

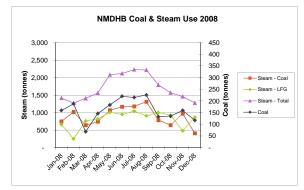

Steam -LFG

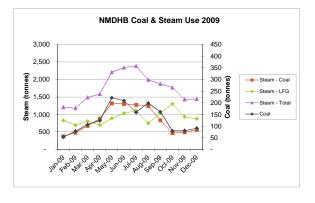

Steam -Total


2005							
	Jan-05	226		1,347			1,347
	Feb-05	150	21.61	1,252			1,252
	Mar-05	233	21.29	1,416			1,416
	Apr-05	254		1,685			1,685
	May-05	345		1,985			1,985
	Jun-05	345	20.93	2,356			2,356
	Jul-05	369	20.99	2,427			2,427
	Aug-05	401	21.43	2,366			2,366
	Sep-05	280	21.59	2,056			2,056
	Oct-05	267		1,817			1,817
	Nov-05	251		1,640			1,640
	Dec-05	268	21.69	1,460			1,460
Total 2005		3,388	21.36	21,807	0.1554	-	21,807

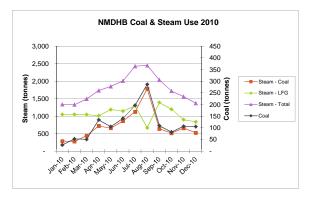

2006					
Jan-06	247	1,427			1,427
Feb-06	187	1,264		-	1,264
Mar-06	235	1,620		-	1,620
Apr-06	249	1,613		-	1,613
May-06	339	1,978		-	1,978
Jun-06	277	1,823		662	2,485
Jul-06	303	2,000		488	2,488
Aug-06	248	1,650		849	2,499
Sep-06	259	1,505		403	1,908
Oct-06	259	1,551		352	1,903
Nov-06	238	1,488		270	1,758
Dec-06	180	986		639	1,625
Total 2006	3,020	18,905	0.1598	3,663	22,568

Jun-07	241	1,264		1,139	2,403
Jun-07 Jul-07	241 215	1,264 1,348		1,139 1,161	2,403 2,509
Aug-07	185	1,302		1,142	2,444
Sep-07	194	1,008		1,009	2,017
Oct-07	105	878		1,014	1,892
Nov-07	185	1,131		563	1,694
Dec-07	100	787		732	1,519
Total 2007	1,884	11,856	0.1589	11,027	22,883



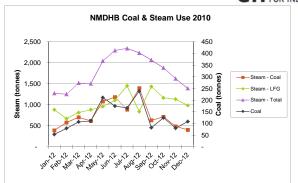

48.2%

2008					
Jan-08	160	751		666	1,417
Feb-08	188	1,023		252	1,275
Mar-08	68	645		766	1,411
Apr-08	146	746		818	1,564
May-08	183	1,071		1,013	2,084
Jun-08	220	1,171		951	2,122
Jul-08	215	1,182		1,048	2,230
Aug-08	226	1,312		910	2,222
Sep-08	133	789		1,004	1,793
Oct-08	136	645		925	1,570
Nov-08	160	975		483	1,458
Dec-08	118	413		870	1,283
Total 2008	1,954	10,723	0.1822	9,706	20,429
				47.5%	


Total 2009		1,567	9,949	0.1575	10,992	20,941
	Dec-09	91	567		878	1,445
	Nov-09	81	494		937	1,431
	Oct-09	80	470		1,302	1,772
	Sep-09	161	838		1,040	1,878
	Aug-09	199	1,245		751	1,996
	Jul-09	159	1,278		1,110	2,388
	Jun-09	209	1,306		1,037	2,343
	May-09	222	1,321		892	2,213
	Apr-09	124	883		703	1,586
	Mar-09	107	679		812	1,49
	Feb-09	79	486		698	1,184
	Jan-09	54	382		832	1,214

