

CO-GENERATION GAS POWER STATIONS AKB FORES PLC Financial Industrial Group Polymeri JSC Kostenets HHI JSC Toplofikatsia Kazanlak JSC Toplofikatsia Yambol JSC

ANNEXES

AKB FORES PLC, SOFIA, BULGARIA

Volume 2

ERUPT 5 Version 1 Sofia, February 2005

Annexes:

Annex No. 1 Part of General Layouts Annex No. 2 Prognostication development of the factories Annex No. 3 Load profile of thermal energy demands Annex No. 4 Cogeneration UGT 10000 S1 STIG common view Annex No. 5 UGT 10000 gas turbine Data Sheet Annex No. 6 UGT 10000 S1 electrical control block scheme Annex No. 7 Enbacher J 620 GS cogeneration common view Annex No. 8 Enbacher J 620 GS gas engine Data Sheet Annex No. 9 Cogenerations thermal flows schemes Annex No. 10 Measurement devices for custudy transfer Annex No. 11 The factory's electricity schemes /diagrams/ Annex No. 12 Excerpts from the price list approved by State Committee on Energy Regulation Annex No. 13 Natural gas certificate for 2004 Annex No. 14 Monitoring Models Annex No. 15 Calculation IRR of the project excluding the revenue from the sale of ERUs and AAUs Annex No. 16 Calculation IRR of the project including the revenue from the sale of ERUs Annex No. 17 Calculation IRR of the project including the revenue from the sale of ERUs and AAUs Annex No. 18 Stakeholders' Attitude Letters Annex No. 19

Letters of Regional Environment Agency

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 3 from 147

<u>Part of General Layout Toplofikatsia Yambol</u>

Prognostication development of the factories

Anex No 2

Prognostication Polymeri JSC development

	Years	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Total cemical products	[tons]	<u>155123</u>	135817	<u>174378</u>	175600	176630	<u>178350</u>	178800	<u>179851</u>	180931	181930	<u>182951</u>	<u>183990</u>	186021
/incl.														
- Caustic soda –Diaphr.		22723	30493	16500	16500	16500	16500	16500	16500	16500	16500	16500	16500	16500
- Caustic soda-Purified		11754	10025	36000	36600	37100	37600	38100	38600	39100	39600	40100	40600	41600
- Hydrochloric Acid		35007	35045	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000
- Liquid Chloride		14058	18656	24600	25200	25700	26200	26800	27300	27800	28300	28800	29300	30300
- Others		71581	41598	49278	49300	49330	49370	49400	49450	49510	49530	49550	49590	49620
Total production	[thous.	10725	13413	19 584	19 747	20 106	18 716	19 691	20 497	21 134	20 968	20 256	21 511	22 377
	EURO]													
Annual electricity	[MWh]	139395	156649	159500	152000	148000	145000	142000	142000	142000	142000	142000	14200	142000
consumption														
Average hour electricity	[MWh	16.5	18.5	18.9	17.9	17.5	17.1	16.8	16.8	16.8	16.8	16.8	16.8	16.8
consumption	e /h]													
Annual steam	MWht	<u>116075</u>	<u>127452</u>	<u>131000</u>	<u>132700</u>	<u>130500</u>	<u>128500</u>	<u>126500</u>	<u>124500</u>	<u>124500</u>	<u>124500</u>	<u>124500</u>	<u>124500</u>	124500
consumption - total														
- steam 36 barg		3495	3694	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500
- steam 15 barg		71678	83355	84500	85200	84000	83000	82000	80000	80000	80000	80000	80000	80000
- steam 6 barg		40902	40403	43000	44000	43000	42000	41000	41000	41000	41000	41000	41000	41000
Average hour steam	[MWh	13.73	15.08	15.50	15.70	15.44	15.20	14.97	14.73	14.73	14.73	14.73	14.93	14.93
consumption	t /h]													

Average sold to NEC electricity price /2007-2015/ - 49 EURO/MWhe Average bought from NEC electricity price 2007-2015 - 38 EURO/MWhe.

Average sold thermal energy price 2007-2015 – 13.9 EURO/MWht.

Annual average capacity of cogeneration 8200 h

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 7 from 147

Prognostication Kostenets HHI JSC development

	Years	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Total paper /incl.	[tons]	<u>16410</u>	<u>17341</u>	<u>19200</u>	<u>34550</u>	<u>38120</u>	40120	42120	43120	<u>45120</u>	45120	45120	<u>45120</u>	45120
- wall paper base		5263	6390	6120	6120	6120	6120	6120	6120	6120	6120	6120	6120	6120
- tissue paper		9281	8595	11220	24220	22000	24100	26000	27000	29000	29000	29000	29000	29000
- MG paper		1902	2356	1860	4210	10000	10000	10000	10000	10000	10000	10000	10000	10000
Total production	[thous. EURO]	6696	8511	8 929	20 931	24 948	26 909	28 570	29 424	31 102	31 149	31 149	31 149	31 149
Annual electricity	[MWh]	25066	25076	25955	46751	53295	53852	56530	57911	60615	60685	60685	60685	60685
consumption														
Average hour electricity	[MWh	2.86	2.87	2.96	5.33	6.08	6.15	6.45	6.61	6.91	6.92	6.92	6.92	6.92
consumption	/h]													
Annual steam	tons	81260	79377	97937	148137	116216	120376	124536	126616	130776	130776	130776	130776	130776
consumption														
steam 15 barg/199° C	MWht	63058	61596	75999	114954	90183	93412	96639	98254	101482	101482	101482	101482	101482
Average hour steam	[MWht	7.20	7.03	8.67	13.12	10.29	10.66	11.03	11.21	11.58	11.58	11.58	11.58	11.58
consumption	/h]													
steam 15 barg/199° C														

<u>Average sold to NEC electricity price /2007-2015/ - 49 EURO/MWhe</u> <u>Average bought from NEC electricity price 2007-2015 - 38 EURO/MWhe</u>. <u>Average sold thermal energy price 2007-2015 - 13.9 EURO/MWht</u>. <u>Annual average capacity of cogeneration 8200 h</u>

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 8 from 147

Prognostication DHC Kazanlak JSC development

		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Thermal energy production	[MWht]	100696	96075	71593	93616	101939	103934	104417	105274	105274	105274	105274	105274	105274
Thermal energy sold		<u>84796</u>	<u>80670</u>	<u>55606</u>	77095	85114	86550	87147	<u>87605</u>	<u>87147</u>	87605	<u>87147</u>	87605	87147
- Steam		32330	36313	5412	16810	16810	16810	16810	16810	16810	16810	16810	16810	16810
- Hot water		52466	44357	50194	60275	68304	69740	70335	70793	70335	70793	70335	70793	70335
	[Th.EUR]	3701	3521	2427	3365	2255.5	2293.5	2309.4	2321.5	2309.4	2321.5	2309.4	2321.5	2309.4
Electrical energy annual production	[MWhe]	4867	3168	862	20	39456	40305	39522	40330	39522	40330	39522	40330	39522
Electrical energy own needs	[MWhe]	1768	1751	1948	1968	7713	7555	7588	7467	7588	7467	7588	7467	7588
consumption	[Th.EUR]	72.3	71.6	79.7	80.5	279.0	281.0	276.0	281.0	276.0	281.0	276.0	281.0	276.0
Electrical energy sold	[MWhe]	3573	2426	619	15	31743	32750	32055	32742	32742	32742	32742	32742	32742
to NEC	[Th.EUR]	220	149	38	0.9	1488	1496	1494	1500	1494	1500	1494	1500	1494
Cogenerations modules annual capacity	h	-	-	-	-	6250	6250	6250	6250	6250	6250	6250	6250	6250
Natural gas consumption	x 1000 Nm ³	0	0	0	0	17090	17472	17432	17635	17635	17635	17635	17635	17635
Heavy fuel oil consumption	t	12766	11542	8306	10826	0	0	0	0	0	0	0	0	0

<u>Average sold to NEC electricity price /2007-2015/ - 49 EURO/MWhe</u> <u>Average bought from NEC electricity price 2007-2015 - 37 EURO/MWhe</u>. <u>Average sold thermal energy price 2007-2015 - 26.5 EURO/MWht</u>. <u>Annual average capacity of cogenerations 6250 h</u>

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 9 from 147

		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Thermal energy production	[MWht]	4400	4400	4400	4400	62000	62000	62000	62000	62000	62000	62000	62000	62000
Thermal energy	[MWht]	3540	3540	3540	3540	48197	48197	48197	48197	48197	48197	48197	48197	48197
sold	[Th.EUR]	91.3	91.3	91.3	91.3	1243	1243	1243	1243	1243	1243	1243	1243	1243
Electrical energy annual production	[MWhe]	0	0	0	0	24000	24000	24000	24000	24000	24000	24000	24000	24000
Electrical energy own needs	[MWhe]	280	280	280	280	2680	2680	2680	2680	2680	2680	2680	2680	2680
consumption	[Th.EUR]	11	11	11	11	49	119	119	119	119	119	119	119	119
Electrical energy sold	[MWhe]	0	0	0	0	21320	21320	21320	21320	21320	21320	21320	21320	21320
to NEC	[Th.EUR]	0	0	0	0	1044	1044	1044	1044	1044	1044	1044	1044	1044
Cogenerations modules annual capacity	h					8000	8000	8000	8000	8000	8000	8000	8000	8000
Natural gas consumption	x 1000 Nm ³	565	565	565	565	6080	6080	6080	6080	6080	6080	6080	6080	6080
Heavy fuel oil consumption	t	824	824	824	0	0	0	0	0	0	0	0	0	0

Prognostication DHC Yambol JSC development

Average sold to NEC electricity price /2007-2015/ - 49 EURO/MWhe Average bought from NEC electricity price / 2007-2015 / - 39 EURO/MWhe.

Average sold thermal energy price /2007-2015/ – 25.8 EURO/MWht.

Annual average capacity of cogenerations 8000 h

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 10 from 147

Load profile of thermal energy demands

Annex No. 3

Polymeri JSC

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 11 from 147

Heat Demands

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 12 from 147

Heat demands

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 13 from 147

Heat demands 2007

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 14 from 147

Cogeneration UGT 10000 S1 " STIG "

Annex No. 4

UGT 10000 gas turbine Data Sheet

Annex No. 5

DATA SHEET

Specification of the characteristics of gas turbine engine, type UGT 10000

N⁰	Description	Dimension	Value	Comments
1.	Characteristics			
1.1.	Nominal power under normal conditions as per ISO 2314 not considering the resistance of the inlet and outlet tract.	kW	8450 in working regime	See the characteristic N /tH
1.2.	 Nominal power of the power turbine shaft under station conditions and when: Barometric pressure 1013 Pa (760 mmHg); Air temperature at the engine inlet 288 K (15 °C); Resistance of the GTCU air intake system to the turbo package inlet – not more than 981 Pa; Resistance of the exhaust stack – not more than 1470 Pa – when there is no utilization heat exchanger. No air consumption from the compressor for the anti-icing system and other needs and without an utilization heat exchanger. 	kW	8220 in working regime	Power in working regime by 25 ° C of the air <u>8220 kW</u> See the characteristic N /tH
1.3.	Minimum power output of the power turbine shaft	kW	3500	Parallel work
1.4.	Allowable increase of rated power when the air inlet temperature goes below 288 K (15 ^o C).	kW	9600	
1.5.	Efficient efficiency coefficient:			
1.5.1.	At normal conditions as per ISO 2314 in accordance with item 1.1 (not considering the inlet and outlet resistance).	%	33,2	
1.5.2.	 When: Barometric pressure 101325 Pa (760 mmHg) Air temperature at the inlet of the engine 288 K (15 °C); Resistance of the GTCU air intake system to the turbo package inlet – not more than 981 Pa; Resistance of the exhaust stack – not more than 1470 Pa – when there is no utilization heat exchanger. 	%	32,45	32,2 by the outside air temperature 25° C
1.6.	Compression ratio.	P2/P1	16,4	
1.7.	Number of the gas generator compressor stages: - For low pressure; - For high pressure.	pcs pcs	9	
1.8.	Number of the gas generator turbine stages: - For low pressure; - For high pressure.	pcs pcs	1	
1.9.	Number of stages of the power turbine.	PCS	3	
1.10.	Gas temperature at the power turbine inlet.	K (C)	965.2(692)	
1.11.	Gas temperature at the outlet pipe section.	К (°С)	(45.2(4/2)	
1.12.	Compressor air consumption.	kg/s	31.6	
1.13.	Power turbine nominal rpm.	min	8 200	
1.14.	Kated rpm of gas generator rotors: - For low pressure; - For high pressure.	min ⁻¹ min ⁻¹	10 340 14 260	
1.15.	Iviaximum allowable rpm of the power turbine.	min ·	8 610	
1.16.	Minimum rpm of the power turbine.	min *	6 150	from the compressor
1.17.	Maximum allowable rpm of the gas generator:	min ⁻¹	10 750	
L			10730	1

	- For high pressure.	min ⁻¹	14 800
1.18.	Type of cooling of the GTU that is situated in the GTCU		
	container:		
	- Ejector by the exhaust gases:		-
	- Forced by blast and exhaust fans:		ves
	- Other		-
1 10	Type of cooling of the GTU power turbine		
1.10.	Heat generation during cooling	K/M	160
1.20.	Consumption of eaching couling.		100
1.∠1.	Consumption of cooling all in % from the passing through the	%	15
4.00	GIU compressor air consumption.	ŝ	
1.22.	Minimal temperature in the GIU container when starting of the	C	+ 5
	GTCU is allowed.		
1.23.	Direction of rotors rotation		
	/following I OC1 22378-77/:		
	 Of the gas generator rotor 		Left
	Of the power turbine rotor		Right
1.24.	Air relief valves of the gas generator compressor:	Pcs	
	 From the HPC /high pressure compressor/ 		2
	 From LPC /low pressure compressor/ 		5
1.25.	Inlet guiding vanes of the axial compressor /IGV/:		
	- control;		?
	- Range of position variation /degrees/		-25° to 0°
1.26	Contents of hazardous emissions in the exhaust	nom	
0.	concerts of hazardous emissions in the exhaust	mg/Nm ³	
	gases during nominal mode of operation at 0 C,	etc	
	0.1013 MPa barometric pressure and conventional	010.	
	oxygen concentration of 15 % (FOCT 28775-90):	ma/Nm ³	30
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mg/Nm ³	74
	- COx	mg/Nm ³	2
	- NOX	ing/ivin	2
	- Sulphur oxides		
1 07	Allowable air consumption on the compressor outlet	ka/soc	07
1.27	Anowable an consumption on the compressor outlet	Ky/Sec	0,7
1.27	for the anti-icing system and the needs of the GTCU	ky/sec	0,1
1.27	for the anti-icing system and the needs of the GTCU	ky/sec	0,1
1.27 2.	for the anti-icing system and the needs of the GTCU Starter	ky/sec	
2.1.	for the anti-icing system and the needs of the GTCU Starter Type of the starter:	ky/sec	
2 .	for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter		-
2 .	for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter	kg/sec	- yes
2 .	for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device	kg/sec	- yes -
2.2.	for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter.	KW	- yes - 70
2 .1. 2 .1. 2 .2. 2 .3.	for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle.	Kg/sec KW S	- yes - 70 180
1.27 2. 2.1. 2.2. 2.3. 2.4.	for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption:	Kyrsec KW S	- yes - 70 180
2.1. 2.2. 2.3. 2.4.	for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy	Kyrsec KW S kW	- yes - 70 180 See the diagrams UGT
2.1. 2.2. 2.3. 2.4.	Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy - natural gas – at pressure(bar) and temperature (°C)	Kyrsec KW S kW m ³	- yes - 70 180 See the diagrams UGT 10000
2.1. 2.2. 2.3. 2.4.	for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy - natural gas – at pressure(bar) and temperature (°C) - other type of working media and energy	Kyrsec KW S kW m ³	- yes - 70 180 See the diagrams UGT 10000
2.1. 2.2. 2.3. 2.4.	Anowable an consumption on the compression outlet for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy - natural gas – at pressure(bar) and temperature (°C) - other type of working media and energy Minimum temperature of the natural gas when the START is	Kyrsec KW S kW m ³ °C	- yes - 70 180 See the diagrams UGT 10000
2.1. 2.2. 2.3. 2.4.	Anowable an consumption on the compression outlet for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy - natural gas – at pressure(bar) and temperature (°C) - other type of working media and energy Minimum temperature of the natural gas when the START is allowed	Kyrsec KW S kW m ³ °C	- yes - 70 180 See the diagrams UGT 10000 ?
2.1. 2.2. 2.3. 2.4. 2.5. 2.6	for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy - natural gas – at pressure(bar) and temperature (°C) - other type of working media and energy Minimum temperature of the natural gas when the START is allowed. Oil system:	Kyrsec KW S kW m ³ °C	- yes - 70 180 See the diagrams UGT 10000 ?
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy - natural gas – at pressure(bar) and temperature (°C) - other type of working media and energy Minimum temperature of the natural gas when the START is allowed. Oil system: - using oil from the GTE	Kyrsec KW S kW m ³ °C	- yes - 70 180 See the diagrams UGT 10000 ? Yes_GTE
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy - natural gas – at pressure(bar) and temperature (°C) - other type of working media and energy Minimum temperature of the natural gas when the START is allowed. Oil system: - using oil from the GTE - senarate oil system (type of system and type of oil)	Kyrsec KW S kW m ³ °C	- yes - 70 180 See the diagrams UGT 10000 ? Yes GTE
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	Aniowable all consumption on the compression outlet for the anti-icing system and the needs of the GTCU Starter Type of the starter: Turbo starter electric starter other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: electric energy natural gas – at pressure(bar) and temperature (°C) other type of working media and energy Minimum temperature of the natural gas when the START is allowed. Oil system: using oil from the GTE separate oil system (type of system and type of oil)	KW S kW m ³ °C	- yes - 70 180 See the diagrams UGT 10000 ? Yes GTE 20
2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7.	Aniowable all consumption on the compression outlet for the anti-icing system and the needs of the GTCU Starter Type of the starter: Turbo starter electric starter other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: electric energy natural gas – at pressure(bar) and temperature (°C) other type of working media and energy Minimum temperature of the natural gas when the START is allowed. Oil system: using oil from the GTE separate oil system (type of system and type of oil) Allowed number of starts and stops for 1000 hours in operation of the CTE	Kyrsec KW S kW m ³ °C Pcs.	- yes - 70 180 See the diagrams UGT 10000 ? Yes GTE 30
2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.2.	Aniowable all consumption on the compression outlet for the anti-icing system and the needs of the GTCU Starter Type of the starter: Turbo starter electric starter other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: electric energy natural gas – at pressure(bar) and temperature (°C) other type of working media and energy Minimum temperature of the natural gas when the START is allowed. Oil system: using oil from the GTE separate oil system (type of system and type of oil) Allowed number of starts and stops for 1000 hours in operation of the GTE.	KW S kW m ³ °C Pcs.	- yes - 70 180 See the diagrams UGT 10000 ? Yes GTE 30 1200
2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8.	Aniowable all consumption on the compression outlet for the anti-icing system and the needs of the GTCU Starter Type of the starter: Turbo starter electric starter other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: electric energy natural gas – at pressure(bar) and temperature (°C) other type of working media and energy Minimum temperature of the natural gas when the START is allowed. Oil system: using oil from the GTE separate oil system (type of system and type of oil) Allowed number of starts and stops for 1000 hours in operation of the GTE. Resource of the starter, depending on the number of starts.	KW S kW m ³ °C Pcs. Pcs.	- yes - 70 180 See the diagrams UGT 10000 ? Yes GTE 30 1200
2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9.	Anowable an consumption on the compression outlet for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy - natural gas – at pressure(bar) and temperature (°C) - other type of working media and energy Minimum temperature of the natural gas when the START is allowed. Oil system: - using oil from the GTE - separate oil system (type of system and type of oil) Allowed number of starts and stops for 1000 hours in operation of the GTE. Resource of the starter, depending on the number of starts. Type of the coupling between the starter and the shaft used as a	KW S kW m ³ °C Pcs. Pcs.	- yes - 70 180 See the diagrams UGT 10000 ? Yes GTE 30 1200 Centrifugal tooth coupling
2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9.	Anowable an consumption on the compression outlet for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy - natural gas – at pressure(bar) and temperature (°C) - other type of working media and energy Minimum temperature of the natural gas when the START is allowed. Oil system: - using oil from the GTE - separate oil system (type of system and type of oil) Allowed number of starts and stops for 1000 hours in operation of the GTE. Resource of the starter, depending on the number of starts. Type of the coupling between the starter and the shaft used as a gas generator actuator / transmission /.	KW S kW m ³ °C Pcs. Pcs.	- yes - 70 180 See the diagrams UGT 10000 ? Yes GTE 30 1200 Centrifugal tooth coupling (automatic)
2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10.	Anowable an consumption on the compression outlet for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy - natural gas – at pressure(bar) and temperature (°C) - other type of working media and energy Minimum temperature of the natural gas when the START is allowed. Oil system: - using oil from the GTE - separate oil system (type of system and type of oil) Allowed number of starts and stops for 1000 hours in operation of the GTE. Resource of the starter, depending on the number of starts. Type of the coupling between the starter and the shaft used as a gas generator actuator / transmission /. Possibilities for Washing mode of operation.	Kyrsec KW S kW m ³ °C Pcs. Pcs. YES/NO	- yes - 70 180 See the diagrams UGT 10000 ? Yes GTE 30 1200 Centrifugal tooth coupling (automatic) Yes
2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10.	Aniowable an consumption on the compressor outlet for the anti-icing system and the needs of the GTCU Starter - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy - natural gas – at pressure(bar) and temperature (°C) - other type of working media and energy Minimum temperature of the natural gas when the START is allowed. Oil system: - using oil from the GTE - separate oil system (type of system and type of oil) Allowed number of starts and stops for 1000 hours in operation of the GTE. Resource of the starter, depending on the number of starts. Type of the coupling between the starter and the shaft used as a gas generator actuator / transmission /. Possibilities for Washing mode of operation. Possibilities for Conservation mode of operation	Kyrsec KW S kW m ³ °C Pcs. Pcs. YES/NO	- yes - 70 180 See the diagrams UGT 10000 ? Yes GTE 30 1200 Centrifugal tooth coupling (automatic) Yes Yes
2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11.	Aniowable an consumption on the compressor outlet for the anti-icing system and the needs of the GTCU Starter - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy - natural gas – at pressure(bar) and temperature (°C) - other type of working media and energy Minimum temperature of the natural gas when the START is allowed. Oil system: - using oil from the GTE - separate oil system (type of system and type of oil) Allowed number of starts and stops for 1000 hours in operation of the GTE. Resource of the starter, depending on the number of starts. Type of the coupling between the starter and the shaft used as a gas generator actuator / transmission /. Possibilities for Conservation mode of operation. Possibilities for Cold Start.	KW S kW m ³ °C Pcs. Pcs. YES/NO YES/NO	- yes - 70 180 See the diagrams UGT 10000 ? Yes GTE 30 1200 Centrifugal tooth coupling (automatic) Yes Yes Yes
2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12.	Available all consumption on the compression outlet for the anti-icing system and the needs of the GTCU Starter Type of the starter: - Turbo starter - electric starter - other device Available power output of the starter. Duration of one Start cycle. Operating pressure and energy consumption: - electric energy - natural gas – at pressure(bar) and temperature (°C) - other type of working media and energy Minimum temperature of the natural gas when the START is allowed. Oil system: - using oil from the GTE - separate oil system (type of system and type of oil) Allowed number of starts and stops for 1000 hours in operation of the GTE. Resource of the starter, depending on the number of starts. Type of the coupling between the starter and the shaft used as a gas generator actuator / transmission /. Possibilities for Conservation mode of operation. Possibilities for Cold Start. Other	KW S kW m ³ °C Pcs. Pcs. YES/NO YES/NO	- yes - 70 180 See the diagrams UGT 10000 ? Yes GTE 30 1200 Centrifugal tooth coupling (automatic) Yes Yes Yes Yes Yes