2010					
Jan-10	81	461		941	1,402
Feb-10	16	481		764	1,245
Mar-10	133	536		910	1,446
Apr-10	111	590		1,068	1,658
May-10	108	680		1,216	1,896
Jun-10	107	945		1,284	2,229
Jul-10	159	882		1,538	2,420
Aug-10	241	1,590		580	2,170
Sep-10	129	699		1,368	2,067
Oct-10	105	602		1,161	1,763
Nov-10	104	562		948	1,510
Dec-10	81	478		949	1,427
Total 2010	1,373	8,506	0.1614	12,727	21,233

	NMDHB Coal & Steam Us	e 2010	
3,000		450	
0.500		400	
2,500		350	
2,000 - 1,500 - 1,000 -		300 😧	
<u>5</u> 1,500		300 (see 250 up 250 lp 250 lp 200 lp 250 lp	
E 1,500		200 💆	
1,000		- 150 🖔	→ Coal
500		100	
500		- 50	
- +	- *	→ -	
~,\	to t)	
201.	(o, 40, by 40, 10, 11, 11, kn, 80, 0, 40, 00,		


					,		
				59.9%			
2011							
Jan-11	27	290		1,052	1,342		
Feb-11	53	278		1,052	1,330		
Mar-11	51	447		1,047	1,494		
Apr-11	135	722		1,014	1,736		
May-11	106	663		1,190	1,853		
Jun-11	141	865		1,147	2,012		
Jul-11	197	1,128		1,303	2,431		
Aug-11	287	1,782		670	2,452		
Sep-11	110	643		1,395	2,038		
Oct-11	82	520		1,200	1,720		
Nov-11	107	661		901	1,562		
Dec-11	106	529		844	1,373		
Total 2011	1,402	8,528	0.1644	12,815	21,343		

60.0%

eff ENERGY FOR INDUSTRY

					57.6%	
Total 2012		1,540	9,097	0.1693	12,351	21,448
	Dec-12	109	405		989	1,394
	Nov-12	80	490		1,135	1,625
	Oct-12	125	714		1,168	1,882
	Sep-12	83	633		1,436	2,069
	Aug-12	239	1,398		840	2,238
	Jul-12	167	890		1,454	2,344
	Jun-12	175	1,184		1,111	2,295
	May-12	211	1,084		961	2,045
	Apr-12	111	620		884	1,504
	Mar-12	107	704		817	1,521
	Feb-12	79	581		673	1,254
	Jan-12	54	394		884	1,278

www.toltec.co.nz

CERTIFICATE OF ACCURACY Weighbridge

Customer:

Solid Energy

Location:

Reefton

The weights/weighing instruments specified in the schedule to this certificate has/have been examined and tested by an accredited person and found to comply with the requirements of Regulation 20 of the Weights and Measures Regulations.

THIS CERTIFICATE OF ACCURACY EXPIRES ON: 18-Apr-13

Schedule of equipment to which this certificate relates:

Description of weight/weighing instrument

Make & Type:

Mettler Toledo IND310

Identifying Features:

50,000kg

Serial No:

01130236KL

This Certificate of Accuracy is issued by:

Ihakara Tutaki

Personal Identifier:

16.7

Signature: _: fakar feloki

Unit 1, 12 Kilronan Place, PO Box 7248, Christchurch.

Tel: (03) 366-5800

6 APPENDIX 2

6.1 (15) UNIT TRANSFER DETAILS

1	Project name:	Nelson Landfill Gas Utilisation Project
2	Date of project agreement:	9 May 2005
3	Name of the project developer/company:	Energy for Industry Limited
4	Project ID:	NZ-1018-INT
5	Calendar year for which units are being transferred:	2012
6	Account identifier:	NZ-3439
7	Project Participant (investor): ³	Vertis Environmental Finance
8	Quantity of units (refer to section 7 of this report):	3823
9	Type of units:	AAUs

³ Project Participant (investor) is a party that the project developer/company has an agreement with to transfer emission reduction units (ERUs) or assigned amount units (AAUs) to.