3.1.	Type of the used oil.		Tp 32 BDS 5	5976-80	
3.2.	Possibilities for using of other alternative types of oil.		Tp22C "MAC	CT" TU	
			224099155.0	006-98	
			Tp22GOST9972-74,		
			Turbonikoil 3	321, Turbonikoil	
			210A, Shell	Turbine oil 3SP	
3.3.	Irreparable oil losses (average) during normal mode of operation.	l/h	0,3		
3.4.	Oil coolers heat generation.	KW	200		
3.5.	Oil pressure at the GTE inlet.	MPa	0,5 ÷0,6		
3.6.	Minimum allowable oil temperature at the GTE inlet when	°C	35		
	START is allowed.				
3.7.	Operating oil temperature at the GTE inlet during a certain mode	°C	40 ÷55		
	of operation.				
3.8.	Operating oil temperature at the GTE outlet during a certain	°C	Max.110		
	mode of operation.				
3.9.	Consumption of oil through the GTE oil system during nominal	l/min	130		
	mode of operation.				
3.10.	Power turbine lubrication system (details if there is separate		Not		
	lubrication).				
3.11.	Oil filtration degree at the engine inlet.	μm	10		
3.12.	Type of the system.	(stand.)	Under press	ure, with	
			pumping from	m reservoir	
4.	Fuel system				
4.1.	Fuel gas pressure at GTE inlet	MPa	2,5 ÷0,05	In the	
				previous Data	
				Sheet was	
				done mistake	
4.2.	Fuel gas temperature at GTE inlet	°C	20 ÷ 50		
4.3.	Fuel gas consumption during nominal mode of operation under	kg/h	1780		
	the conditions of item 1.1	-			
4.4.	Fuel gas consumption during maximal mode of operation as per	kg/h	2050		
	item 1.1.				
4.5.	Filtration degree .	μm	10		
4.6.	Lowest heat of combustion at 20 [°] C and absolute pressure of	kкal/kg	11955		
	101,325 кРа.				
5.	Weight and overall dimensional characteristics				
5.1.	Length – maximum	mm	3090		
5.2.	Height – maximum	mm	1585		
5.3.	Width – maximum	mm	1250		
5.4.	Weight – maximum	ka	3500		
6.	Switching indexes	U			
6.1.	Duration of start up operations and loading when the pre-	min	10		
	commissioning conditions are fulfilled		-		
6.2.	Duration of start up operations and full loading when the pre-	min	20		
	commissioning conditions are fulfilled	-			
6.3.	Range of the power turbine capacity variation from minimum to	MW	3,5 ÷ 9.6	* Limitation	
	maximum mode of operation		/4.5* ÷ 9.6/	from the	
	'		.,,.,.,.,.,	compressor	
6.4.	Range of the power turbine rpm variation from minimum to	min ⁻¹	6150÷	ſ	
	maximum mode of operation		8610		
7.	Reliability indexes				
7.1.	General technical (prognosed) hours in operation of the GTU:				
	- of the gas generator	hours	100 000		
	- of the power turbine	hours	100 000		
7.2.	Hours in operation before overall repair:		~	Can more by	
	- of the gas generator	hours	25 000	condition	

	 of the power turbine 	hours	25 000	estimate
7.3.	Hours in operation before planned repair:			
	- of the gas generator	hours	-	
	 of the power turbine 	hours	-	
7.4.	Allowed number of start up and stopping operations of the GTE	Pcs	200 per	
	and the starter during operation (if there are such limits)		year	
7.5.	Formula for considering the influence of the number of start up		Not	
	and stopping operations upon using up of the hours in operation			
	until the overall repair (if there are such limits)			
7.6.	Average hours in operation until failure (defect) related with the	Hours	3500	
	GTE emergency stop			
7.7.	Average hours in operation until failure (defect) related with the	hours	Not	
	GTE normal stop.			
7.8.	A list of details, assemblies, modules, which have a		Not	
	limited hours in operation and shall be obligatory			
	replaced during operation or repair			
	replaced during operation of repair			
7.0	Tune of the technical energiant			
7.9.	i ype or the technical operation:		Ver 0	
	- nours in operation,		res?	
	- by level of reliability		í Vac 2	
7 4 0	- IIIIII condition of the operational parameters		res ?	
7.10.	Expected aging of the equipment in % at the end of the nours in			
	operation up to the firs repair or rejection	0/		
	Due to power output	%	4	
_	Due to efficiency coefficient	%	2	
8.	Operational technology		0.000	
8.1.	Regularity for technical servicing /routine inspection/ when the	hours	3 000	
	GIU and the GICU shall be stopped.		10	
8.2.	Time consumption	Man-hours	16	
8.3.	Consumption of materials and consumables		-	
8.4.	Regularity for partial analysis of used oil in the compressor	hours	168	
0.5	station laboratory.		4 45 - 5	
8.5.	Regularity for complete analysis of used oil in specialized	Hours	1 time for	
	laboratories.		month	
9.			See the diag	rams UG1
	Obligatory but not limiting operational		6000+	
	characteristics			
9.1.	Environmental characteristics and correction coefficients of the			
	gas turbine:			
9.1.1.	$\delta = f(p_1, H)$			
9.1.2.	$\varepsilon_1 = f(\delta p_1)$			
9.1.3.	$\varepsilon_2 = f(\delta p_5)$			
9.1.4.	$\varepsilon_3 = f(\delta Q_a)$			
9.1.5.	$COx = f(T_{5,4}), f(P_2)$			
9.1.6.	NOx = $f(T_{5,4}), f(P_2)$			
9.1.7.	NOx = f(COx)			
9.2.	Characteristics reduced to ISO $p_0 = 760 \text{ mmHg}$ (1013 mbar), T_0			
	= 15 °C:			
9.2.1.	$W_e = f_1 (T_1, f_2 (T_4), f_3 (p_2), f_4 (n_e))$			
9,2.2.	$W_{e} = f_{1} \left(N_{TL}, f_{2} \left(N_{CC} \right), f_{3} \left(n_{e} \right), f_{4} \left(W_{ee} \right) \right)$			
9.2.3	$(T_2, T_2, T_4, T_5) = f(N_{CC})$			1
924	$(Q_2, Q_4, P_2) = f(N_{22}, W_2)$			
925	$\alpha_{\text{max}} = f_{1} \left(N_{\text{max}} f_{2} \left(T_{1} \right) \right)$			
9.2.0.	$ \pi_{\text{RDE}} = \frac{1}{1} \left(\frac{1}{10} \frac{1}{\text{GG}}, \frac{12}{12} \left(\frac{1}{1} \right) \right) $ $ \pi_{\text{RDE}} = \frac{1}{10} \left(\frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \right) $			
0.2.0.	$\mu_{KE} = \mu_2 / \mu_1 = \mu_1 (w, \mu_2 (\mu_{GG}))$ $w = w_a + w_f$			
ອ.ວ.	Auditional characteristics for two-shall gas generators		1	1

9.3.1.	$W_e = f_1 (N_{TL}, f_2 (N_{GG1}), f_3 (N_{GG2}), f_4 (\eta_e))$		
9.3.2.	$W_{e} = f_{1} (S, T_{5})$		
9.3.3.	T_{5} , N _e , πκε = f ₁ (S)		
9.4	Additional characteristics		

SYMBOLS:

- H(m) altitude;
- δ [%] coefficient of correction;
- ε1, ε2 [%] coefficients of correction from losses at the gas turbine inlet and outlet;
- ε₃[%] coefficient of correction for air off-take from the gas turbine compressor for the needs of the GTCU;
- (δp₁), (δp₅) [mmH₂O];
- δQ_a [kg/s] air off-take for the needs of the GTCU;
- Рн[Pa] barometric pressure
- p1[Pa]; compressor inlet pressure
- p2[Pa] air pressure at the outlet of the gas turbine compressor;
- $\pi_{\kappa\epsilon} = p_2/p_1$ total compression ratio in the gas generator compressor
- TH[°C] –ambient temperature
- T₁ [°C] gas turbine inlet temperature;
- T₂[°C] gas turbine compressor outlet temperature;
- T₃[°C] gas generator vane inlet temperature;
- T₄[°C] gas generator vane outlet temperature;
- T₅[°C] power turbine inlet temperature;
- We [kW] efficient calculated power turbine shaft output;
- W_{cp} [MW] thermal power;
- N_{GG} [min⁻¹] rpm of the gas generator rotor;
- N_{GG1} [min⁻¹] rpm of the low pressure gas generator rotor;
- N_{GG2} [min⁻¹] rpm of the high pressure gas generator rotor;
- **N**_{TL} [**min**⁻¹] power turbine rpm;
- η_e [%] efficiency coefficient
- Qa [kg/sec] calculated air consumption of the gas turbine compressor;
- $\mathbf{Q} = \mathbf{Q}_{\mathbf{a}} + \mathbf{Q}_{\mathbf{f}}$ total gas consumption of the gas turbine.
- **Q**_f[**κr**/**ceκ**] calculated fuel consumption of the gas turbine combustion chamber water column;
- α_{RDE} [angular degrees] angular deviation of the inlet guiding vanes of the GTU compressor;
- s = N_{GG1}/ N_{GG2} [%] sliding between the low pressure and high pressure gas generator shafts (for two-shaft engines);
- COx [ppm, mg/Nm³, gr/kg fuel or other] volume of carbon oxides in the engine exhaust gases;
- NOx [ppm, mg/Nm³, gr/kg fuel or other] volume of nitrogen oxides in the engine exhaust gases;

UGT 10000 S1 "STIG" electrical control block scheme

Annex No. 6

Enbacher J 620 GS cogeneration common view

Annex No. 7

JENBACHER

J 620 GS - E01

Valid to: 31.12.04

Speed	1500 rpm	BMEP at M.C.R.	20,00 bar
Fuel Gas	Natural Gas (MN 94)	Compression ratio	11
NOx-emission	500 mg/m3	CO-emission (app. value)	1050 mg/m3
Jacket water outl.max.	95 °C	intercooler watertemp. max	40 °C _
Min. Methane number	80	Exhaust gas manifold	Uncooled
Max. Oil temperature	80 °C	Interco, flow rate; low-temp.	40 m3/h
Return temp. high-temp.	70 °C	Interco. flow rate; high-temp.	50 m3/h
		· •	

standard rating conditions and tol. see general spec.; volume values at normal conditions; exhaust flow at silencer; Pe = ICFN (ISO 3046/I)

	E	nergy ba	alance				
Engine load Engine rating BMEP	: Pe : pme	[%] [kW] [bar]	100 3119 20,00	75 2339 15,00	50 1559 10,00	25 780 5,00	
Heat consumption	: we [l	kWh/kWh]	2,27	2,34	2,48	2,89	
Energy balance absolute Input Mechanical Jacket water Oil-cooler Exhaust gas total Exhaust gas 180°C Exhaust gas 120°C Exhaust gas 100°C Hightemp. Intercooler Lowtemp. Intercooler Surface heat Balance	: Qzu : Qne : Qkw : Qkö : Qag : Qag : Qag : Qag : Qgkh : Qgkt : Qst : Qre	[kWh] [kWh] [kWh] [kWh] [kWh] [kWh] [kWh] [kWh] [kWh] [kWH]	7076 3119 538 326 2119 1363 1658 1756 525 188 188 71	5468 2339 465 297 1770 1198 1421 1495 271 119 148 55	3860 1559 386 255 1343 952 1105 1155 76 70 131 39	2251 780 268 199 829 610 696 724 -1 31 123 23	
Energy balance relative [%] Mechanical Jacket water Oil-cooler Exhaust gas total Exhaust gas 180°C Exhaust gas 120°C Exhaust gas 100°C Hightemp. Intercooler Lowtemp. Intercooler Surface heat Balance	: Qne : Qkw : Qkö : Qag : Qag : Qag : Qag : Qag : Qag : Qgkh : Qgkt : Qst : Qre	[%] [%] [%] [%] [%] [%] [%] [%]	44,1 7,6 4,6 29,9 19,3 23,4 24,8 7,4 2,7 2,7 1,0	42,8 8,5 5,4 32,4 21,9 26,0 27,3 5,0 2,2 2,7 1,0	40,4 10,0 6,6 34,8 24,7 28,6 29,9 2,0 1,8 3,4 1,0	34,6 11,9 8,8 36,8 27,1 30,9 32,1 0,0 1,4 5,5 1,0	
Exh. gas temp.	: ta	[°C]	425	464	509	555	
Fuel/Air ratio	: La	[1]	1,92	1,88	1,82	1,73	
Exhaust gas mass flow rate, wet Exhaust gas mass flow rate, dry Exhaust gas volume, wet Exhaust gas volume, dry	: maf : mat : Vaf : Vat	[kg/h] [kg/h] [m3/h] [m3/h]	17325 16181 13666 12293	13121 12237 10354 9293	8966 8342 7079 6331	5001 4638 3953 3516	
Combustion air mass flow rate Combustion air volume	: mi : VI	[kg/h] [m3/h]	16816 13008	12727 9845	8688 6721	4840 3744	

offical in charge:	Sign:	Printed:
ElsenbrT	te	28.09.04

JENBACHER

J 620 GS - E01

Valid to: 31.12.2004

Speed1500 rpmFuel GasNatural Gas (MN 94)NOx-emission500 mg/m3Jacket water outl.max.95 °CMin. Methane number80	BMEP at M.C.R. Compression ratio CO-emission (app. value) intercooler watertemp. max Exhaust gas manifold	20,00 bar 11 1050 mg/m3 40 °C Uncooled
---	---	--

standard rating conditions and tol. see general spec.; volume values at normal conditions; exhaust flow at silencer; Pe = ICFN (ISO 3046/I)

Energy balance

EXHAUST GAS AND POLLUTANT EMISSIONS

Engine load		[%]	100		
Theor. composition of wet exhaust gas at 100% fuel gas combustion:					
N2		Vol %	74,3		
02		Vol %	9,5	•	
AR		Vol %	0,9		
CO2		Vol %	5,2		
H2O		Vol %	10,0		
O2 dry exhaust g	as	Vol %	10,6		
Emission					
NOx	1)	ppm	154		
NOx (als NO2)	,	g/kWh Qne	1,33		
NOx (als NO2)		kg/h	4,14		
NOx (als NO2)	2)	ma/m3	500		
NOx (als NO2)	-,	g/GJ Qzu	157		
,,		0			
CO	1)	ppm	546		
CO		g/kWh Qne	2,79		
CO		kg/h	8,69		
CO	2)	ma/m3	1050		
CO	,	g/GJ Qzu	329		

1, in dry exhaust gas 2, in dry exhaust gas at 5% oxygen

Printed: 28.09.04

Cogenerations thermal flows schemes

Annex No. 9 -1

UGT 10000 S1 STIG

Annex

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 27 from 147

Function and fields of application

The Compart DXF 351 flow computer combines signals from volumetric flowmeters with those from pressure, temperature and density sensors. Using various flow formulae, the computer is capable of calculating variables important for the measurement and control industry (see page 4):

- Mass, operating volume and corrected volume flow
- Heat flow
- Delta heat
- Combustion heat

All data required for steam and water such as the saturated steam curve, density and heat content are permanently stored in the Compart DXF 351. For various other fluids such as air, natural gas and other fuels, default data is stored and can be adjusted by the user according to individual process conditions. This eliminates tedious searching in reference manuals.

The measured and calculated variables can be displayed in selectable engineering units, assigned to various outputs and printed out either automatically at programmed intervals or by pressing a key.

Vortex Flow Measuring System prowirl 77

Reliable Flow Measurement of Gases, Steam and Liquids

Safe

- Verified electromagnetic compatibility according to IEC and NAMUR
- Every instrument hydrostatically pressure tested
- Sensor and electronics selfdiagnostics with alarm function
- Proven capacitive sensor: high resistance to thermal shock, water hammer and vibration
- Sensor, meter body and bluff body made of stainless steel, NACE MR 0175 conform

Accurate

- Low measuring uncertainty: <1% o.r. (gas, steam)
 <0.75% o.r. (liquids)
- Wide turndown of up to 40:1
- Every flowmeter wet calibrated

Flexible

- One standard, compact flowmeter for all fluids and a complete process temperature range of -200...+400 °C
- Available in pressure ratings up to PN 160/CL 600
- Flanged and high pressure version with standard ISO face-to-face lengths (DN 15...150)
- Wafer version with standard 65 mm face-to-face length

Universal

- HART communication for remote reading and configuration
- Fieldbus communication via PROFIBUS-PA interface
- Operating under E+H Windows software "Commuwin II", can be fully configured off-line
- Output signal simulation

Electromagnetic Flow Measuring System *promag 50/53 P*

Flow measurement in chemical or process applications

Features and benefits

- Nominal diameters DN 15...600
- PTFE or PTA lining
- PFA for high-temperature applications up to +180 °C
- Fitting lengths to DVGW and ISO
- High measuring accuracy for improved process control:
 - Promag 50: ± 0.5% (option: ± 0.2%)
 Promag 53: ± 0.2%
- Robust field housing, IP 67
- IP 67 wall-mount housing for straightforward installation of the remote version
- Promag 53 with Touch Control: Operation without opening the housing – also for Ex-rated applications
- Expandable software packages:
 - for batching applications
 - for electrode cleaning
 - for extended diagnosis and enhanced operational dependability
- Quick Setup menus for straightforward commissioning in the field

- Interfaces for integration into all major process-control systems:
 - HART interface as standard
 - Promag 50: PROFIBUS-PA
 - Promag 53: PROFIBUS-PA/-DP, FOUNDATION fieldbus
- Ex approval for installation in zone 1 (ATEX, FM, CSA, etc.)

Application

- All fluids with a minimum conductivity of
- \geq 5 μ S/cm can be measured:
- acids and alkalis
- paints, lacquers
- pastes, mashes
- water, wastewater, etc.

A minimum conductivity of $\ge 20 \ \mu$ S/cm is required for measuring demineralized water.

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 32 from 147

<u>Annex No. 11 - 2</u>

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 33 from 147

BLOCK SCHEME TOPLOFIKATSIA KAZANLAK

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 34 from 147

Annex No. 11-4

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 35 from 147

Annex No. 12

Excerpts from the price list approved by the State Committee on Energy Regulation as to 02.2005

<u>Prices</u>

V. Prices for active electric energy, consumed for domestic needs by the population

Measurement method	Time zones	Monthly consumption	Price (BGN/kWh)	Applies to the following consumers
	Day Up to 75 kWh		0.098	Everyone
time		Over 75 kWh	0.174	Everyone
On two scales Nigl tim	Night	Total consumption Night		 not connected to the thermal energy transmission network not connected to the thermal energy transmission network during the April 1st – October 31st period
	time Up to 50 kWl Over 50 kWl	Up to 50 kWh	0.053	- not connected to the thermal energy transmission network during the November 1^{st} – March 31^{st} period
		Over 50 kWh	0.093	- not connected to the thermal energy transmission network during the November 1^{st} – March 31^{st} period

Remark: The above prices is included value-added tax.

VI. <u>Prices for active electric energy, consumed for business and public activities</u> by state and municipal entities, by real persons and legal entities

Measurement method	Time zones	Price (BGN/kWh) for voltage			
		HV	MV	LV	
	Peak time	0.122	0.137	0.163	
1. On three scales	Daytime	0.076	0.085	0.101	
	Nighttime	0.046	0.052	0.062	

Remark: The above prices include value-added tax.

VII. Prices for active electric energy, consumed for business and public activities by state and municipal entities, by real persons and legal entities on holidays and rest days, for consumers, who are connected to the transmission network, with an annual consumption of over 50 mln. kWh and regular payers to NEC EAD

Measurement method	Time zones	Price (BGN/kWh) HV
1. On three scales	Peak time	0.122
	Daytime	0.068
	Nighttime	0.038

Remark: The above prices include value-added tax.

X. Limit prices for thermal power supply

2. Plant Stations

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 36 from 147
No.	Plant Stations	Price of water steam (BGN/MWh)	Price of hot water (BGN/MWh)
1	TPS at "BRIKEL" EAD, town of Galabovo		32.92
2	TPS at "Sviloza" AD	28.31	24.53
3	TPS at "ZAHARNI ZAVODI" AD, town of Gorna Oryahovitsa	36.29	
4	TPS at "DEVEN" AD, town of Devnya	22.55	

Remark: The above prices do not include value-added tax.

XI. <u>Prices for purchasing electric energy from stations</u> with combined production of thermal and electric power

1. From the thermal power supply companies

No.	Company	Price of electric energy (BGN/MWh)
1	"Toplofikatsiya – Sofia" EAD	80
2	"Toplofikatsiya – Plovdiv" EAD	80
3	"Toplofikatsiya – Pleven" EAD	80
4	"Toplofikatsiya – Sliven" EAD	79
5	"Toplofikatsiya – Shumen" EAD	80
6	"Toplofikatsiya – Kazanlak" EAD	120
7	"Toplofikatsiya – Gabrovo" EAD	79
8	"Toplofikatsiya – Pernik" EAD	79
9	"Toplofikatsiya – Pravets" EAD	85
10	"Toplofikatsiya – Rousse" EAD	74.56
11	"TEGE 21" Ltd.	95

Remark: The above prices do not include value-added tax.

XVIII. Limit price of natural gas in case of sale by the transmission company to consumers, connected to the gas transmission network -231.75 BGN/1000 m³

Remark: The above price does not include value-added tax.

Natural gas certificate for 2004

Annex No. 13

Components	Formula	Dimens.		VALUES PER MONTH								
			Feb	Jan	March	April	May	July	August	Sept.	October	Dec.
Methane	CH_4	vol. %	98,377	98,275	98,337	98,158	98,144	98,2	98,085	98,156	98,195	98,25
Ethane	C_2H_6	vol. %	0,539	0,603	0,562	0,676	0,681	0,651	0,731	0,692	0,672	0,642
Propane	C ₃ H ₆	vol. %	0,175	0,2	0,186	0,229	0,237	0,222	0,249	0,231	0,221	0,209
i-Buthane	$I-C_4H_{10}$	vol. %	0,033	0,037	0,035	0,043	0,044	0,043	0,047	0,044	0,041	0,037
n-buthane	N-C ₄ H ₁₀	vol. %	0,032	0,036	0,035	0,044	0,047	0,045	0,049	0,044	0,041	0,036
i-penthane	$I-C_5H_{12}$	vol. %	0,005	0,007	0,007	0,009	0,009	0,009	0,009	0,008	0,008	0,006
n-penthane	I-C ₅ H ₁₂	vol. %	0,005	0,005	0,005	0,006	0,007	0,007	0,007	0,006	0,005	0,004
neo-penthane	NEO-C ₅ H ₁₂	vol. %	-	-	-	-	-	-	-	-	-	-
i-xeksane	I-C ₆ H ₁₄	vol. %	0,006	0,007	0,007	0,008	0,007	0,009	0,009	0,008	0,007	0,006
Nitrogen	N ₂	vol. %	0,791	0,789	0,787	0,784	0,781	0,772	0,77	0,77	0,767	0,768
Carboneoxide	CO ₂	vol. %	0,037	0,041	0,039	0,043	0,043	0,042	0,044	0,041	0,043	0,042
H ₂ S+mercap.	H ₂ S+m	g/nm ³	0,025	0,025	0,025	0,024	0,024	0,024	0,024	0,024	0,024	0,02
Dencity	R	kg/nm ³	0,6793	0,6802	0,06797	0,6813	0,6815	0,6811	0,6821	0,6813	0,681	0,6804
LHV	Q	kcal/nm ³	7987	7996	7992	8009	8011	8008	8019	8012	8007	8002
Dew point	Т	°C	-16,1	-15,2	-13,7	-13,5	-13,1	-8,8	-13,3	-19,7	-21,3	-13,8

BULGARGAS -EAD NATURAL GAS SERTIFICATE FOR 2004

Monitoring Models

Annex No. 14

POYIMERI CoGen Power Plant

Annual consumption

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 38 from 147

Natural gas for CHP x1000 Nm3

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
Мау							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (1000 Nm3)	0	0	0	0	0	0	0

Production of steam from CHP;[MWh]

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
Мау							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (MWh)	0	0	0	0	0	0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 39 from 147

Generated electricity from CHP ;[MWh]

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
May							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (MWh)	0	0	0	0	0	0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 40 from 147

Estimation of the project emissions

LHVNG	Lower heating value	7934 kkal/Nm3	For natural gas in Bulgaria. Value provided by Bulgargas.	
EFng	CO2 emissions factor (combustion)	56.1 kg/GJ	Natural gas (dry): 15.3 t C/TJ lower heating value basis	
			x 44/12 = 56.1 t CO2/TJ	

CHP LM2000 STIG 10000S1

Year	Year	Natural gas	Natural gas	CO2	CO2equiv.
		consumption	consumption	emissions	emissions
		x 1000	(combustion)	(combustion)	
		Nm3/year	GJ/year	t/year	t/year
3	2006	0	0	0.0	0
4	2007	0	0	0.0	0
5	2008	0	0	0.0	0
6	2009	0	0	0.0	0
7	2010	0	0	0.0	0
8	2011	0	0	0.0	0
9	2012	0	0	0.0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 41 from 147

Calculation of the baseline emissions

LHVNG	Lower heating value	7934 For natural gas in Bulgaria. Value provided by Bulgargas
Anthracite	CO2 emissions factor (combustion)	98.3 Primary fuel-anthracite: 98.3 t C/TJ

CHP STIG 10000 S1 Heat production

Year	Year	η production	Steam production	Replaced head from	CO2 emissions
		0.1.3.G.	MWh/year	GJ/year	t/year
3	2006	0.85	0	0.0	0.0
4	2007	0.85	0	0.0	0.0
5	2008	0.85	0	0.0	0.0
6	2009	0.85	0	0.0	0.0
7	2010	0.85	0	0.0	0.0
8	2011	0.85	0	0.0	0.0
9	2012	0.85	0	0.0	0.0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 42 from 147

Calculation of the baseline emissions

POLYMERI

LHVNG	Lower heating value	7934 kkal/Nm3	For natural gas in Bulgaria. Value provided by Bulgargas.
EFNG	CO2 emissions factor (combustion)	56.1 kg/GJ	Natural gas (dru): 15.3 t C/TJ lower heating value basis
			x 44/12 = 56.1 t CO2/TJ
EFELgen.	CO2 emissions factor - generating electricity	gCO2/kWh	B.4 The standardised carbon emission factors
EFELcons	. CO2 emissions factor - reducing electricity consu	mption gCO2/kWh	Operational Guidelines for PDDs of JI projects

CHP STIG 10000S1 Electriciti

Year	Year	Natural gas	Natural gas	Electricity	EFEL	CO2	EFEL
		consumption	consumption	production	generating	emissions	consumption
		x 1000	(combustion)	for CHP			
		Nm3/year	GJ/year	MWh/year	t/MWh	t/year	t/MWh
3	2006	0	0	0	0.797	0.0	0.934
4	2007	0	0	0	0.779	0.0	0.912
5	2008	0	0	0	0.761	0.0	0.890
6	2009	0	0	0	0.743	0.0	0.867
7	2010	0	0	0	0.725	0.0	0.845
8	2011	0	0	0	0.707	0.0	0.822
9	2012	0	0	0	0.689	0.0	0.800

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 43 from 147

Anual emissions TOTAL reduction

POLYIMERI

		Basis Line		Project Line	
Year	Year	CO2equiv.	CO2	CO2equiv.	Reduction
		emissions	emissions	emissions	CO2equiv.
		head	electricity	CHP	
		t/year	t/year	t/year	t/year
3	2006	0	0	0	0
4	2007	0	0	0	0
5	2008	0	0	0	0
6	2009	0	0	0	0
7	2010	0	0	0	0
8	2011	0	0	0	0
9	2012	0	0	0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 44 from 147

KOSTENETS CoGen Power Plant

Annual consumption

Natural gas for CHP x1000 Nm3

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
Мау							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (1000 Nm3)	0	0	0	0	0	0	0

Production of steam from CHP;[MWh]

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
Мау							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (MWh)	0	0	0	0	0	0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 45 from 147

Generated electricity from CHP ;[MWh]

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
May							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (MWh)	0	0	0	0	0	0	0

Electrisity consumption ; [MWh]

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
May							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (MWh)	0	0	0	0	0	0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 46 from 147

KOSTENET S

Estimation of the project emissions

LHVNG	Lower heating value	7934 kkal/Nm3	For natural gas in Bulgaria. Value provided by Bulgargas.
EFNG	CO2 emissions factor (combustion)	56.1 kg/GJ	Natural gas (dry): 15.3 t C/TJ lower heating value basis $x 44/12 = 56.1 \text{ t } CO2/T.I$
			x 44/12 = 50.11 CO 2/15

CHP UGT STIG 10000S1

Year	Year	Natural gas	Natural gas	Electricity	Electricity	CO2	CO2	CO2equiv.
		consumption	consumption	production	consumption	emissions	emissions	emissions
		x 1000	(combustion)			(combustion)	repl. Electr.	
		Nm3/year	GJ/year	MWh/year	MWh/year	t/year	t/year	t/year
3	2006	0	0	0	0	0.0	0.0	0.0
4	2007	0	0	0	0	0.0	0.0	0.0
5	2008	0	0	0	0	0.0	0.0	0.0
6	2009	0	0	0	0	0.0	0.0	0.0
7	2010	0	0	0	0	0.0	0.0	0.0
8	2011	0	0	0	0	0.0	0.0	0.0
9	2012	0	0	0	0	0.0	0.0	0.0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 47 from 147

KOSTENETS

Calculation of the baseline emissions

LHVNG Lower heating value	7934 kkal/Nm3	For natural gas in Bulgaria. Value provided by Bulgargas.
EF heavy oil CO2 emissions factor (combustion)	80.7 kg/GJ	Primary fuel-Heavy Oil: 80.7 t C/TJ

CHP STIG 10000 S1 Heat production

Year	Year	η production S.G.	Steam production for CHP MWh/year	Replaced heat from CHP GJ/year	CO2 emissions (combustion) t/year
3	2006	0.89	0	0.0	0.0
4	2007	0.89	0	0.0	0.0
5	2008	0.89	0	0.0	0.0
6	2009	0.89	0	0.0	0.0
7	2010	0.89	0	0.0	0.0
8	2011	0.89	0	0.0	0.0
9	2012	0.89	0	0.0	0.0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 48 from 147

KOSTENETS

Calculation of the baseline emissions

CHP UGT 10000 S1 STIG

Year	Year	Natural gas	Electricity	Electricity	EFEL	CO2	EFEL
		consumption	consumption	production	generating	emissions	consumption
		x 1000		for CHP			
		Nm3/year	MWh/year	MWh/year	t/MWh	t/year	t/MWh
3	2006	0	0	0	0.797	0.0	0.934
4	2007	0	0	0	0.797	0.0	0.912
5	2008	0	0	0	0.797	0.0	0.890
6	2009	0	0	0	0.797	0.0	0.867
7	2010	0	0	0	0.797	0.0	0.845
8	2011	0	0	0	0.797	0.0	0.822
9	2012	0	0	0	0.797	0.0	0.800

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 49 from 147

KOSTENETS

Anual emissions TOTAL reduction

		Basis Line		Project Line	
Year	Year	CO2equiv.	CO2	CO2equiv.	Reduction
		emissions	emissions	emissions	CO2equiv.
		head	electricity	СНР	
		t/year	t/year	t/year	t/year
3	2006	0	0	0	0
4	2007	0	0	0	0
5	2008	0	0	0	0
6	2009	0	0	0	0
7	2010	0	0	0	0
8	2011	0	0	0	0
9	2012	0	0	0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 50 from 147

KAZANLAK CoGen Power Plant

Annual consumption

Natural gas x1000 Nm3

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
Мау							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (1000 Nm3)	0	0	0	0	0	0	0

Production of Head ;[MWh]

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
Мау							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (MWh)	0	0	0	0	0	0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 51 from 147

Generated electricity from CHP ;[MWh]

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
May							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (MWh)	0	0	0	0	0	0	C

Electricity consumed ; [MWh]

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
Мау							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (MWh)	0	0	0	0	0	0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 52 from 147

DHC KAZANLAK

Estimation of the project emissions

LHVNG LO	ower heating value	7934 kkal/Nm3	For natural gas in Bulgaria. Value provided by Bulgargas.
EFNG CO	O2 emissions factor (combustion)	56.1 kg/GJ	Natural gas (dry): 15.3 t C/TJ lower heating value basis $x \frac{44}{12} = 56.1 \text{ t } CO2/TJ$

CHP Jenbacher

								1-Ө-П
Year	Year	Natural gas	Natural gas	Electricity	Electricity	CO2	CO2	CO2equiv.
		consumption	consumption	production	consumption	emissions	emissions	emissions
		x 1000	(combustion)			(combustion)	repl. Electr.	
		Nm3/year	GJ/year	MWh/year	MWh/year	t/year	t/year	t/year
3	2006	0	0	0	0	0.0	0.0	0.0
4	2007	0	0	0	0	0.0	0.0	0.0
5	2008	0	0	0	0	0.0	0.0	0.0
6	2009	0	0	0	0	0.0	0.0	0.0
7	2010	0	0	0	0	0.0	0.0	0.0
8	2011	0	0	0	0	0.0	0.0	0.0
9	2012	0	0	0	0	0.0	0.0	0.0

I=G-H

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 53 from 147

DHC KAZANLAC

Calculation of the baseline emissions

LHVng	Lower heating value	7934 kkal/Nm3	For natural gas in Bulgaria. Value provided by Bulgargas.
EF heavy oil	CO2 emissions factor (combustion)	<mark>80.7</mark> kg/GJ	Primary fuel-Heavy Oil: 80.7 t C/TJ

CHP STIG 10000 S1 Head production

Year	Year	η production S.G.	Steam production for CHP	Replaced head from CHP	CO2 emissions (combustion)
			MWh/year	GJ/year	t/year
3	2006	0.89	0	0.0	0.0
4	2007	0.89	0	0.0	0.0
5	2008	0.89	0	0.0	0.0
6	2009	0.89	0	0.0	0.0
7	2010	0.89	0	0.0	0.0
8	2011	0.89	0	0.0	0.0
9	2012	0.89	0	0.0	0.0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 54 from 147

DHC KAZANLAK

Calculation of the baseline emissions

LHVNG	Lower heating value	7934 kkal/Nm3	For natural gas in Bulgaria. Value provided by Bulgargas.
EFNG	CO2 emissions factor (combustion)	56.1 kg/GJ	Natural gas (dry): 15.3 t C/TJ lower heating walue basis
			x 44/12 = 56.1 t CO2/TJ
EFELgen	. CO2 emissions factor - generating electricity	gCO2/kWh	B.4 The standardised carbon emission factors
EFELcons	s. CO2 emissions factor - reducing electricity consu	Imption gCO2/kWh	Operational Guidelines for PDDs of JI projects

CHP Jenbacher Electricity

Year	Year	Natural gas	Electricity	Electricity	EFEL	CO2	EFEL
		consumption	consumption	production	generating	emissions	consumption
		x 1000		for CHP			
		Nm3/year	MWh/year	MWh/year	t/MWh	t/year	t/MWh
3	2006	0	0	0	0.797	0.0	0.934
4	2007	0	0	0	0.797	0.0	0.912
5	2008	0	0	0	0.797	0.0	0.890
6	2009	0	0	0	0.797	0.0	0.867
7	2010	0	0	0	0.797	0.0	0.845
8	2011	0	0	0	0.797	0.0	0.822
9	2012	0	0	0	0.797	0.0	0.800

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 55 from 147

DHC KAZANLAK

Anual emissions TOTAL reduction

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 56 from 147

JAMBOL CoGen Power Plant

Annual consumption

Natural gas x1000 Nm3

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
Мау							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (1000 Nm3)	0	0	0	0	0	0	0

Production of Head ;[MWh]

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
Мау							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (MWh)	0	0	0	0	0	0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 57 from 147

Generated electricity from CHP ;[MWh]

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
Мау							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (MWh)	0	0	0	0	0	0	0

Electricity for own needs ; [MWh]

Mont	2006	2007	2008	2009	2010	2011	2012
Jan							
Feb							
Mar							
Apr							
Мау							
Jun							
Jul							
Aug							
Sep							
Oct							
Nov							
Dec							
Total (MWh)	0	0	0	0	0	0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 58 from 147

Estimation of the project emissions

DHC Jambol

LHVNG	Lower heating walue	7934 kkal/Nm3	For natural gas in Bulgaria. Value provided by Bulgargas.
EFNG	CO2 emissions factor (combustion)	56.1 kg/GJ	Natural gas (dru): 15.3 t C/TJ lower heating walue basis
			x 44/12 = 56.1 t CO2/TJ
EFfuel	CO2 emissions factor (average)	43.677 kg/GJ	Statistical value for Jambol city

CHP Jenbacher

Year	Year	Natural gas	Natural gas	Electricity	Electricity Electricity		CO2	CO2 project
		consumption	consumption	production	consumption	emissions	emissions	emissions
		x 1000	(combustion)			(combustion)	repl. Electr.	
		Nm3/year	GJ/year	MWh/year	MWh/year	t/year	t/year	t/year
3	2006	0	0	0	0	0	0	0
4	2007	0	0	0	0	0	0	0
5	2008	0	0	0	0	0	0	0
6	2009	0	0	0	0	0	0	0
7	2010	0	0	0	0	0	0	0
8	2011	0	0	0	0	0	0	0
9	2012	0	0	0	0	0	0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 59 from 147

Calculation of the baseline emissions

LHVNG	Lower heating value	7934 kkal/Nm3	For natural gas in Bulgaria. Value p	rovided by Bulgargas.
EFfuel	CO2 emissions factor (average)	43.677 kg/GJ	Statistical value for Jambol city	

CHP Jenbacher

DHC Jambol

Year	Year	η production	Head production	Replleicet head from	CO2 emissions
		S.G.	MWh/year	CHP GJ/year	(combustion) t/year
3	2006	0.8	0	0.0	0
4	2007	0.8	0	0.0	0
5	2008	0.8	0	0.0	0
6	2009	0.8	0	0.0	0
7	2010	0.8	0	0.0	0
8	2011	0.8	0	0.0	0
9	2012	0.8	0	0.0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 60 from 147

DHC Jambol

Calculation of the baseline emissions

LHVNG	Lower heating value	7934 kkal/Nm3	For natural gas in Bulgaria. Value providet bu Bulgargas.
EFNG	CO2 emissions factor (combustion)	56.1 kg/GJ	Natural gas (dru): 15.3 t C/TJ lower heating walue basis
			x 44/12 = 56.1 t CO2/TJ
EFELgen.	CO2 emissions factor - generating electricity	gCO2/kWh	B.4 The standardised carbon emission factors
EFELcons.	CO2 emissions factor - reducing electricity consu	mption gCO2/kWh	Operational Guidelines for PDDs of JI projects

CHP Jenbacher Electricity

Year	Year	Natural gas	Electricity	Electricity	EFEL	CO2	EFEL
		consumption	consumption	production	generating	emissions	consumption
		x 1000		for CHP			
		Nm3/year	MWh/year	MWh/year	t/MWh	t/year	t/MWh
3							
4							
5	2008						
6	2009						
7	2010						
8	2011						
9	2012						

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 61 from 147

DHC Jambol

Annual emissions TOTAL reduction

]

		Basis Line		Project Line	
Year	Year	CO2equiv.	CO2	CO2equiv.	Reduction
		emissions	emissions	emissions	CO2equiv.
		head	electriciti	CHP	
		t/year	t/year	t/year	t/year
3	2006	0	0	0	0
4	2007	0	0	0	0
5	2008	0	0	0	0
6	2009	0	0	0	0
7	2010	0	0	0	0
8	2011	0	0	0	0
9	2012	0	0	0	0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 62 from 147

Calculation IRR of the project excluding the revenue from the sale of AAUs and ERUs

Annex No. 15

Calculations revenues and costs of the project in Polymeri JSC without the effect from AAUs and ERUs

				Costs						Revenues		
	Invest	Interest	Average A	Annual	Mainte	Total	Total	Electri	Electri	Thermal	CO2	Total
Ye	ment	Costs	Cogen Ga	S	nance	Annual	Annual	city	city	nergy	Sold	Annual
ars	Credit	8.50%	Consump	tion	and	Costs	Costs	Annual	sold	Annual	Incomes	Revenues
			for 3300 N	Nm³/h	Operat.	without	Interest	Consum	to NEC	Consumtio	AAUs	
			price 118.	5	Costs	the	Included	ption		/Sold to	and	
			EUR/1000	DNmi		Credit				consumers/	ERUs	
	ThEUR	ThEUR	1000Nmi	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR
2005	5403.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2006	0.0	459.3	0.0	0.0	0.0	0.0	459.3	0.0	0.0	0.0	0.0	0.0
2007	900.5	459.3	27060.0	3206.6	76.0	3282.6	3741.9	3075.0	0.0	1595.0	0.0	4670.0
2008	900.5	382.7	27060.0	3206.6	103.0	3309.6	3692.3	3075.0	0.0	1595.0	0.0	4670.0
2009	900.5	306.2	27060.0	3206.6	135.0	3341.6	3647.8	3075.0	0.0	1595.0	0.0	4670.0
2010	900.5	229.6	27060.0	3206.6	580.0	3786.6	4016.2	3075.0	0.0	1595.0	0.0	4670.0
2011	900.5	153.1	27060.0	3206.6	129.0	3335.6	3488.7	3075.0	0.0	1595.0	0.0	4670.0
2012	900.5	76.5	27060.0	3206.6	700.0	3906.6	3983.2	3075.0	0.0	1595.0	0.0	4670.0
2013	0.0	0.0	27060.0	3206.6	125.0	3331.6	3331.6	3075.0	0.0	1595.0	0.0	4670.0
2014	0.0	0.0	27060.0	3206.6	106.0	3312.6	3312.6	3075.0	0.0	1595.0	0.0	4670.0
2015	0.0	0.0	27060.0	3206.6	580.0	3786.6	3786.6	3075.0	0.0	1595.0	0.0	4670.0
Total	5403.0	2066.6	243540.0	28859.5	2534.0	31393.5	33460.1	27675.0	0.0	14355.0	0.0	42030.0

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 63 from 147

ProCalc

CALCULATIONS, CM

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 64 from 147

CASH-FLOW/PAY-BACK											
Net cash-flow	-5403 0	-477 7	1003 8	1099.8	1195 8	795 4	1494 7	903.8	1831 7	1932 0	1307 6
Interest	0.0	-459.3	-538.9	-499.4	-448.3	-384.8	-349.9	-252.6	-197.2	-58.3	101.0
Net after interest	-5403.0	-936.9	464.9	600.4	747.5	410.6	1144.8	651.2	1634.5	1873.7	1408.6
Acc cash-flow	-5403.0	-6339.9	-5875.0	-5274.6	-4527.1	-4116.4	-2971.6	-2320.4	-686.0	1187.7	2596.3
* * * PROFIT-IMPACT * *											
Net cash-flow	-5403.0	-477.7	1003.8	1099.8	1195.8	795.4	1494.7	903.8	1831.7	1932.0	1307.6
+ Investment	5403.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Depreciation:	0.0	-600.3	-600.3	-600.3	-600.3	-600.3	-600.3	-600.3	-600.3	-600.3	0.0
Interest	0.0	-459.3	-538.9	-499.4	-448.3	-384.8	-349.9	-252.6	-197.2	-58.3	101.0
Profit-impact:	0.0	-1537.3	-135.4	0.1	147.2	-189.7	544.5	50.9	1034.1	1273.4	1408.6
NET PRESENT VALUE											
Net cash-flow	-5403.0	-477.7	1003.8	1099.8	1195.8	795.4	1494.7	903.8	1831.7	1932.0	1307.6
Annual pres value	-5403.0	-440.3	852.7	861.0	862.9	529.0	916.2	510.6	953.7	927.1	578.4
Tot pres value	1148.3										
INTERNAL RATE OF RET.											
Net cash-flow	-5403.0	-477.7	1003.8	1099.8	1195.8	795.4	1494.7	903.8	1831.7	1932.0	1307.6
Nom irr	12.0%										
Discounted net	-5403.0	-426.6	800.8	783.6	761.0	452.2	758.9	409.8	741.9	698.9	422.5
Tot disc net	0.0										

Preparation for sensivityanalysis

Basecalculation:	Pres val	Payback	Irr	Prof imp
	1148.3	9	12.0%	6

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 65 from 147

Calculations revenues and costs of the project in Kostenets HHI JSC without the effect from AAUs and ERUs

				Costs						Revenues		
	Invest	Interest	Average An	nual	Mainte	Total	Total	Electri	Electri	Thermal	CO2	Total
Ye	ment	Costs	Cogen Gas		nance	Annual	Annual	city	city	nergy	Sold	Annual
ars	Credit	8.50%	Consumption		and	Costs	Costs	Annual	sold	Annual	Incomes	Revenues
			for 3300 Nn	n³/h	Operat.	without	Interest	Consum	to NEC	Consumtio	AAUs	
			price 118.5		Costs	the	Included	ption		/Sold to	and	
			EUR/1000N	mi		Credit				consumers	ERUs	
	ThEUR	ThEUR	1000mi	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR
2005	5752.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2006	0.0	488.9	0.0	0.0	0.0	0.0	488.9	0.0	0.0	0.0	0.0	0.0
2007	958.7	488.9	27060.0	3206.6	76.0	3282.6	3771.5	2025.2	1728.0	1253.5	0.0	5006.7
2008	958.7	407.4	27060.0	3206.6	103.0	3309.6	3717.0	2046.4	1651.0	1294.4	0.0	4991.8
2009	958.7	325.9	27060.0	3206.6	135.0	3341.6	3667.6	2148.1	1471.0	1365.7	0.0	4984.8
2010	958.7	244.5	27060.0	3206.6	580.0	3786.6	4031.1	2200.6	1379.0	1410.6	0.0	4990.2
2011	958.7	163.0	27060.0	3206.6	129.0	3335.6	3498.6	2303.4	1198.0	1461.3	0.0	4962.7
2012	958.7	81.5	27060.0	3206.6	700.0	3906.6	3988.1	2306.0	1194.0	1461.3	0.0	4961.3
2013	0.0	0.0	27060.0	3206.6	125.0	3331.6	3331.6	2306.0	1194.0	1461.3	0.0	4961.3
2014	0.0	0.0	27060.0	3206.6	106.0	3312.6	3312.6	2306.0	1194.0	1461.3	0.0	4961.3
2015	0.0	0.0	27060.0	3206.6	580.0	3786.6	3786.6	2306.0	1194.0	1461.3	0.0	4961.3
Total	5752.0	2200.1	243540.0	28859.5	2534.0	31393.5	33593.6	19947.7	12203.0	12630.7	0.0	44781.4

The average price of the annual electricity sold to NEC is 49 EURO/Mwhe The average price of the annual thermal energy consumption or sold to customers is 13.9 EURO/MWht The annual capacity of the cogeneration istallation is 8200 h/year for every one.

The price of the reduced emissions is 6 EURO per ton CO2

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 66 from 147

ProCalc

CALCULATIONS, CM

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 67 from 147

CASH-FLOW/PAY-BACK											
Net cash-flow	-5752.0	-508.5	1336.0	1434.0	1540.9	1166.9	1852.6	1280.7	2230.4	2346.6	1738.8
Interest	0.0	-488.9	-573.7	-508.9	-430.3	-335.9	-265.2	-130.3	-32.5	154.3	366.9
Net after interest	-5752.0	-997.4	762.3	925.1	1110.7	831.0	1587.3	1150.4	2197.8	2500.9	2105.7
Acc cash-flow	-5752.0	-6749.4	-5987.1	-5062.0	-3951.3	-3120.3	-1533.0	-382.6	1815.2	4316.1	6421.8
* * * PROFIT-IMPACT * *											
Net cash-flow	-5752.0	-508.5	1336.0	1434.0	1540.9	1166.9	1852.6	1280.7	2230.4	2346.6	1738.8
+ Investment	5752.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Depreciation:	0.0	-639.1	-639.1	-639.1	-639.1	-639.1	-639.1	-639.1	-639.1	-639.1	0.0
Interest	0.0	-488.9	-573.7	-508.9	-430.3	-335.9	-265.2	-130.3	-32.5	154.3	366.9
Profit-impact:	0.0	-1636.5	123.2	286.0	471.6	191.9	948.2	511.3	1558.7	1861.8	2105.7
NET PRESENT VALUE											
Net cash-flow	-5752.0	-508.5	1336.0	1434.0	1540.9	1166.9	1852.6	1280.7	2230.4	2346.6	1738.8
Annual pres value	-5752.0	-468.6	1134.9	1122.7	1111.9	776.0	1135.5	723.5	1161.3	1126.1	769.1
Tot pres value	2840.3										
INTERNAL RATE OF RET.											
Net cash-flow	-5752.0	-508.5	1336.0	1434.0	1540.9	1166.9	1852.6	1280.7	2230.4	2346.6	1738.8
Nom irr	16.1%										
Discounted net	-5752.0	-437.9	990.9	916.0	847.7	552.8	755.8	450.0	674.9	611.5	390.3
Tot disc net	0.0										

Preparation for sensivityanalysis

	Pres			Prof
Basecalculation:	val	Payback	Irr	imp
	2840.3	8	16.1%	2

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 68 from 147

Calculations revenues and costs of the project in Toplofikatsia Kazanlak JSC without the effect from AAUs and ERUs

				Costs				Revenues					
Ye ars	Invest ment Credit	Interest Costs 8.50%	Average A Cogen Gas Consumpti price 118.5 EUR/10001	nnual on Nmi	Mainte nance and Operat. Costs	Total Annual Costs without the Credit	Total Annual Costs Interest Included	Electri city Annual Consum ption	Electri city sold to NEC	Thermal nergy Annual Consumtion /Sold to consumers/	CO2 Sold Incomes AAUs and ERUs	Total Annual Revenues	
	ThEUR	ThEUR	1000mi	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	
2005	4329.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2006	0.0	368.0	0.0	0.0	0.0	0.0	368.0	0.0	0.0	0.0	0.0	0.0	
2007	721.5	368.0	17090.0	2025.2	1165.0	3190.2	3558.1	279.0	1488.0	2255.5	0.0	4022.5	
2008	721.5	306.6	17090.0	2025.2	1139.0	3164.2	3470.8	281.0	1496.0	2293.5	0.0	4070.5	
2009	721.5	245.3	17090.0	2025.2	1018.0	3043.2	3288.5	276.0	1494.0	2309.4	0.0	4079.4	
2010	721.5	184.0	17090.0	2025.2	962.0	2987.2	3171.1	281.0	1500.0	2321.5	0.0	4102.5	
2011	721.5	122.7	17090.0	2025.2	956.0	2981.2	3103.8	276.0	1494.0	2309.4	0.0	4079.4	
2012	721.5	61.3	17090.0	2025.2	952.0	2977.2	3038.5	281.0	1500.0	2321.5	0.0	4102.5	
2013	0.0	0.0	17090.0	2025.2	946.0	2971.2	2971.2	276.0	1494.0	2309.4	0.0	4079.4	
2014	0.0	0.0	17090.0	2025.2	936.0	2961.2	2961.2	281.0	1500.0	2321.5	0.0	4102.5	
2015	0.0	0.0	17090.0	2025.2	930.0	2955.2	2955.2	276.0	1494.0	2309.4	0.0	4079.4	
Total	4329.0	1655.8	153810.0	18226.5	9004.0	27230.5	28886.3	2507.0	13460.0	20751.1	0.0	36718.1	

The average price of the annual electricity consumption is 37 EURO/Mwhe The average price of the annual electricity sold to NEC is 49 EURO/Mwhe The average price of the annual thermal energy consumption or sold to customers is 26.5 EURO/MWht The annual capacity of the cogeneration istallation is 6250 h/year for every one.

The price of the reduced emissions is 6 EURO per ton CO2

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 69 from 147

ProCalc

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 70 from 147

CALCULATIONS, CM V

-4252.2	-143.1	585.4	863.6	1015.1	1226.6	1331.6	1501.2	1621.8	1624.4	1664.1
0.0	-361.4	-404.3	-388.9	-348.6	-291.9	-212.5	-117.4	0.3	138.1	288.0
-4252.2	-504.5	181.0	474.6	666.5	934.7	1119.1	1383.9	1622.0	1762.6	1952.0
-4252.2	-4756.7	-4575.7	-4101.1	-3434.6	-2499.9	-1380.8	3.1	1625.1	3387.7	5339.7
-4252.2	-143.1	585.4	863.6	1015.1	1226.6	1331.6	1501.2	1621.8	1624.4	1664.1
4329.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	-481.0	-481.0	-481.0	-481.0	-481.0	-481.0	-481.0	-481.0	-481.0	0.0
0.0	-361.4	-404.3	-388.9	-348.6	-291.9	-212.5	-117.4	0.3	138.1	288.0
76.8	-985.5	-300.0	-6.4	185.5	453.7	638.1	902.9	1141.0	1281.6	1952.0
-4252.2	-143.1	585.4	863.6	1015.1	1226.6	1331.6	1501.2	1621.8	1624.4	1664.1
-4252.2	-131.9	497.2	676.1	732.5	815.8	816.2	848.1	844.4	779.5	736.0
2361.7										
-4252.2	-143.1	585.4	863.6	1015.1	1226.6	1331.6	1501.2	1621.8	1624.4	1664.1
16.6%										
-4252.2	-122.7	430.5	544.6	549.0	569.0	529.7	512.1	474.4	407.5	358.0
0.0										
	-4252.2 0.0 -4252.2 -4252.2 4329.0 0.0 0.0 76.8 -4252.2 2361.7 -4252.2 16.6% -4252.2 16.6% -4252.2 0.0	-4252.2 -143.1 0.0 -361.4 -4252.2 -504.5 -4252.2 -4756.7 -4252.2 -4756.7 -4252.2 -143.1 4329.0 0.0 0.0 -481.0 0.0 -361.4 76.8 -985.5 -4252.2 -143.1 -4252.2 -143.1 16.6% -4252.2 -122.7 0.0	-4252.2 -143.1 585.4 0.0 -361.4 -404.3 -4252.2 -504.5 181.0 -4252.2 -4756.7 -4575.7 -4252.2 -143.1 585.4 4329.0 0.0 0.0 0.0 -481.0 -481.0 0.0 -361.4 -404.3 76.8 -985.5 -300.0 -4252.2 -143.1 585.4 -4252.2 -131.9 497.2 2361.7 -4252.2 -143.1 585.4 16.6% -4252.2 -122.7 430.5 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4252.2 -143.1 585.4 863.6 1015.1 1226.6 1331.6 1501.2 1621.8 0.0 -361.4 -404.3 -388.9 -348.6 -291.9 -212.5 -117.4 0.3 -4252.2 -504.5 181.0 474.6 666.5 934.7 1119.1 1383.9 1622.0 -4252.2 -4756.7 -4575.7 -4101.1 -3434.6 -2499.9 -1380.8 3.1 1625.1 -4252.2 -143.1 585.4 863.6 1015.1 1226.6 1331.6 1501.2 1621.8 4329.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -481.0 -481.0 -481.0 -481.0 -481.0 -481.0 0.0 -361.4 -404.3 -388.9 -348.6 -291.9 -212.5 -117.4 0.3 76.8 -985.5 -300.0 -6.4 185.5 453.7 638.1 902.9 1141.0 -4252.2 -143.1 585.4 863.6 1015.1 1226.6 1331.6 1501.2 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></t<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Preparation for sensivityanalysis

	Pres			Prof
Basecalculation:	val	Payback	Irr	imp
	2361.7	7	16.6%	4

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 71 from 147

Calculations revenues and costs of the project in Toplofikatsia Yambol JSC without the effect from AAUs and ERUs

		Costs Revenues										
	Invest	Interest	Average An	nual	Mainte	Total	Total	Electri	Electri	Thermal	CO2	Total
Ye	ment	Costs	Cogen Gas		nance	Annual	Annual	city	city	nergy	Sold	Annual
ars	Credit	8.50%	Consumptio	on	and	Costs	Costs	Annual	sold	Annual	Incomes	Revenues
					Operat.	without	Interest	Consum	to NEC	Consumtion	AAUs	
			price 118.5		Costs	the	Included	ption		/Sold to	and	
			EUR/1000N	Imi		Credit				consumers/	ERUs	
	ThEUR	ThEUR	1000mi	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR
2005	4100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2006	0.0	348.5	0.0	0.0	0.0	0.0	348.5	0.0	0.0	0.0	0.0	0.0
2007	683.3	348.5	10995.0	1302.9	170.0	1472.9	1821.4	119.0	1044.0	1243.0	0.0	2406.0
2008	683.3	290.4	10995.0	1302.9	170.0	1472.9	1763.3	119.0	1044.0	1243.0	0.0	2406.0
2009	683.3	232.3	10995.0	1302.9	170.0	1472.9	1705.2	119.0	1044.0	1243.0	0.0	2406.0
2010	683.3	174.3	10995.0	1302.9	170.0	1472.9	1647.2	119.0	1044.0	1243.0	0.0	2406.0
2011	683.3	116.2	10995.0	1302.9	170.0	1472.9	1589.1	119.0	1044.0	1243.0	0.0	2406.0
2012	683.3	58.1	10995.0	1302.9	132.0	1434.9	1493.0	119.0	1044.0	1243.0	0.0	2406.0
2013	0.0	0.0	10995.0	1302.9	132.0	1434.9	1434.9	119.0	1044.0	1243.0	0.0	2406.0
2014	0.0	0.0	10995.0	1302.9	132.0	1434.9	1434.9	119.0	1044.0	1243.0	0.0	2406.0
2015	0.0	0.0	10995.0	1302.9	132.0	1434.9	1434.9	119.0	1044.0	1243.0	0.0	2406.0
Total	4100.0	1568.3	98955.0	11726.2	1378.0	13104.2	14672.4	1071.0	9396.0	11187.0	0.0	21654.0

The average price of the annual electricity consumption is 39 EURO/Mwhe

The average price of the annual electricity sold to NEC is 49 EURO/Mwhe

The average price of the annual thermal energy consumption or sold to customers is 25.8 EURO/MWht

The annual capacity of the cogeneration istallation is 8000 h/year for every one.

The price of the reduced emissions is 6 EURO per ton CO2

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 72 from 147

CALCULATIONS, CM

V

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 73 from 147

CASH-FLOW/PAY-BACK											
Net cash-flow	-4100.0	-362.4	632.3	723.0	819.8	923.2	1033.6	1201.4	1329.0	1382.2	1437.5
Interest	0.0	-348.5	-408.9	-389.9	-361.6	-322.7	-271.6	-206.9	-122.3	-19.8	96.0
Net after interest	-4100.0	-710.9	223.4	333.0	458.2	600.5	762.0	994.6	1206.7	1362.4	1533.5
Acc cash-flow	-4100.0	-4810.9	-4587.6	-4254.6	-3796.4	-3195.9	-2433.9	-1439.3	-232.6	1129.8	2663.3
* * * PROFIT-IMPACT * *											
Net cash-flow	-4100.0	-362.4	632.3	723.0	819.8	923.2	1033.6	1201.4	1329.0	1382.2	1437.5
+ Investment	4100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Depreciation:	0.0	-455.6	-455.6	-455.6	-455.6	-455.6	-455.6	-455.6	-455.6	-455.6	0.0
Interest	0.0	-348.5	-408.9	-389.9	-361.6	-322.7	-271.6	-206.9	-122.3	-19.8	96.0
Profit-impact:	0.0	-1166.5	-232.2	-122.5	2.6	145.0	306.4	539.0	751.1	906.8	1533.5
NET PRESENT VALUE											
Net cash-flow	-4100.0	-362.4	632.3	723.0	819.8	923.2	1033.6	1201.4	1329.0	1382.2	1437.5
Annual pres value	-4100.0	-334.0	537.1	566.0	591.6	614.0	633.6	678.7	692.0	663.3	635.8
Tot pres value	1177.9										
INTERNAL RATE OF RET.											
Net cash-flow	-4100.0	-362.4	632.3	723.0	819.8	923.2	1033.6	1201.4	1329.0	1382.2	1437.5
Nom irr	12.9%										
Discounted net	-4100.0	-321.1	496.3	502.8	505.2	504.0	500.0	514.9	504.6	465.0	428.4
Tot disc net	0.0										

	Pres			Prof
Basecalculation:	val	Payback	Irr	imp
	1177.9	9	12.9%	4

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 74 from 147

Calculation IRR of the project including the revenue from the sale of ERUs

Calculations revenues and costs of the project in Polymeri JSC with the effect from ERUs

				Costs						Revenues		
	Invest	Interest	Average A	Annual	Mainte	Total	Total	Electri	Electri	Thermal	CO2	Total
Ye	ment	Costs	Cogen Ga	s	nance	Annual	Annual	city	city	nergy	Sold	Annual
ars	Credit	8.50%	Consump	tion	and	Costs	Costs	Annual	sold	Annual	Incomes	Revenues
			for 3300 N	m³/h	Operat.	without	Interest	Consum	to NEC	Consumtio	AAUs	
			price 118.	5	Costs	the	Included	ption		/Sold to	and	
			EUR/1000	Nmi		Credit				consumers	ERUs	
	ThEUR	ThEUR	1000Nmi	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR
2005	5403.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	202.8	202.8
2006	0.0	459.3	0.0	0.0	0.0	0.0	459.3	0.0	0.0	0.0	608.4	202.8
2007	900.5	459.3	27060.0	3206.6	76.0	3282.6	3741.9	3075.0	0.0	1595.0	202.8	4872.8
2008	900.5	382.7	27060.0	3206.6	103.0	3309.6	3692.3	3075.0	0.0	1595.0	0.0	4670.0
2009	900.5	306.2	27060.0	3206.6	135.0	3341.6	3647.8	3075.0	0.0	1595.0	202.8	4872.8
2010	900.5	229.6	27060.0	3206.6	580.0	3786.6	4016.2	3075.0	0.0	1595.0	202.8	4872.8
2011	900.5	153.1	27060.0	3206.6	129.0	3335.6	3488.7	3075.0	0.0	1595.0	202.8	4872.8
2012	900.5	76.5	27060.0	3206.6	700.0	3906.6	3983.2	3075.0	0.0	1595.0	202.8	4872.8
2013	0.0	0.0	27060.0	3206.6	125.0	3331.6	3331.6	3075.0	0.0	1595.0	202.8	4872.8
2014	0.0	0.0	27060.0	3206.6	106.0	3312.6	3312.6	3075.0	0.0	1595.0	0.0	4670.0
2015	0.0	0.0	27060.0	3206.6	580.0	3786.6	3786.6	3075.0	0.0	1595.0	0.0	4670.0
Total	5403.0	2066.6	243540.0	28859.5	2534.0	31393.5	33460.1	27675.0	0.0	14355.0	2028.0	43652.4

The average price of the annual electricity consumption is 38.0 EURO/Mwhe

The average price of the annual electricity sold to NEC is 49 EURO/Mwhe

The average price of the annual thermal energy consumption or sold to customers is 13.9 EURO/MWht

The annual capacity of the cogeneration is tallation is 8200 h/year for every one.

The price of the reduced emissions is 6 EURO per ton CO2

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 75 from 147

CALCULATIONS, CM V

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 76 from 147

CASH-FLOW/PAY-BACK											
Net cash-flow	-5200.2	-266.8	1223.2	1099.8	1433.1	1042.2	1751.3	1170.7	2109.2	1932.0	1307.6
Interest	0.0	-442.0	-502.3	-441.0	-385.0	-295.9	-232.5	-103.4	-12.6	165.6	343.9
Net after interest	-5200.2	-708.8	720.9	658.8	1048.1	746.3	1518.9	1067.3	2096.6	2097.6	1651.5
Acc cash-flow	-5200.2	-5909.0	-5188.1	-4529.3	-3481.2	-2734.9	-1216.0	-148.7	1947.9	4045.4	5696.9
* * * PROFIT-IMPACT * *											
Net cash-flow	-5200.2	-266.8	1223.2	1099.8	1433.1	1042.2	1751.3	1170.7	2109.2	1932.0	1307.6
+ Investment	5403.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Depreciation:	0.0	-600.3	-600.3	-600.3	-600.3	-600.3	-600.3	-600.3	-600.3	-600.3	0.0
Interest	0.0	-442.0	-502.3	-441.0	-385.0	-295.9	-232.5	-103.4	-12.6	165.6	343.9
Profit-impact:	202.8	-1309.1	120.6	58.5	447.8	146.0	918.5	467.0	1496.3	1497.2	1651.5
NET PRESENT VALUE											
Net cash-flow	-5200.2	-266.8	1223.2	1099.8	1433.1	1042.2	1751.3	1170.7	2109.2	1932.0	1307.6
Annual pres value	-5200.2	-245.9	1039.0	861.0	1034.1	693.1	1073.5	661.3	1098.2	927.1	578.4
Tot pres value	2519.7										
INTERNAL RATE OF RET.											
Net cash-flow	-5200.2	-266.8	1223.2	1099.8	1433.1	1042.2	1751.3	1170.7	2109.2	1932.0	1307.6
Nom irr	16.2%										
Discounted net	-5200.2	-229.6	905.8	700.8	785.8	491.8	711.2	409.1	634.2	499.9	291.2
Tot disc net	0.0										

	Pres			Prof
Basecalculation:	val	Payback	Irr	imp
	2519.7	8	16.2%	2

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 77 from 147

Calculations revenues and costs of the project in Kostenets HHI JSC with the effect from ERUs

				Costs						Revenues		
	Invest	Interest	Average An	nual	Mainte	Total	Total	Electri	Electri	Thermal	CO2	Total
Ye	ment	Costs	Cogen Gas		nance	Annual	Annual	city	city	nergy	Sold	Annual
ars	Credit	8.50%	Consumptio	on	and	Costs	Costs	Annual	sold	Annual	Incomes	Revenues
			for 3300 Nn	n³/h	Operat.	without	Interest	Consum	to NEC	Consumtio	AAUs	
			price 118.5		Costs	the	Included	ption		/Sold to	and	
			EUR/1000N	mi		Credit				consumers	ERUs	
	ThEUR	ThEUR	1000mi	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR
2005	5752.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	143.4	143.4
2006	0.0	488.9	0.0	0.0	0.0	0.0	488.9	0.0	0.0	0.0	430.2	430.2
2007	958.7	488.9	27060.0	3206.6	76.0	3282.6	3771.5	2025.2	1728.0	1253.5	143.4	5150.1
2008	958.7	407.4	27060.0	3206.6	103.0	3309.6	3717.0	2046.4	1651.0	1294.4	0.0	4991.8
2009	958.7	325.9	27060.0	3206.6	135.0	3341.6	3667.6	2148.1	1471.0	1365.7	143.4	5128.2
2010	958.7	244.5	27060.0	3206.6	580.0	3786.6	4031.1	2200.6	1379.0	1410.6	143.4	5133.6
2011	958.7	163.0	27060.0	3206.6	129.0	3335.6	3498.6	2303.4	1198.0	1461.3	143.4	5106.1
2012	958.7	81.5	27060.0	3206.6	700.0	3906.6	3988.1	2306.0	1194.0	1461.3	143.4	5104.7
2013	0.0	0.0	27060.0	3206.6	125.0	3331.6	3331.6	2306.0	1194.0	1461.3	143.4	5104.7
2014	0.0	0.0	27060.0	3206.6	106.0	3312.6	3312.6	2306.0	1194.0	1461.3	0.0	4961.3
2015	0.0	0.0	27060.0	3206.6	580.0	3786.6	3786.6	2306.0	1194.0	1461.3	0.0	4961.3
Total	5752.0	2200.1	243540.0	28859.5	2534.0	31393.5	33593.6	19947.7	12203.0	12630.7	1434.0	46215.4

The average price of the annual electricity consumption is 38 EURO/Mwhe

The average price of the annual electricity sold to NEC is 49 EURO/Mwhe

The average price of the annual thermal energy consumption or sold to customers is 13.9 EURO/MWht

The annual capacity of the cogeneration istallation is 8200 h/year for every one.

The price of the reduced emissions is 6 $\,$ EURO per ton CO2 $\,$

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 78 from 147

CALCULATIONS, CM

V

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 79 from 147

CASH-FLOW/FAI-BACK	5600 G	61.0	1401 1	11210	1700 7	1011 1	2024.0	1460 4	0406.6	2246.6	1720.0
Net cash-now	-5008.0	-01.0	1491.1	1434.0	1708.7	1341.4	2034.0	1409.4	2420.0	2340.0	1/30.0
Interest	0.0	-4/6./	-522.4	-440.1	-355.6	-240.6	-147.1	13.3	139.4	357.5	587.3
Net after interest	-5608.6	-537.8	968.7	993.9	1353.1	1100.7	1886.9	1482.7	2566.0	2704.1	2326.2
Acc cash-flow	-5608.6	-6146.4	-5177.7	-4183.9	-2830.8	-1730.0	156.9	1639.6	4205.6	6909.7	9235.8
* * * PROFIT-IMPACT * *											
Net cash-flow	-5608.6	-61.0	1491.1	1434.0	1708.7	1341.4	2034.0	1469.4	2426.6	2346.6	1738.8
+ Investment	5752.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Depreciation:	0.0	-639.1	-639.1	-639.1	-639.1	-639.1	-639.1	-639.1	-639.1	-639.1	0.0
Interest	0.0	-476.7	-522.4	-440.1	-355.6	-240.6	-147.1	13.3	139.4	357.5	587.3
Profit-impact:	143.4	-1176.9	329.5	354.8	714.0	461.6	1247.8	843.6	1926.9	2065.0	2326.2
NET PRESENT VALUE											
Net cash-flow	-5608.6	-61.0	1491.1	1434.0	1708.7	1341.4	2034.0	1469.4	2426.6	2346.6	1738.8
Annual pres value	-5608.6	-56.3	1266.6	1122.7	1233.0	892.1	1246.7	830.1	1263.5	1126.1	769.1
Tot pres value	4084.9										
INTERNAL RATE OF RET.											
Net cash-flow	-5608.6	-61.0	1491.1	1434.0	1708.7	1341.4	2034.0	1469.4	2426.6	2346.6	1738.8
Nom irr	19.8%										
Discounted net	-5608.6	-50.9	1038.3	833.3	828.6	542.8	686.8	414.0	570.6	460.4	284.7
Tot disc net	0.0										

Basecalculation:	Pres val	Payback	Irr	Prof imp
	4084.9	6	19.8%	2

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 80 from 147

|--|

				Costs						Revenues		
	Invest	Interest	Average A	nnual	Mainte	Total	Total	Electri	Electri	Thermal	CO2	Total
Ye	ment	Costs	Cogen Gas	J.	nance	Annual	Annual	city	city	nergy	Sold	Annual
ars	Credit	8.50%	Consumpti	ion	and	Costs	Costs	Annual	sold	Annual	Incomes	Revenues
					Operat.	without	Interest	Consum	to NEC	Consumtion	AAUs	
			price 118.5	5	Costs	the	Included	ption		/Sold to	and	
			EUR/1000	Nmi		Credit				consumers/	ERUs	
	ThEUR	ThEUR	1000mi	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR
2005	4329.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	76.8	76.8
2006	0.0	368.0	0.0	0.0	0.0	0.0	368.0	0.0	0.0	0.0	230.4	230.4
2007	721.5	368.0	17090.0	2025.2	1165.0	3190.2	3558.1	279.0	1488.0	2255.5	76.8	4099.3
2008	721.5	306.6	17090.0	2025.2	1139.0	3164.2	3470.8	281.0	1496.0	2293.5	0.0	4070.5
2009	721.5	245.3	17090.0	2025.2	1018.0	3043.2	3288.5	276.0	1494.0	2309.4	76.8	4156.2
2010	721.5	184.0	17090.0	2025.2	962.0	2987.2	3171.1	281.0	1500.0	2321.5	76.8	4179.3
2011	721.5	122.7	17090.0	2025.2	956.0	2981.2	3103.8	276.0	1494.0	2309.4	76.8	4156.2
2012	721.5	61.3	17090.0	2025.2	952.0	2977.2	3038.5	281.0	1500.0	2321.5	76.8	4179.3
2013	0.0	0.0	17090.0	2025.2	946.0	2971.2	2971.2	276.0	1494.0	2309.4	76.8	4156.2
2014	0.0	0.0	17090.0	2025.2	936.0	2961.2	2961.2	281.0	1500.0	2321.5	0.0	4102.5
2015	0.0	0.0	17090.0	2025.2	930.0	2955.2	2955.2	276.0	1494.0	2309.4	0.0	4079.4
Total	4329.0	1655.8	153810.0	18226.5	9004.0	27230.5	28886.3	2507.0	13460.0	20751.1	768.0	37486.1

The average price of the annual electricity sold to NEC is 49 EURO/Mwhe The average price of the annual thermal energy consumption or sold to customers is 26.5 EURO/MWht The annual capacity of the cogeneration istallation is 6250 h/year for every one.

The price of the reduced emissions is 6 EURO per ton CO2

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 81 from 147

CALCULATIONS, CM

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 82 from 147

CASH-FLOW/PAY-BACK											
Net cash-flow	-4252.2	-143.1	585.4	674.6	1015.2	1226.6	1331.6	1501.2	1621.8	1624.4	1664.1
Interest	0.0	-361.4	-404.3	-388.9	-364.7	-309.4	-231.4	-137.9	-22.0	114.0	261.8
Net after interest	-4252.2	-504.5	181.0	285.6	650.5	917.3	1100.2	1363.3	1599.8	1738.4	1925.9
Acc cash-flow	-4252.2	-4756.7	-4575.7	-4290.1	-3639.5	-2722.2	-1622.0	-258.7	1341.1	3079.5	5005.4
* * * PROFIT-IMPACT * *											
Net cash-flow	-4252.2	-143.1	585.4	674.6	1015.2	1226.6	1331.6	1501.2	1621.8	1624.4	1664.1
+ Investment	4329.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Depreciation:	0.0	-481.0	-481.0	-481.0	-481.0	-481.0	-481.0	-481.0	-481.0	-481.0	0.0
Interest	0.0	-361.4	-404.3	-388.9	-364.7	-309.4	-231.4	-137.9	-22.0	114.0	261.8
Profit-impact:	76.8	-985.5	-300.0	-195.4	169.5	436.3	619.2	882.3	1118.8	1257.4	1925.9
NET PRESENT VALUE											
Net cash-flow	-4252.2	-143.1	585.4	674.6	1015.2	1226.6	1331.6	1501.2	1621.8	1624.4	1664.1
Annual pres value	-4252.2	-131.9	497.2	528.1	732.5	815.8	816.2	848.1	844.4	779.5	736.0
Tot pres value	2213.8										
INTERNAL RATE OF RET.											
Net cash-flow	-4252.2	-143.1	585.4	674.6	1015.2	1226.6	1331.6	1501.2	1621.8	1624.4	1664.1
Nom irr	16.1%										
Discounted net	-4252.2	-123.3	434.6	431.5	559.5	582.5	544.9	529.3	492.7	425.2	375.3
Tot disc net	0.0										

	Pres			Prof
Basecalculation:	val	Payback	Irr	imp
	2213.8	8	16.1%	4

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 83 from 147

Calculations revenues and costs of the project in Toplofikatsia Yambol JSC with the effect from ERUs

				Costs						Revenues		
Ye	Invest ment Gradit	Interest Costs	Average An Cogen Gas	inual	Mainte nance	Total Annual Costa	Total Annual Costa	Electri city	Electri city	Thermal nergy	CO2 Sold	Total Annual Bassara
ars	Credit	8.50%	Consumptio price 118.5 EUR/1000N	orice 118.5 EUR/1000Nmi		Costs without the Credit	Costs Interest Included	Annual Consum ption	sold to NEC	Annual Consumtion /Sold to consumers/	Incomes AAUs and ERUs	Kevenues
	ThEUR	ThEUR	1000mi	000mi ThEUR T		ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR
2005	4100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	114.0	114.0
2006	0.0	348.5	0.0	0.0	0.0	0.0	348.5	0.0	0.0	0.0	342.0	342.0
2007	683.3	348.5	10995.0	1302.9	170.0	1472.9	1821.4	119.0	1044.0	1243.0	114.0	2520.0
2008	683.3	290.4	10995.0	1302.9	170.0	1472.9	1763.3	119.0	1044.0	1243.0	0.0	2406.0
2009	683.3	232.3	10995.0	1302.9	170.0	1472.9	1705.2	119.0	1044.0	1243.0	114.0	2520.0
2010	683.3	174.3	10995.0	1302.9	170.0	1472.9	1647.2	119.0	1044.0	1243.0	114.0	2520.0
2011	683.3	116.2	10995.0	1302.9	170.0	1472.9	1589.1	119.0	1044.0	1243.0	114.0	2520.0
2012	683.3	58.1	10995.0	1302.9	132.0	1434.9	1493.0	119.0	1044.0	1243.0	114.0	2520.0
2013	0.0	0.0	10995.0	1302.9	132.0	1434.9	1434.9	119.0	1044.0	1243.0	114.0	2520.0
2014	0.0	0.0	10995.0	1302.9	132.0	1434.9	1434.9	119.0	1044.0	1243.0	0.0	2406.0
2015	0.0	0.0	10995.0	1302.9	132.0	1434.9	1434.9	119.0	1044.0	1243.0	0.0	2406.0
Total	4100.0	1568.3	98955.0	11726.2	1378.0	13104.2	14672.4	1071.0	9396.0	11187.0	1140.0	22794.0

The average price of the annual electricity consumption is 39 EURO/Mwhe The average price of the annual electricity sold to NEC is 49 EURO/Mwhe The average price of the annual thermal energy consumption or sold to customers is 25.8 EURO/MWht The annual capacity of the cogeneration istallation is 8000 h/year for every one.

The price of the reduced emissions is 6 EURO per ton CO2

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 84 from 147

CALCULATIONS, CM V

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 85 from 147

CASH-FLOW/PAY-BACK											
Net cash-flow	-3986.0	-6.8	755.6	723.0	953.2	1061.9	1177.9	1351.5	1485.0	1382.2	1437.5
Interest	0.0	-338.8	-368.2	-335.3	-302.3	-247.0	-177.7	-92.7	14.3	141.8	271.3
Net after interest	-3986.0	-345.6	387.4	387.7	650.9	814.9	1000.2	1258.8	1499.3	1523.9	1708.8
Acc cash-flow	-3986.0	-4331.6	-3944.1	-3556.5	-2905.5	-2090.6	-1090.4	168.3	1667.7	3191.6	4900.4
* * * PROFIT-IMPACT * *											
Net cash-flow	-3986.0	-6.8	755.6	723.0	953.2	1061.9	1177.9	1351.5	1485.0	1382.2	1437.5
+ Investment	4100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Depreciation:	0.0	-455.6	-455.6	-455.6	-455.6	-455.6	-455.6	-455.6	-455.6	-455.6	0.0
Interest	0.0	-338.8	-368.2	-335.3	-302.3	-247.0	-177.7	-92.7	14.3	141.8	271.3
Profit-impact:	114.0	-801.1	-68.1	-67.9	195.3	359.4	544.6	803.2	1043.8	1068.4	1708.8
NET PRESENT VALUE											
Net cash-flow	-3986.0	-6.8	755.6	723.0	953.2	1061.9	1177.9	1351.5	1485.0	1382.2	1437.5
Annual pres value	-3986.0	-6.2	641.9	566.0	687.8	706.2	722.0	763.5	773.2	663.3	635.8
Tot pres value	2167.4										
INTERNAL RATE OF RET.											
Net cash-flow	-3986.0	-6.8	755.6	723.0	953.2	1061.9	1177.9	1351.5	1485.0	1382.2	1437.5
Nom irr	16.9%										
Discounted net	-3986.0	-5.8	553.3	453.1	511.2	487.3	462.6	454.2	427.1	340.2	302.8
Tot disc net	0.0										

	Pres			Prof
Basecalculation:	val	Payback	Irr	imp
	2167.4	7	16.9%	4

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 86 from 147

Annex No. 17

Calculations revenues and costs of the project in Polymeri JSC with the effect from AAUs and ERUs

				Costs						Revenues		
	Invest	Interest	Average A	Annual	Mainte	Total	Total	Electri	Electri	Thermal	CO2	Total
Ye	ment	Costs	Cogen Ga	S	nance	Annual	Annual	city	city	nergy	Sold	Annual
ars	Credit	8.50%	Consump	tion	and	Costs	Costs	Annual	sold	Annual	Incomes	Revenues
					Operat.	without	Interest	Consum	to NEC	Consumtio	AAUs	
			price 118.	5	Costs	the	Included	ption		/Sold to	and	
			EUR/1000	DNmi		Credit				consumers/	ERUs	
	ThEUR	ThEUR	1000Nmi	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR
2005	5403.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	202.8	202.8
2006	0.0	459.3	0.0	0.0	0.0	0.0	459.3	0.0	0.0	0.0	608.4	608.4
2007	900.5	459.3	27060.0	3206.6	76.0	3282.6	3741.9	3075.0	0.0	1595.0	202.8	4872.8
2008	900.5	382.7	27060.0	3206.6	103.0	3309.6	3692.3	3075.0	0.0	1595.0	444.0	5114.0
2009	900.5	306.2	27060.0	3206.6	135.0	3341.6	3647.8	3075.0	0.0	1595.0	202.8	4872.8
2010	900.5	229.6	27060.0	3206.6	580.0	3786.6	4016.2	3075.0	0.0	1595.0	202.8	4872.8
2011	900.5	153.1	27060.0	3206.6	129.0	3335.6	3488.7	3075.0	0.0	1595.0	202.8	4872.8
2012	900.5	76.5	27060.0	3206.6	700.0	3906.6	3983.2	3075.0	0.0	1595.0	202.8	4872.8
2013	0.0	0.0	27060.0	3206.6	125.0	3331.6	3331.6	3075.0	0.0	1595.0	202.8	4872.8
2014	0.0	0.0	27060.0	3206.6	106.0	3312.6	3312.6	3075.0	0.0	1595.0	0.0	4670.0
2015	0.0	0.0	27060.0	3206.6	580.0	3786.6	3786.6	3075.0	0.0	1595.0	0.0	4670.0
Total	5403.0	2066.6	243540.0	28859.5	2534.0	31393.5	33460.1	27675.0	0.0	14355.0	2472.0	44502.0

The average price of the annual electricity consumption is 38.0 EURO/Mwhe

The average price of the annual electricity sold to NEC is 49 EURO/Mwhe

The average price of the annual thermal energy consumption or sold to customers is 13.9 EURO/MWht

The annual capacity of the cogeneration istallation is 8200 h/year for every one.

The price of the reduced emissions is 6 EURO per ton CO2

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 87 from 147

CALCULATIONS, CM

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 88 from 147

CASH-FLOW/PAY-BACK											
Net cash-flow	-5200.2	155.1	1223.2	1599.2	1433.1	1042.2	1751.3	1170.7	2109.2	1932.0	1307.6
Interest	0.0	-442.0	-466.4	-402.1	-300.3	-204.0	-132.8	4.8	104.7	292.9	482.0
Net after interest	-5200.2	-287.0	756.8	1197.1	1132.8	838.1	1618.5	1175.4	2213.9	2224.9	1789.6
Acc cash-flow	-5200.2	-5487.2	-4730.4	-3533.2	-2400.5	-1562.3	56.2	1231.6	3445.5	5670.4	7460.0
* * * PROFIT-IMPACT * *											
Net cash-flow	-5200.2	155.1	1223.2	1599.2	1433.1	1042.2	1751.3	1170.7	2109.2	1932.0	1307.6
+ Investment	5403.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Depreciation:	0.0	-600.3	-600.3	-600.3	-600.3	-600.3	-600.3	-600.3	-600.3	-600.3	0.0
Interest	0.0	-442.0	-466.4	-402.1	-300.3	-204.0	-132.8	4.8	104.7	292.9	482.0
Profit-impact:	202.8	-887.3	156.4	596.8	532.4	237.8	1018.2	575.1	1613.6	1624.5	1789.6
NET PRESENT VALUE											
Net cash-flow	-5200.2	155.1	1223.2	1599.2	1433.1	1042.2	1751.3	1170.7	2109.2	1932.0	1307.6
Annual pres value	-5200.2	142.9	1039.0	1252.0	1034.1	693.1	1073.5	661.3	1098.2	927.1	578.4
Tot pres value	3299.5										
INTERNAL RATE OF RET.											
Net cash-flow	-5200.2	155.1	1223.2	1599.2	1433.1	1042.2	1751.3	1170.7	2109.2	1932.0	1307.6
Nom irr	19.1%										
Discounted net	-5200.2	130.2	862.8	947.3	713.0	435.4	614.5	345.0	522.0	401.6	228.3
Tot disc net	0.0										

	Pres			Prof
Basecalculation:	val	Payback	Irr	imp
	3299.5	6	19.1%	2

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 89 from 147

Calculations revenues and costs of the project in Kostenets HHI JSC with the effect from AAUs and ERUs

				Costs						Revenues		
	Invest	Interest Average Annual Costs Cogen Gas		Mainte	Total	Total	Electri	Electri	Thermal	CO2	Total	
Ye	ment	Costs	Cogen Gas		nance	Annual	Annual	city	city	nergy	Sold	Annual
ars	Credit	8.50%	Consumptio	on	and	Costs	Costs	Annual	sold	Annual	Incomes	Revenues
			for 3300 Nn	n³/h	Operat.	without	Interest	Consum	to NEC	Consumtio	AAUs	
			price 118.5		Costs	the	Included	ption		/Sold to	and	
			EUR/1000N	mi		Credit				consumers	ERUs	
	ThEUR	ThEUR	1000mi	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR
2005	5752.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	143.4	143.4
2006	0.0	488.9	0.0	0.0	0.0	0.0	488.9	0.0	0.0	0.0	430.2	430.2
2007	958.7	488.9	27060.0	3206.6	76.0	3282.6	3771.5	2025.2	1728.0	1253.5	143.4	5150.1
2008	958.7	407.4	27060.0	3206.6	103.0	3309.6	3717.0	2046.4	1651.0	1294.4	312.0	5303.8
2009	958.7	325.9	27060.0	3206.6	135.0	3341.6	3667.6	2148.1	1471.0	1365.7	143.4	5128.2
2010	958.7	244.5	27060.0	3206.6	580.0	3786.6	4031.1	2200.6	1379.0	1410.6	143.4	5133.6
2011	958.7	163.0	27060.0	3206.6	129.0	3335.6	3498.6	2303.4	1198.0	1461.3	143.4	5106.1
2012	958.7	81.5	27060.0	3206.6	700.0	3906.6	3988.1	2306.0	1194.0	1461.3	143.4	5104.7
2013	0.0	0.0	27060.0	3206.6	125.0	3331.6	3331.6	2306.0	1194.0	1461.3	143.4	5104.7
2014	0.0	0.0	27060.0	3206.6	106.0	3312.6	3312.6	2306.0	1194.0	1461.3	0.0	4961.3
2015	0.0	0.0	27060.0	3206.6	580.0	3786.6	3786.6	2306.0	1194.0	1461.3	0.0	4961.3
Total	5752.0	2200.1	243540.0	28859.5	2534.0	31393.5	33593.6	19947.7	12203.0	12630.7	1746.0	46527.4

The average price of the annual electricity consumption is 38 EURO/Mwhe The average price of the annual electricity sold to NEC is 49 EURO/Mwhe

The average price of the annual thermal energy consumption or sold to customers is 13.9 EURO/MWht

The annual capacity of the cogeneration istallation is 8200 h/year for every one.

The price of the reduced emissions is 6 EURO per ton CO2

CALCULATIONS, CM

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 91 from 147

CASH-FLOW/PAY-BACK											
Net cash-flow	-5608.6	-61.0	1491.1	1784.9	1708.7	1341.4	2034.0	1469.4	2426.6	2346.6	1738.8
Interest	0.0	-476.7	-522.4	-440.1	-325.8	-208.3	-111.9	51.4	180.7	402.3	636.0
Net after interest	-5608.6	-537.8	968.7	1344.8	1382.9	1133.1	1922.1	1520.8	2607.3	2748.9	2374.8
Acc cash-flow	-5608.6	-6146.4	-5177.7	-3832.9	-2450.0	-1316.9	605.2	2126.0	4733.3	7482.2	9857.1
* * * PROFIT-IMPACT * *											
Net cash-flow	-5608.6	-61.0	1491.1	1784.9	1708.7	1341.4	2034.0	1469.4	2426.6	2346.6	1738.8
+ Investment	5752.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Depreciation:	0.0	-639.1	-639.1	-639.1	-639.1	-639.1	-639.1	-639.1	-639.1	-639.1	0.0
Interest	0.0	-476.7	-522.4	-440.1	-325.8	-208.3	-111.9	51.4	180.7	402.3	636.0
Profit-impact:	143.4	-1176.9	329.5	705.7	743.8	494.0	1283.0	881.7	1968.2	2109.8	2374.8
NET PRESENT VALUE											
Net cash-flow	-5608.6	-61.0	1491.1	1784.9	1708.7	1341.4	2034.0	1469.4	2426.6	2346.6	1738.8
Annual pres value	-5608.6	-56.3	1266.6	1397.4	1233.0	892.1	1246.7	830.1	1263.5	1126.1	769.1
Tot pres value	4359.6										
INTERNAL RATE OF RET.											
Net cash-flow	-5608.6	-61.0	1491.1	1784.9	1708.7	1341.4	2034.0	1469.4	2426.6	2346.6	1738.8
Nom irr	20.7%										
Discounted net	-5608.6	-50.6	1023.9	1015.6	805.7	524.1	658.5	394.2	539.5	432.3	265.4
Tot disc net	0.0										

	Pres			Prof
Basecalculation:	val	Payback	Irr	imp
	4359.6	6	20.7%	2

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 92 from 147

				Costs						Revenues			
	Invest	Interest	Average A	nnual	Mainte	Total	Total	Electri	Electri	Thermal	CO2	Total	
Ye	ment	Costs	Cogen Ga	s	nance	Annual	Annual	city	city	nergy	Sold	Annual	
ars	Credit	8.50%	Consump	tion	and	Costs	Costs	Annual	sold	Annual	Incomes	Revenues	
			for 3300 N	m³/h	Operat.	without	Interest	Consum	to NEC	Consumtion	AAUs		
			price 118.	5	Costs	the	Included	ption		/Sold to	and		
			EUR/1000	Nmi		Credit				consumers/	ERUs		
	ThEUR	ThEUR	1000mi	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	
2005	4329.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	76.8	76.8	
2006	0.0	368.0	0.0	0.0	0.0	0.0	368.0	0.0	0.0	0.0	230.4	230.4	
2007	721.5	368.0	17090.0	2025.2	1165.0	3190.2	3558.1	279.0	1488.0	2255.5	76.8	4099.3	
2008	721.5	306.6	17090.0	2025.2	1139.0	3164.2	3470.8	281.0	1496.0	2293.5	168.0	4238.5	
2009	721.5	245.3	17090.0	2025.2	1018.0	3043.2	3288.5	276.0	1494.0	2309.4	76.8	4156.2	
2010	721.5	184.0	17090.0	2025.2	962.0	2987.2	3171.1	281.0	1500.0	2321.5	76.8	4179.3	
2011	721.5	122.7	17090.0	2025.2	956.0	2981.2	3103.8	276.0	1494.0	2309.4	76.8	4156.2	
2012	721.5	61.3	17090.0	2025.2	952.0	2977.2	3038.5	281.0	1500.0	2321.5	76.8	4179.3	
2013	0.0	0.0	17090.0	2025.2	946.0	2971.2	2971.2	276.0	1494.0	2309.4	76.8	4156.2	
2014	0.0	0.0	17090.0	2025.2	936.0	2961.2	2961.2	281.0	1500.0	2321.5	0.0	4102.5	
2015	0.0	0.0	17090.0	2025.2	930.0	2955.2	2955.2	276.0	1494.0	2309.4	0.0	4079.4	
Total	4329.0	1655.8	153810.0	18226.5	9004.0	27230.5	28886.3	2507.0	13460.0	20751.1	936.0	37654.1	

Calculations revenues and costs of the project in Toplofikatsia Kazanlak JSC with the effect from AAUs and ERUs

The average price of the annual electricity consumption is 37 EURO/Mwhe

The average price of the annual electricity sold to NEC is 49 EURO/Mwhe

The average price of the annual thermal energy consumption or sold to customers is 26.5 EURO/MWht

The annual capacity of the cogeneration istallation is 6250 h/year for every one.

The price of the reduced emissions is 6 EURO per ton CO2

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 94 from 147

CALCULATIONS, CM V

CASH-FLOW/PAY-BACK Net cash-flow -4252.2 -143.1 585.4 863.6 1015.1 1226.6 1331.6 1501.2 1621.8 0.0 -361.4 -404.3 -388.9 -291.9 Interest -348.6 934.7 1119.1 1383.9 1622.0 -4252.2 -504.5 666.5 Net after interest 181.0 474.6 Acc cash-flow -4252.2 -4756.7 -4575.7 -4101.1 -3434.6 -2499.9 -1380.8 * * * PROFIT-IMPACT * * Net cash-flow -4252.2 -143.1 5854 863.6 1015.1 1226.6 1331.6 1501.2 1621.8 1624.4 1664.1

	1202.2	110.1	000.1	000.0	1010.1	1220.0	1001.0	1001.2	1021.0	1021.1	1001.1
+ Investment	4329.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Depreciation:	0.0	-481.0	-481.0	-481.0	-481.0	-481.0	-481.0	-481.0	-481.0	-481.0	0.0
Interest	0.0	-361.4	-404.3	-388.9	-348.6	-291.9	-212.5	-117.4	0.3	138.1	288.0
Profit-impact:	76.8	-985.5	-300.0	-6.4	185.5	453.7	638.1	902.9	1141.0	1281.6	1952.0

1624.4

138.1

1762.6 1952.0

3387.7 5339.7

0.3

3.1 1625.1

-212.5

-117.4

1664.1

288.0

NET PRESENT VALUE											
Net cash-flow	-4252.2	-143.1	585.4	863.6	1015.1	1226.6	1331.6	1501.2	1621.8	1624.4	1664.1
Annual pres value	-4252.2	-131.9	497.2	676.1	732.5	815.8	816.2	848.1	844.4	779.5	736.0
Tot pres value	2361.7										

INTERNAL RATE OF RET.											
Net cash-flow	-4252.2	-143.1	585.4	863.6	1015.1	1226.6	1331.6	1501.2	1621.8	1624.4	1664.1
Nom irr	16.6%										
Discounted net	-4252.2	-122.7	430.5	544.6	549.0	569.0	529.7	512.1	474.4	407.5	358.0
Tot disc net	0.0										

Preparation for sensivityanalysis

	Pres			Prof
Basecalculation:	val	Payback	Irr	imp
	2361.7	7	16.6%	4

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 95 from 147

Calculations revenues and costs of the project in Toplofikatsia Yambol JSC with the effect from AAUs and ERUs

				Costs			Revenues					
	Invest	Interest	Average An	nual	Mainte	Total	Total	Electri	Electri	Thermal	CO2	Total
Ye	ment	Costs	Cogen Gas		nance	Annual	Annual	city	city	nergy	Sold	Annual
ars	Credit	8.50%	Consumptio	on	and	Costs	Costs	Annual	sold	Annual	Incomes	Revenues
					Operat.	without	Interest	Consum	to NEC	Consumtion	AAUs	
			price 118.5		Costs	the	Included	ption		/Sold to	and	
			EUR/1000N	mi		Credit				consumers/	ERUs	
	ThEUR	ThEUR	1000mi	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR	ThEUR
2005	4100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	114.0	114.0
2006	0.0	348.5	0.0	0.0	0.0	0.0	348.5	0.0	0.0	0.0	342.0	342.0
2007	683.3	348.5	10995.0	1302.9	170.0	1472.9	1821.4	119.0	1044.0	1243.0	114.0	2520.0
2008	683.3	290.4	10995.0	1302.9	170.0	1472.9	1763.3	119.0	1044.0	1243.0	252.0	2658.0
2009	683.3	232.3	10995.0	1302.9	170.0	1472.9	1705.2	119.0	1044.0	1243.0	114.0	2520.0
2010	683.3	174.3	10995.0	1302.9	170.0	1472.9	1647.2	119.0	1044.0	1243.0	114.0	2520.0
2011	683.3	116.2	10995.0	1302.9	170.0	1472.9	1589.1	119.0	1044.0	1243.0	114.0	2520.0
2012	683.3	58.1	10995.0	1302.9	132.0	1434.9	1493.0	119.0	1044.0	1243.0	114.0	2520.0
2013	0.0	0.0	10995.0	1302.9	132.0	1434.9	1434.9	119.0	1044.0	1243.0	114.0	2520.0
2014	0.0	0.0	10995.0	1302.9	132.0	1434.9	1434.9	119.0	1044.0	1243.0	0.0	2406.0
2015	0.0	0.0	10995.0	1302.9	132.0	1434.9	1434.9	119.0	1044.0	1243.0	0.0	2406.0
Total	4100.0	1568.3	98955.0	11726.2	1378.0	13104.2	14672.4	1071.0	9396.0	11187.0	1392.0	23046.0

The average price of the annual electricity consumption is 39 EURO/Mwhe

The average price of the annual electricity sold to NEC is 49 EURO/Mwhe

The average price of the annual thermal energy consumption or sold to customers is 25.8 EURO/MWht

The annual capacity of the cogeneration istallation is 8000 h/year for every one.

The price of the reduced emissions is 6 EURO per ton CO2

CALCULATIONS, CM

۷

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 97 from 147

CASH-FLOW/PAY-BACK											
Net cash-flow	-3986.0	-6.8	755.6	1006.4	953.2	1061.9	1177.9	1351.5	1485.0	1382.2	1437.5
Interest	0.0	-338.8	-368.2	-335.3	-278.2	-220.8	-149.3	-61.9	47.7	178.0	310.6
Net after interest	-3986.0	-345.6	387.4	671.2	675.0	841.1	1028.5	1289.6	1532.7	1560.2	1748.1
Acc cash-flow	-3986.0	-4331.6	-3944.1	-3273.0	-2598.0	-1756.9	-728.4	561.2	2093.9	3654.1	5402.1
* * * PROFIT-IMPACT * *											
Net cash-flow	-3986.0	-6.8	755.6	1006.4	953.2	1061.9	1177.9	1351.5	1485.0	1382.2	1437.5
+ Investment	4100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Depreciation:	0.0	-455.6	-455.6	-455.6	-455.6	-455.6	-455.6	-455.6	-455.6	-455.6	0.0
Interest	0.0	-338.8	-368.2	-335.3	-278.2	-220.8	-149.3	-61.9	47.7	178.0	310.6
Profit-impact:	114.0	-801.1	-68.1	215.6	219.4	385.5	573.0	834.0	1077.2	1104.6	1748.1
NET PRESENT VALUE											
Net cash-flow	-3986.0	-6.8	755.6	1006.4	953.2	1061.9	1177.9	1351.5	1485.0	1382.2	1437.5
Annual pres value	-3986.0	-6.2	641.9	787.9	687.8	706.2	722.0	763.5	773.2	663.3	635.8
Tot pres value	2389.3										
INTERNAL RATE OF RET.											
Net cash-flow	-3986.0	-6.8	755.6	1006.4	953.2	1061.9	1177.9	1351.5	1485.0	1382.2	1437.5
Nom irr	17.8%										
Discounted net	-3986.0	-5.7	544.6	615.8	495.2	468.3	441.0	429.6	400.8	316.7	279.6
Tot disc net	0.0										

	Pres			Prof
Basecalculation:	val	Payback	Irr	imp
	2389.3	7	17.8%	3

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 98 from 147

Stakeholders Atitude Letters

1336 София ж.к._нАюлин"- 2 бул._нП. Владигеров" № 66 ПК 3

До ФИК АКБ Форес ХАД На вниманието на: Г-н Николай Банев

На Ваш № 1937/16.02.2005г.

Уважаеми Г-н Банев,

"Булгаргаз" ЕАД изразява своето принципиално положително отношение към реализирането на ко-генерационни инсталации в предприятията Ви "Полимери" АД, "Костенец ХХИ" АД, "Топлофикация – Казанлък" АД и "Топлофикация – Ямбол" АД и горивна база на природен газ.

Реализирането на подобен тип ко-генерации допринася съществено за:

- подобряване ефективността при производство на електрическа енергия и топлинна енергия, на база използването на природен газ;
- увеличаване на дела на енергията, произведена по комбиниран начин, в съответствие с енергийната стратегия на правителството на Република България;
- разширяване на преносната и разпределителна мрежа за природен газ и увеличаване консумацията на природен газ в страната.

"Булгаргаз" ЕАД ще разгледа внимателно своите възможности за подкрепа на проектите в "Полимери" АД, "Костенец ХХИ" АД и "Топлофикация – Казанлък" АД в частта им за осигуряване на природен газ за ко-генерационните инсталации, свързана с изграждане на съответните тръбопроводи високо налягане и АГРС, в съответствие с инвестиционните планове за тяхната реализация и действащия Закон за енергетиката.

Възможните пунктове за подаване на природен газ от магистралния газопровод за предложените от Вас потребители са както следва:

- За "Полимери" АД ГРС Девня; •
- "Костенец ХХИ"АД ГИС на 100 м от магистралния газопровод Ду 700;
- "Топлофикация Казанлък" АД ГРС Калитиново; ۲
- "Топлофикация Ямбол" АД е захранена с природен газ

С уважение,

Кирил Гегов

Главен Изпълнителен Директор "БУЛГАРГАЗ" ЕАД

)

1

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 100 from 147

BULGARGAZ PLC

24-06.303-18.02.2005

To the attention of Mr.Nikolay Banev Financial Industrial Concern AKB Fores Plc.

Dear Mr.Banev,

Bulgargaz Plc states its principal positive attitude for the implementation of co-generation installations in your factories Polimery Plc, Kostenec HHI Plc, Toplofikazia Yambol Plc, Toploficazia Kazanluk Plc. The implementation of such kind of co-generations significantly contributes to:

- The improvement of the efficiency during the production of electricity and heat energy while using natural gas
- The increasing of the share of the combined produced energy according to the Energy Strategy of the Government of Republic of Bulgaria
- The extension of the conveying and distribution network of natural fuel and the increasing of the consumption of natural gas in the country.

Bulgargaz Plc will consider carefully its possibilities to support the projects at Polimery Plc, Kostenec HHI Plc, Toplofikazia Yambol Plc, Toploficazia Kazanluk Plc. Regarding the part of supplying with natural gas of the co-generation installations according to the construction of the pipelines with high pressure and automatic gas-distributing stations in reference to the investment plans of their construction and the operative Energy law.

The possible points for feeding of natural gas from the high-way gas-main for the offered consumers are:

- for Polimery Plc gas-distribution station Devnya
- for Kostenec HHI Plc gas station 100 m from the high-way gas-main Du 700
- for Toplofikacia Kazanluk Plc gas distribution station Kalitinovo
- Toplofikacia Yambol Plc is supplied with natural gas.

Regards,

Kiril Gegov Main Executive Director **Polymeri JSC**

ДЕВНЯИНВЕСТ АД

9160 ДЕВНЯ, БЪЛГАРИЯ ТЕЛ: (0519) 934 71; ФАКС: (0519) 928 67

E-mail: dinvest@devnya.vega.bg

Изх.№55/24.02.2005 г.

Д О "ПОЛИМЕРИ" АД На вниманието на г-жа Анна Главинова Изпълнителен директор

Относно: Изграждане на инсталация за ко-генерация. 🖌

Уважаема г-жо Главинова,

С интерес се запознахме с Вашия инвестиционен проект за изграждане на инсталация за комбинирано производство на електрическа и топлинна енергия с използване на гориво природен газ по метода на ко-генерация.

Като Ваш дългогодишен бизнеспартньор при търговията на течен хлор, ние поддържаме Вашите инвестиционни намерения за повишаване ефективността на производството на хлор-алкални продукти, както и подобряване екологията на региона, вследствие намаление на отделянето на вредни емисии в атмосферата и почвата, дължащи се на използваните сега като гориво каменни въглища.

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 102 from 147

DEVNYA INVEST PLC 9160 Devnya, Bulgaria. Telephone: (0519) 934 1; Fax (0519) 928 67 E-mail: dinvest@devnya.vega.bg

Entry No. 55/February 21, 2005

то

"POLYMERI" PLC To the attention of Mrs. Anna Glavinova Executive manager

£

1

¢

.

Regarding: construction of a co-generation installation

Dear Mrs. Glavinova,

We were very interested to get acknowledged with your investment project for the construction of an installation for a combined production of electrical and heat energy, using natural gas and the method of co-generation.

As your long-standing business partner in the trade of liquid chlorine, we are supporting your investment intentions of improving the efficiency of the chlorine-alkaline commodities production, as well as improving the ecological balance in the region, due to decrease of harmful emissions in the atmosphere and soil, caused by coals used for fueling the production up until the present moment.

Best regards,

Exe	cutive manager:	
/St.	Kirov/	

До г-жа Анна Главинова Изпълнителен директор Полимери – АД България, Девня

an stady filterett

Относно: Заявление на банката за построяването на станция за производство на електричество и пара на базата на газ като гориво, на територията на Полимери – АД, гр. Девня. Банката заявява следното:

1.Банката има интерес да поддържа строителството на източник на емергия в Полимери – АД, който да е незамърсяващ околната среда.Това ще намали възможни бъдещи загуби на продукция и ще стимулира развитието на Полимери – АД, като гарантира необходимата електроенергия и пара за производствения процест на стабилни и по ниски цени.

2. Построяването на такава електростанция и замяната на конвенционалните източници на енергия е правилният подход, водещ до подобряване на екологията на страната.

3.Ние сме сигурни, че проект като този, отнасящ се за заместване на източници на електроенергия в Енергийния сектор на България, в светлината на закриването на част от мощностите на Козлодуй и необходимостта за намаляване на вредните емисии в атмосферата от централите на въглища, е много нужен и е в съответствие с правилата и законите на евролейската общност,

4.Очакванията за покачване на цените на електроенергията и парата са доста реалистични и поради това смятаме, че проекта на Полимери – АД ще е ефективен и е подходящ за финансиране.

5. С ратифицирането на Протокола от Киото, България трябва да намали емисиите на аредни газове с 8% през 2008г., спрямо равнището от 1998г.

В заключение трябва да подчертаем, че развитието на българската промишленост е все още рисково. Поради това подкрепата, която Полимери ще получи от програмата за продажба на газове от парниковия ефект, ще направи финансирането на проекта по гъвкаво, по-малко рисково.

С уважение, М.Йорданова Управител

Nara Narang²21a ¢

ВАРНА

9000 Варна, ул. Шилка №18, псл.:+359 52 681 235; факс:+359 52 681 240 SWIFT: KORP BG SF, www.corpbank.hg

"CORPORATIVE COMMERCIAL BANK" JSC

To the attention of Mrs. Anna Glavinova Executive manager "Polymeri" PLC Bulgaria, Devnya

¢

Regarding a Bank Statement for the construction of a co-generation of electricity and heat installation, fueled by natural gas in the territory of "Polymeri" PLC, town of Devnya, the Bank states the following:

- The Bank is interested in supporting "Polymeri" PLC in building an ecologically clean electricity-generating installation. This will decrease any future production losses and will stimulate the development of "Polymeri" PLC, thus guaranteeing the electricity and heating necessary for implementation of the production process at stable and low prices.
- Building the said power-generating installation and the substitution of conventional electricity sources is the right approach, leading to an ecological improvement of the country.
- 3. We are certain that such project, relatef the substitution of electrical energy sources in the energy sector of the Republic of Bulgaria, with respect to shutting down a part of the Kozloduy power capacity and the necessity of diminishing harmful atmospheric emissions of the coal power plants, is very necessary and is comforting to the rules of and laws of the European community.
- Expectation of increasing the price of electrical energy and heating are very realistic and thus we consider the project of "Polymeri" PLC effective and appropriate for financing.
- Upon ratification of the Kyoto protocol, Bulgaria will have to decrease harmful gas emissions with 8% during 2008 related to the level of 1998.

We would like to conclude this statement by stressing on the fact that the development of Bulgarian industry is still very risky. Thus, the support "Polymeri"

will obtain by the program for sale of greenhouse gases, will secure the project flexibility and will decrease risk factors.

ŵ

•••

¢

Best regards, M. Yordanova Manager

Varna

9000 Varna, No. 18 "Shipka" street, (+359 52 681 235; Fax +359 52 681 240) SWIFT: KORP BG SF, www.corpbank.bg

Kostenets HHi JSC

KOCTEHEL

ОБЩИНСКА АДМИНИСТРАЦИЯ - КОСТЕНЕЦ

Гр.Костенец, ул."Иван Вазов" № 2, тел/факс 07142/32-34, e-mail kostenetz adm@yahoo.com

ДО ДИРЕКТОРА НА "КОСТЕНЕЦ - ХХИ" АД ГР. КОСТЕНЕЦ

АКЦИОНЕРНО ДРУЖЕСТВО "КОСТЕНЕЦ - ХХИ" гр. КОСТЕНЕЦ

На Ваш № А-103 / 17.02. 2005 г.

ОТНОСНО: Инвестиционен проект "Газов ко-генератор за електрическа и топлинна енергия в "КОСТЕНЕЦ - ХХИ" АД "

УВАЖАЕМИ Г-Н ДИРЕКТОР,

След като се запознахме с изложеното в горепосоченото писмо намерение за Инвестиционен проект "Газов ко-генератор за електрическа и топлинна енергия в "КОСТЕНЕЦ - ХХИ" АД " и отчитайки перспективите за развитие на община Костенец и региона при пълноправното членство на България в Европейския съюз;

в съответствие с Принципите за устойчиво развитие – развитие осигуряващо благоприятна околна среда на бъдното поколение;

в съответствие с целите, заложени в Националната енергийна стратегия за намаляване на емисиите, парниковите газове и повишаване енергийната ефективност на страната;

в съзвучие с дългогодишното взаимоизгодно сътрудничество между "КОСТЕНЕЦ - XXИ" АД и община Костенец;

в предвид, преките ползи за населението и предприятията от успешното осъществяване на проекта за газификация на град Костенец, а именно: използване на високоефективни, щадящи околната среда горива в бита и промишлеността, подобряване инфраструктурата на района, по-чистата околна среда, нови работни места и вследствие на това повишаване на икономическото състояние и стандарта на живот в региона;

считаме, че изграждането на ко-генерационната инсталация в повереното Ви Дружество ще допринесе съществено за просперитета на град Костенец и

НЕ ВЪЗРАЗЯВАМЕ

срещу осъществяването на Инвестиционния проект "Газов ко-генератор за електрическа и топлинна енергия в "КОСТЕНЕЦ - ХХИ" АД " на територията на община Костенец.

3AIIIEB ОБЩИНА КОСТЕНЕЦ

To: Your ref. No.: A-103/17.02.2005

RE: "Gas co-generator of electric and thermal power at KOSTENEC HHI AD" Investment Project

DEAR DIRECTOR,

Having got acquainted with your intention, expressed in the abovementioned letter, of implementing a **"Gas co-generator of electric and thermal power at KOSTENEC HHI AD" Investment Project**, and taking into account the development prospects for the Kostenec Municipality, and for the whole region with view to the full EU membership of Bulgaria;

in line with the sustainable development principles – for development ensuring favourable environment for the future generation;

in line with the goals set with the National Power Strategy for emission and greenhouse gas reduction and for improvement of the power efficiency in this country;

in harmony with the long-lasting and mutually beneficial partnership between KOSTENEC HHI AD and the Kostenec Municipality;

taking into account the direct benefits for the population and the business companies from the successful implementation of the Kostenec Gasification Project, namely: utilization of high efficiency, environment-friendly fuels in the households and in industry, improvement of the regional infrastructure, cleaner environment, new workplaces, and as a result of that – improvement of the economic status and the living standards in the region;

we believe, that the construction of the co-generator facility in the Company you manage would significantly contribute to the prosperity of the town of Kostenec, and

WE DO NOT OBJECT

against the implementation of the "Gas co-generator of electric and thermal power at KOSTENEC HHI AD" Investment Project in the territory of Kostenec Municipality.

(Round seal of the Lord Major, Kostenec Municipality)	GOSPODIN ZASHEV, (Sgd. ill.) LORD MAYOR OF KOSTENEC MUNICIPALITY
---	---

I undersigned, document "Letter with ref. No.: 004/February 22nd, 2005" attached hereto. The translation contains 1 page. Sworn translator:

Elena Mihaylova Zaharieva, personal number 5601226694
До Директора на "Костенец – ХХИ" АД гр. Костенец

Относно: Вашизх. № А-114 123. 02. 2005 г.

Уважаеми г-н Директор,

Запознахме се с Вашето намерение за Инвестниконен проект "Газов ко-генератор за електрическа и топлинна енергия в "КОСТЕНЕЦ-ХХИ" АД"

като имаме предвид перспективите за развитие на региона, в който са разположени нашите фирми, а именно:

и

възможността за по-скорошна газификация на гр. Костенец и изгражданото на газоразпределителна мрежа,вследствие на косто нашата фирма да подобри съществено енергийната си ефективност и да намали разходите за енергия,

наред с това разшири дейността си и създаде нови работни места,

като съдейства за постигане на благоприятна околна среда за населението на Общината,

в унисон с дълготрайното сътрудничество между нашите две фирми,

считаме, че изграждането на ко-генерационната инсталация ще допринесе както за просперитета на повереното Ви Дружество, така и на нашата фирма и на град Костенец като цяло.

НЕ ВЪЗРАЗЯВАМЕ

срещу осъществяването на Инвестиционния проект за газов ко-генератор в "КОСТЕНЕЦ – ХХИ" АД.

С уважение Төдоров

Belopaper LTD, Kostenets

(Translation from Bulgarian)

To the Director of Kostenec HHI AD
the town of KOSTENEC

Re.: Your ref. No.: <u>A-114/23.02.2005</u>

Dear Director,

We reviewed your idea of Investment Project for

"Gas co-generator of electric and thermal power at KOSTENEC HHI AD"

and

taking into account the development prospects for the region in which our companies are located, namely:

the possibility for forthcoming gasification of the town of Kostenec and construction of gas-distribution network, as a result of which our company would significantly raise its power efficiency and would lower its power-related expenses,

in parallel with that to develop its business and to establish new workplaces,

and to help for the attainment of favourable environment for the local population,

in the context of the long-lasting partnership between our two companies,

we believe that the construction of the co-generator facility would not only contribute to the prosperity of the Company you manage, but to the prosperity of our Company and of the town of Kostenec as a whole.

WE DO NOT OBJECT

against the implementation of the Gas Co-Generator Investment Project at KOSTENEC HHI AD.

Yours sincerely, (Sgd. ill.) D. Todorov	(Round seal of Belopaper, Kostenec)
--	---

I undersigned, , do hereby certify that this is a true and correct translation I have made from Bulgarian into English of the document "Letter from Belopaper, Kostenec" attached hereto. The translation contains 1 page. Sworn translator:

Elena Mihaylova Zaharieva, personal number 5601226694

До Директора на "Костенец – ХХИ" АД гр. Костенец

оно дружество "костени

/p. KOCTEHEW

123.02. 2005 r.

Уважаеми г-н Директор,

И

. . .

Запознахме с Вашето намерение за Инвестиционен проект

«Газов ко-генератор за електрическа и топлиина енергия в «КОСТЕНЕЦ – ХХИ" АД"

като имаме предвид перспективите за развитие на региона, в който са разположени нашите фирми, а именно:

вызможностти за по-скорощна газищивация на су. Костенец и по-раблоние за такорание из газоразпределителна мрежа, вследствие на това нашата фирма да полобри съществено снергийна си сфективност и да снижи разходите за снергия,

наред с това разшири дейността си и създаде нови работни места,

като съдейства за постигане на благоприятна околна среда за населението на Общината,

в унисон с дълготрайното сътрудничество между напите две фирми,

считаме, че изграждането на ко-генерационната инсталация ще допринесе не само за просперитета на повереното Ви Дружество, но и на нашата фирма и на град Костенец като цяло.

НЕ ВЪЗРАЗЯВАМЕ

срещу осъществяването на Инвестиционния проект за газов ко-генератор в «КОСТЕНЕЦ – ХХИ" АД.

дльжност, печат/

С уважени

Model

To the Director of Kostenec HHI AD the town of Kostenec

	Seal.		
Re · Your ref No · 46/23 02 2005	KOSTENEC HHI		
1001 1001 101. 100. <u>1070/20.02.2000</u>	JOINT-STOCK COMPANY		
	Inc. No.: <u>008/February 23rd,</u> 20 <u>05</u>		
	the town of KOSTENEC		

Dear Director,

We reviewed your idea of Investment Project for

"Gas co-generator of electric and thermal power at KOSTENEC HHI AD"

Seal

and

taking into account the development prospects for the region in which our companies are located, namely:

the possibility for forthcoming gasification of the town of Kostenec and construction of gas-distribution network, as a result of which our company would significantly raise its power efficiency and would lower its power-related expenses,

in parallel with that to develop its business and to establish new workplaces,

and to help for the attainment of favourable environment for the local population,

in the context of the long-lasting partnership between our two companies,

we believe that the construction of the co-generator facility would not only contribute to the prosperity of the Company you manage, but to the prosperity of our Company and of the town of Kostenec as a whole.

WE DO NOT OBJECT

against the implementation of the Gas Co-Generator Investment Project at KOSTENEC HHI AD.

	(Oval seal of Activ Comers EOOD, Kostenec Branch)	Yours sincerely, <u>(Sgd. III)</u> <u>M. Angelov – Manager</u> /Name, office, seal/
--	---	---

, do hereby certify that this is a true and correct translation I have made from Bulgarian into English of the document "Letter with Inc. No.: 008/February 23rd, 2005" attached hereto. The translation contains 1 page. Sworn translator:

Elena Mihaylova Zaharieva, personal number 5601226694

BYAKOCT OOA 2p.KOCTEHEL ИЯХМ« 995 z.

Относно: Ваш изх. № . А. 109 23 43. 2005 г

Уважаеми г-н Директор,

Запознахме с Вашето намерение за Инвестиционен проект

"Газор ко генератор за електрическа и топлиния счертия в "КОСТЕНЕЦ – ХХИ" АД"

И

като имаме предвид перспективите за развитие на региона, в който са разположени нашите фирми, а именно:

възможността за по-скорошна газификация на гр. Костенец и изграждането на газоразпределителна мрежа, вследствие на това нашата фирма да подобри съществено енергийна си ефективност и да снижи разходите за енергия,

наред с това разшири дейността си и създаде нови работни места,

като съдейства за постигане на благоприятна околна среда за населението на Общината.

в унисон с дълготрайното сътрудничество между нашите две фирми,

считаме, че изграждането на ко-генерационната инсталация ще допринесе не само за просперитета на повереното Ви Дружество, но и на нашата фирма и на град Костенец като цяло.

НЕ ВЪЗРАЗЯВАМЕ

срещу осъществяването на Инвестиционния проект за газов ко-генератор и "КОСТЕНЕЦ – ХХИ" АД.

лиъжност, печ /име

(Translation from Bulgarian)

BULKOST LTD The town of KOSTENEC Ref No · 52

T(CI. 110 52		
February 23 rd , 2005	To the Director	
	01	f Kostenec HHI AD
	.1 .	

the town of KOSTENEC

	Seal:
Re · Your ref No · A-109/23 02 2005	KOSTENEC HHI
100.1001101.100. <u>11107/20.02.2000</u>	JOINT-STOCK COMPANY
	Inc. No.: <u>006/February 23rd,</u> 20 <u>05</u>
	the town of KOSTENEC

Dear Director,

We reviewed your idea of Investment Project for

"Gas co-generator of electric and thermal power at KOSTENEC HHI AD"

and

taking into account the development prospects for the region in which our companies are located, namely:

the possibility for forthcoming gasification of the town of Kostenec and construction of gas-distribution network, as a result of which our company would significantly raise its power efficiency and would lower its power-related expenses,

in parallel with that to develop its business and to establish new workplaces,

and to help for the attainment of favourable environment for the local population,

in the context of the long-lasting partnership between our two companies,

we believe that the construction of the co-generator facility would not only contribute to the prosperity of the Company you manage, but to the prosperity of our Company and of the town of Kostenec as a whole.

WE DO NOT OBJECT

against the implementation of the Gas Co-Generator Investment Project at KOSTENEC HHI AD.

(Round seal of	Yours sincerely, <u>Dipl. Eng. G. Kitov</u>
Bulkost Ltd.,	(Sgd. jl.)
Kostenec)	/name, office, seal/

I undersigned, , do hereby certify that this is a true and correct translation I have made from Bulgarian into English of the document "Letter with Inc. No.: 006/February 23rd, 2005" attached hereto. The translation contains 1 page. Sworn translator

Elena Mihaylova Zaharieva, personal number 5601226694

"ДИМКО СТАР" ЕООД гр. София

ФАБРИКА ЗА МЕТАЛО ПРЕСОВО ПРОИЗВОДСТВО, гр. Костенец Тел.: 07142/20-56

113×N:20193.02.05

ЛО **MUPENTOPA** НА "КОСТЕНЕЦ-ХХИ"-АД **FP.KOCTEHEL**

ОТНОСНО:Ваш изходящ № А- 112 от 23.02.2005 г.

Уважаеми г-н Директор,

Запознахме се с Вашето намерение за Инвестиционен проект "Газов ко-генератор за електрическа и топлинна снергия в "Костенец-ХХИ" АД и като имаме в предвид перспективате за развитие на региона в който са разположени нашите фирми, а именно: Възможността за по-скорошна газификация на гр.Костенси и изграждането на газоразпределителна мрежа, вследствие на това нашата фирма да подобри съществено енергийната си ефективност и да снижи разходите за енергия, наред с това разшири дейността си и създаце нови работни места, като съдейства за постигане на благоприятна околна среда за населението на Общината, в унисон с дълготрайното сыгрудничество между нашите две фирми, считаме че изграждането на такава инсталация ще допринесе не само за просперитета на дружеството Ви, но и на нашата фирма и на град Костенец, като цяло.

НЕ ВЪЗРАЗЯВАМЕ срещу осъществяването на Инвестиционния проскт за газов ко-генсратор в "Костенец-ХХИ"АД.

(Translation from Bulgarian)

(Emblem)

DIMCOSTAR EOOD, the city of Sofia

METALPRESS PRODUCTION FACTORY, the town of Kostenec

Tel.: 07142/20-56

Ref. No.: 70/23.02.05

TO THE DIRECTOR OF KOSTENEC HHI AD <u>THE TOWN OF KOSTENEC</u>

RE.: Your ref. No.: A-112 of23.02.2005

Dear Director,

We reviewed your idea of Investment Project for **"Gas co-generator of electric and thermal power at KOSTENEC HHI AD"** and taking into account the development prospects for the region in which our companies are located, namely:

the possibility for forthcoming gasification of the town of Kostenec and construction of gas-distribution network, as a result of which our company would significantly raise its power efficiency and would lower its power-related expenses, in parallel with that to develop its business and to establish new workplaces, and to help for the attainment of favourable environment for the local population, in the context of the long-lasting partnership between our two companies, we believe that the construction of such facility would not only contribute to the prosperity of the Company you manage, but to the prosperity of our Company and of the town of Kostenec as a whole.

<u>WE DO NOT OBJECT</u> against the implementation of the Gas Co-Generator Investment Project at Kostenec HHI AD.

MANAGER: (Sgd. ill.) D. Enikiev

(Rectangular seals of Dimcostar EOOD, the city of Sofia)

I undersigned, document "Letter with ref. No.: 70/February 23rd, 2005" attached hereto. The translation contains 1 page. Sworn translator

Elena Mihaylova Zaharieva, personal number 5601226694

Эсие " <u>МАРИЦА-Н.И.С."ООД</u>	
Гр.Костенец ул."Янтра"№ 20 тел.код.07142/23-07 тел.факс 20-55 E-mail: <u>MARICA_NIS@ABV.BG</u>	
Марица-нис сод	
изх № 21 До Директора	
<u>23. 02/ 200 5г</u> На "Костенец-ХХИ" АД Гр. Костенец	
Относно Ваш изх. № А-111/23.02. 2005г.	
Уважаеми Господин Директор, (Bx. No. 005/23. 20.05 г.	
Запознахме се с Вашето намерение за Инвестиционен проект: Ср. КОСТЕНЕЦ	^
"Газов ко-генератор за електрическа и топлинна енергия в "КОСТЕНЕЦ-	
и като имаме предвид перспективите за развитие на региона, в който са разположени нашите фирми, а именно:	
възможността за по-скорошна газификация на гр. Костенец и изграждането на газоразпределитална мрежа, в следствие на това нашата фирма да подобри съществено енергийната си сфективност и да снижи разходите за енергия,	
наред о гова разшири дейността си,	N.
като съдейства за постигане на благоприятна околна среда за населението на Общината,	
в унисон с дыпотрайното сътрудничество между нашите две фирми,	
считаме, че изграждането на ко-генерационната инсталация ще допримесе не само за просперитета на повереното Ви Дружество, но и на нашата фирма и на град Костенец като цяло.	
НЕ ВЪЗРАЗЯВАМЕ	;
срещу осъществяването на Инвестиционния проект за газов ко-генератор в "КОСТЕНЕЦ-ХХИ" АД	ч
HAN KORPHE	-
С УВАЖЕНИЕ:	•

(Translation from Bulgarian)

<u>January</u>					-
NiS			LLO	YD'S REGISTER QUALITY ASSURANCE ISO9001	
		ARITZA-N MARICA-NIS OOD is	N.I.S. (ISO9001 cer	DOD	
The town o	f Kostenec, 2 E-n	20, Yantra St., to nail: MARICA_	el. code: (NIS@AE)7142/23-07, tel./fax: 2 3V.BG	0-55
MARITZA-N.I.S OOD					_
the town of KOSTENEC			To the	Director	
Ref. No.: <u>21</u>			of Kost	enec HHI AD	
<u>February 23'", 2005</u>			The tov	vn of KOSTENEC	
Do Vour rof No A 111/	2 02 2005			Seal: KOSTENEC HHI	
Re.: Your ref. No.: A-111/2	23.02.2005			JOINT-STOCK COMPA	NY
				Inc. No.: 005/February 23	rd , 20 <u>05</u>

Dear Director,

We reviewed your idea of Investment Project for

"Gas co-generator of electric and thermal power at KOSTENEC HHI AD"

and

taking into account the development prospects for the region in which our companies are located, namely:

the possibility for forthcoming gasification of the town of Kostenec and construction of gas-distribution network, as a result of which our company would significantly raise its power efficiency and would lower its power-related expenses,

in parallel with that to develop its business,

and to help for the attainment of favourable environment for the local population,

in the context of the long-lasting partnership between our two companies,

we believe that the construction of the co-generator facility would not only contribute to the prosperity of the Company you manage, but to the prosperity of our Company and of the town of Kostenec as a whole.

WE DO NOT OBJECT

against the implementation of the Gas Co-Generator Investment Project at KOSTENEC HHI AD.

YOURS SINCERELY, (Sad, ill.)	(Round seal of MARITZA-N.I.S OOD.
Manager: Nikola Koparanov	Kostenec)

I undersigned, document "Letter with Inc. No.: 005/February 23rd, 2005" attached hereto. The translation contains 1 page. Sworn translator:

Elena Mihaylova Zaharieva, personal number 5601226694

Toplofikatsia Kazanlak JSC

ТОПЛОФИКАЦИЯ-КАЗАНЛЪК"ЕАД

ДО Г-Н ИВАЙЛО МАРИНОВ ИЗПЪЛНИТЕЛЕН ДИРЕКТОР НА ТОПЛОФИКАЦИЯ КАЗАНЛЪК ЕАД КАЗАНЛЪК

Уважаеми г-н Маринов,

След като на събрание на 17.02.2005 г. бяхме запознати с намерението Топплофикация да направи инвестиции в промяна на горивото за производство от мазут на природен газ и да пусне в експлоатация газови модули, които да произвеждат едновременно топлинна и електрическа енергия, както и с ефектите от това, изразяваме следното мнение:

Намираме намеренията на Вашето дружество за положителни, като според нас ние потребителите ще почувстваме ефекта им в две направления:

Първо – ще въведете ново оборудване, което ще е с по-висока ефективност и намалени разходи и по този начин ще можете да произвеждате по-евтина топлинна енергия и ще можете по-добре да задоволявате нашите потребности.

Второ – като смените горивото за производство от мазут на природен газ ще се подобри егологичната обстановка в града и от комина на Топлофикация няма да излизат вредни газове и ние и нашите деца ще дишат по-чист въздух.

Надяваме се, че ще можете бързо да реализирате намеренията си.

За присъстващите на събранието:

- 1. Димчо Колев Иванов
- 2. Иван Трифонов Иванов
- 3. Пенка Митева Ганчева
- 4. Владо Христов Чаушев

Dung Uban Ubanical MM Da Quert

18.02.2005 г. Казанлък

2, Dondukov Str., Apt. B2 Tel./Fax: + 359 431 6 42 76 E-mail: interpreto@orbinet.bg

Page1 Translated from Bulgarian Ref. No. 03-86 22.02.2005

Attention: Mr. Ivaylo Marinov The Chief Executive Manager: "TOPLOFIKACIYA" - KAZANLAK, Single Person Joint Stock Company Kazanlak town

Dear Mr. Marinov,

After a meeting, held on 17/02/2005, we were acquainted with investment intention of "TOPLOFIKACIYA" - Kazanlak, Single Person Joint Stock Company, related to project realization concerning changing fuel line from fuel oil into natural gas and putting into service the co-generating gas modules, which w II simultaneously produce thermal and electrical energy as well as efficiency results, we would like to express our opinion as follows:

According to our consideration, Your intentions will be positive and we, the consumers will feel the effect into two directions:

First - you will put into service a new and high efficient equipment that w II reduce expenses and in that way you will produce cheaper thermal energy as to be satisfied our needs

Second - by changing fuel line - from fuel oil to natural gas, the environment in the town will be ecologically protected, harmful gases will be eliminated from the chimney of "Toplofikaciya" - Kazanlak company and our children will breathe fresh air.

We hope that you will be able to realize our project as soon as possible.

persons on the meeting:

- 1. Dimcho Kolev Ivanov
- 2. Ivan Trifonov Ivanov
- 3. Penka Miteva Gancheva

4. Vlado Hristov Chaushev

Kazanlak

(followed by signatures) 18/02/2005

© BILLIBHA IRASAHIATHR <u>43.00</u>- 4 <u>24.01</u>_20<u>0</u>5

община казанлък

6100 Казанлък, ул. "Розова долина" 6

ТЕЛЕФОНИ: КМЕТ /0431/ 22 580, ФАКС /0431/ 25 164 ЗАМ. КМЕТ /0431/ 22 581 ЗАМ. КМЕТ /0431/ 22 581 ЗАМ. КМЕТ /0431/ 25 149 ЗАМ. КМЕТ /0431/ 22 584 СЕКРЕТАР НА ОБЩИНАТА /0431/ 23 192 e-mail: mayor_kz@kz.orbitel.bg

ДО Г-Н ИВАЙЛО МАРИНОВ ИЗПЪЛНИТЕЛЕН ДИРЕКТОР на "ТОПЛОФИКАЦИЯ – КАЗАНЛЪК" ЕАД ГР.КАЗАНЛЪК

ОТНОСНО: Инвестиционни намерения на "Топлофикация - Казанлък" ЕАД за реализация на проект за смяна на горивната база от мазут на природен газ и въвеждане в експлоатация на когенериращи газови модули

Уважаеми г-н Маринов,

Община Казанлък е много добре запозната с Вашите инвестиционни намерения за реализация на проект за смяна на горивната база от мазут на природен газ и въвеждане в експлоатация на когенериращи газови модули.

Ние приветстваме тези Ваши намерения, тъй като те ще доведат до положителен ефект в няколко направления:

- ще се замени физическо и морално остаряло оборудване за комбинирано производство на топлинна и електрическа енергия с нови и на високо технологично равнище когенериращи газови модули;
- ще се гарантира непрекъснато и с високи качествени показатели, при приемливи цени, топлоснабдяване на населението на Общината ползващо централизирано топлоснабдяване;
- ще се създаде възможност за присъединяване на нови потребители в т.ч. и общински обекти;
- ще се постигне значителен екологичен ефект от промяната на горивната база от мазут на природен газ чрез намаляне до 2/3 на емисиите на CO₂, до 1/2 на емисиите на NO_x и практическо прекратяване емисиите на SO₂.
- при предвиденото целогодишно производство на електроенергия, ще се осигури в определена степен автономност и гарантираност на електроснабдяване на важни общински обекти при извънредни ситуации;

Община Казанлък ще предприеме всички зависещи от нея действия, подпомагащи реализацията на проекта.

Като вярвам искренно в успешното изпълнение на проекта, оставам

С уважение Стефан Дамянов Кмет

INTERPRETO

SD "Interpreto - Nacheva, Tsankova & Kozhuharova"

BG -6100 Kazanlak 2, Dondukov Str., Apt B2 Tel./Fax: +359 431 6 42 76 E-mail: interpreto@orbinet.bg

Page 1 Translated from Bulgarian.

KAZANLAK MUNICIPALITY

6, Rozova Dolina street, Kazanlak 6100 Tel: Mayor/0431/22 580; Fax: /0431/ 25 164 Deputy Mayor: /0431/ 22 581 Deputy Mayor: /0431/ 25 149 Deputy Mayor: /0431/ 22 584 Municipal Secretary: /0431/23 192 e-mail :mayor_kz.orbitel.bg

Ref. No. 73-00-7 24.02.2005

Attention: Mr. Ivaylo Marinov The Chief Executive Manager: "TOPLOFIKACIYA" - Kazanlak, Single Person Joint Stock Company Kazanlak town

Regarding: "TOPLOFIKACIYA" - Kazanlak, Single Person Joint Stock Company investment intention, related to project realization concerning changing fuel line from fuel oil to natural gas and putting into service the co-generating gas modules.

Dear Mr. Marinov,

Municipality authorities are very well acquainted with your investment intention, related to project realization concerning changing fuel line from fuel oil to natural gas and putting into service co-generating gas modules.

Congratulations on your intention as it will lead to positive effect in several directions as follows:

- replacement of the old and outdated equipment for combined production of thermal and electrical energy with new and on a high technological level co-generating gas modules.
- Continuous heat supply to Kazanlak Municipality inhabitants using central

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 122 from 147

heating will be guaranteed in high quality indices at acceptable price.

it will be given a possibility to be joined new consumers including Municipal construction sites;

obtaining considerable ecological effect by changing fuel line from fuel oil into natural gas through 2/3 emissions decrease of CO₂, *Vi* NO_X and practical cessation of SO₂ emissions;

during annual foreseen energy production, it will be provided, to a certain extent, independence and guaranty in electrical supply to important Municipal sites in case of emergency.

Kazanlak Municipality authorities will take all measures depending on its power concerning project realization.

I sincerely hope that project implementation will be successful. Faithfully

Yours

Stefan Damyanov The Mayor (followed by signature and official seal).

Toplofikatsia Yambol JSC

РЕПУБЛИКА БЪЛГАРИЯ ОБЛАСТЕН УПРАВИТЕЛ НА ОБЛАСТ ЯМБОЛ

9110231	
16.07. 200	1

ДO

милко ковачев министър на енергетиката и енергийните ресурси

ТАСКО ЕРМЕНКОВ ИЗПЪЛНИТЕЛЕН ДИРЕКТОР НА АГЕНЦИЯТА ЗА ЕНЕРГИЙНА ЕФЕКТИВНОСТ С О Ф И Я

копие:

ДÒ

ВАСИЛ АЛЕКСИЕВ ИЗПЪЛНИТЕЛЕН ДИРЕКТОР НА "ТОПЛОФИКАЦИЯ-ЯМБОЛ" ЕАД ГР.ЯМБОЛ

писмо за подкрепа

<u>ОТНОСНО</u>: Проект за енергийна ефективност: Топлофициране на 6000 броя приведени апартаменти в ж.к. "Златен рог", ж.к. "В. Левски" и централната градска част на гр. Ямбол

Представен от: "Топлофикация - Ямбол" ЕАД

Проектът на "Топлофикация – Ямбол" ЕАД има за цел да разшири дейността и повиши енергийната ефективност на дружеството. Той обхваща: изграждане на газопроводно отклонение, подмяна на съществуващата и изграждане на нова топлопреносна мрежа, подмяна на стари абонатни

Във връзка с: xx-4702 / 0107 от 05.7.2004 г. 17:31:28

станции с нови, доставка и инсталиране на газов модул за когенерация и подмяна на мрежови помпи и управлението им. Проектът е на стойност 9,5 млн. лв., ще бъде изпълнен в сътрудничество с фирма Danfoss и ще доведе до чувствително намаляване на вредните емисии на въглероден диоксид. Проектът съответства на Областната стратегия за развитие и на Общинския план за развитие – Ямбол.

Подкрепям проекта и съм уверен в успешното му изпълнение и устойчивите резултати от него.

66ЛА УПРАВИТЕЛ (M. CILACOB) мбо

ОБЛАСТЕН УПРАВИТЕЛ:

REPUBLIK OF BULGARIA

REGIONAL GOVERNOR OF REGION OF YAMBOL

To Mr.Milko Kovachev Minister of Energy and Energy Resources

Mr.Tasko Ermenkov Executive Director of Agency for Energy Efficiency Sofia

Copy to:

Mr-Vassil Alexiev Executive Director of Heat Station – Yambol

LETTER OF SUPPORT

Regarding Project for energy efficiency: supplying with a centralized heating system of 6 000 private custom subscribers /apartments/ in residential quarters of the town of Yambol – Zlaten Rog, Vassil Levski and central part

Presented from Toplofikacia Yambol EAD

The project of Heat Station Yambol aims to expand the activities and to increase the energy efficiency of the company. The project scopes: Construction of a gas-main deviation; Rehabilitation of the existing heat-conveying network and construction of a new heat-conveying network; Replacement of the old vapour subscriber's stations with new one and delivery and installation of new subscriber's stations; Delivery and installation of a gas module for combined production of electrical and heat power; Replacement of the network pumps and their control. The project amounts to 9,5 million levs and it will be implemented in a collaboration with Danfoss Company, as a result tere will be a considerable reduction of damaging emissions of carbon.

The projesct corresponds to the Regional Strategy for development and the Municipal Plan for development – Yambol.

We hereby support the projest and we are convinced in its successful implementation and in its steady results.

REGIONAL GOVERNER

M.SPASOB

МИНИСТЕРСТВО НА ЕНЕРГЕТИКАТА И ЕНЕРГИЙНИТЕ РЕСУРСИ

ул.Триадица №8 1000 гр.София Bx 278/20.09. Losy-

Тел: 5490 9Факс980 76 30 pressall@doc.bg

26 06 MED- 15.09.04

Наці регистранновен индекс и заза

Дo

Г-н Васил Алексиев Изпълнителен директор на "Топлофикация - Ямбол" ЕАД гр. Ямбол

Ha Bam № 575/05.07.2004r.

Относно: Изпълнение на проект за топлоснабдяване на 6000 броя приведени апартамента и инсталиране па ко-генерираща мощност в "Топлофикация-Ямбол" ЕАД

Уважаеми Господин Алексиев,

В изпълнение на одобрената от Министерство на енергетиката и енергийните ресурси Бизнес програма, от месси май 2002 г. "Топлофикация - Ямбол" ЕАД възобнови основната си дейност

В края на 2003 г. дружеството възстанови статуквото си на пряк потребител на "Булгаргаз" ЕАД чрез изграждане на газопроводно отклонение от Автоматична газоразпределителна станция на "Булгаргаз". Това осигури по-евтин източник на приреден газ, с което се намали себестойността на продукцията и позволи привличане на нови промишлени, стопански и битови консуматори на топлинна енергия

С подмяната на съществуващата топлопреносна мрежа и предстоящото изграждане на 5000 м нова мрежа от предварително изолирани тръби с топлоносител гореща вода ще се осигури намаляване на технологичните разходи при преноса на топлиния спертия и възможност за присъединяване на пови консуматори.

Със заповеди на министъра на спергетиката на дружеството се прехвърли оборудване за 22 броя абонатни станции, доставени със заем 3937 BUL на Световната банка. По този начин старите абонатни станции с топлоносител пара се замениха с нови на топлоносител гореща вода, с което се постига намалена консумация на топлинна енергия при запазване на комфорта в жилищата. Присъединяване на пови консуматори на топлинна енергия започна и чрез монтаж на индивидуални абонатни станции и индивидуални топломери на Дапfoss. По този

начин се преминава към дирсктно гоплоснабдяване на всеки отделен имот в сгради - етажна собственост и точно отчитане на изразходваната топлинната енергия.

Министерство на снергетиката и енергийните ресурси изразява своята подкрепа за необходимостта от разширяване на топлопреносната мрежа и присъединяване на нови потребители, което ще доведе до увеличение на топлинният товар на дружеството. От своя страна това ще позволи реализация на проект за комбинирано производство на електрическа и топлинна спергия на базата на ко-генерационен двигател, което е важно условие за ефективността на топлофикационната система

По предварителни разчети присъединяването на нови абонати и ефективното използване на природния газ с инсталиране на ко-генерационен модул ще спести изхвърлянето на вредни карбонови емисии в размер на 80 000 т/година. Това кореспондира с ангажиментите на Република България съгласно Протокола от Киото и Директива 2004/8/ЕС на Европейския Парламент и на Съвета.

Министерство на спергетиката и спергийните ресурси подкрепя изпълнението на инвестиционните дейности на "Топлофикация - Ямбол" ЕАД. По този начин ще бъдат осигурсни технически и финансови условия за развитие на дружеството, ще се постигне качествено гоплоснабдяване и поддържане на приемливо ниво на цената на топлинната енергия за потребителите в ср.Ямбол. Не на последно място горните инвестиционни дейности ще се отразят положително за опазване на околната среда.

Към настоящото писмо прилагаме становището на Агенцията по енергийна ефективност относно реализацията на проекта.

Приложение:

Съгласно текста

С уважение,

MINISTRY OF ENERGY AND ENERGY RESOURCES

8, Triadiza Str 1000 Sofia

> ATTN: Mr Vasil Alexiev, Executive Director of Toplofikatzia Jambol Plc Town of Jambol

To your No 575/ 05.07.2004

Re: Execution of the project for heat-supply of 6000 regarded as equal apartments and installation of co-generation power in "Toplofikatzia Jambol" Plc.

Dear Mr. Alexiev,

In execution of the approved by the Ministry of Energy and Energy resources Business program, dated May 2002 the "Toplofikatzia Jambol" Plc. resumed its main activity.

At the end of the 2003 the company restored its status quo as a direct consumer of "Bulgargas" Plc by constructing of a gas-pipe deviation from the Automatic Gas-distribution Station of "Bulgargas" Plc. This ensured a cheaper source of natural gas, which caused a diminution of the prime cost of the production and allowed some new industrial, economic and public consumers of heat power to be attracted.

With the replacement of the existing heat – conveying network and the forthcoming construction of a new 5000 m long network, executed with a preliminary isolated pipes and a heat-carrier hot water, a reduction of the technological expenses by the heat-conveying will be insured.

With the ordinance of the Minister of energy and energy resources a equipment consisting of 32 heat – supply subscriber's stations had been transferred to the company and they had been delivered against an loan of 3937 BUL from the World Bank. This way the old heat-supply subscriber's stations had been replaced by new one having a heat-carrier - hot water, which will cause a reduced consumption of heat power by preservation of the comfort in the houses. Attachment of new consumers of heat power has been started also by an installation of new heat meters of the type Danfoss. By this has been passed over to a direct heat-supply of each one separate possession in the building – floor property and an exact accounting of the heat power consumed.

The Ministry of Energy and Energy Resources expresses its support to the necessity of extension of the heat-conveying network and the incorporation of new consumers, which will bring to an increase of the heat load of the company. On its part this will allow a realization of a project for combined production of electrical and heat power on the base of the co-generation engine, which represents an important condition for the efficiency of the centralized heat supplying system.

According the preliminary planning the incorporation of new subscribers and the effective utilization of the natural gas with the installation of the co-generation module will save the ejection of harmful carbon emissions in the amount of 80 000 t/annually. This corresponds to the engagements of the Republic of Bulgaria according to the Protocol from Kyoto and the Directive 2004/8/EU of the European Parliament and of the Council.

The Ministry of Energy and Energy Resources supports the execution of the investment activities of the "Toplofikatzia-Jambol" Plc. By this there will be ensured technical and financial conditions for the development of the company and will be achieved a qualitative heat - supply and the price of the heat power for the consumers of Jambol will be kept at an acceptable level. And one substantial point – the above mentioned investments will affect positively to the preservation of the environment.

Enclosed to the present letter we apply the Standpoint of the Agency for Energy Efficiency on this project.

Appendix: According the text.

Kind regards

Angel Minev

Deputy Minister

МИНИСТЕРСТВО НА ЕНЕРГЕТИКАТА И ЕПЕРГИЙНИТЕ РЕСУРСИ

АГЕНЦИЯ ПО ЕНЕРГИЙНА

ЕФЕКТИВНОСТ

София 1000, ул. Екзарх Йосиф N:37, ет. 3, Тел./ Факс: 981 5802

СТАНОВИЩЕ

<u>ОТНОСНО</u>: Проект за енергийна ефективност: Разшираване на дейността и повишаване на енергийната ефективност в "Топлофикация Ямбол" ЕАД

Целта на проекта е дружеството да оснгури съществуването си и да реализира мерки, позволяващи бъдещото му развитие. Тази цел се преднолага, че може да бъде реализирана чрез мотивиране на голям брой потребители да изкупуват произведената от дружеството топлинна енергия. Вероятно ръководството на дружеството, от опит и/или чрез проучване и анализ на факторите, влияещи на финансовите постъпления от продажба на топлинна енергия, е стигнало до извода да развие производство и реализация на продукт с гарантиран пазар и нормативно осигурено ритмично заплащане. Горните условия се реализират чрез производството на електрическа енергия, тъй като продажбата й гарантира сигурни и ритмични финансови приходи.

По-различен е случаят с реализирането на топлинната енергия, където трудно би се реализирал планирания брой абонати. Изводът се налага от опита на топлофикационните дружества. В случая има и отежняващи обстоятелства:

 необходимост от съгласие между групи собственици за финансиране закупуването на Групови абонатни станции (ГАС);

- закупуванс от собственици на индивидуални микроабонатни станции (ИМАС), закупуване на измерителни уреди, ремонтни работи и др.

- ниска събираемост на дължимите суми, финансовите постъпления значително изостават от продажбите и не постъпват ритмично.

Дружеството присма план за преструктуриране производството и разпределението на енергия. За целта привлича финансови средства и вече с извършило някои строителни и ремонтни работи. Дружеството търси външно финансиране за завършване на започнатата реконструкция и по-нататъшното реализиране на отделните стапи от проекта. Най-същественият момент е закупуване и монтаж на ко-генерационен агрегат. Цялюстното реализиране на проекта е с краен срок 2007 г., при условие, че се осъществи инвестиционния план

Към настоящия момент част от планираните работи за строителни и монтажни работи са в процес на реализация.

В напреднала фаза на строителството е подобект "Подмяна на съществуващата топлопреносна мрежа и изграждане на нова сдвоена с предварително изолирани тръби с дължина 5000м.".

Эмвършена е подмяната на топлопреносната мрежа в част от ж.к. "Златен рог", към която са присъединени 500 приведени апартамента.

Повищаването на снергийната сфективност ще бъде осъществено след внедряване на следните реални мерки:

- Технически нови тръбопроводи за захранване на дружеството с гориво; нова топлопреносна мрежа; преминаване от топлоносител наситена пара към гореща вода; нови абонатни станции; индивидуално отчитане на повсче от половината планирани потребители; монтиране на технологично оборудване, позволяващо гъвкав режим на контрол и промяна парамстрите на подавания топлоносител и др.
- Франизационии възможност за прилагане енергоспестяващи мерки към потребители на топлинна енергия от обществения и държавния сектор.
- 🚸 Монтаж на ко-генерационен агрегат.

Особено голям сфект ще се получи при реализиране на проекта върху намаляване смисиите на въглеродни окиси, при отпадане използването на твърди и течни горива за отопление на жилищни и обществени сгради.

- С реализирането на проекта се очаква:
- * "Топлофикация Ямбол" АД да се стабилизира и да си оснгури технологични и финансови възможности за бъдещо разширение на вбонатиата мрежа;
- Да се повиши доверието от страна на потребителите по отношение заплащането на стойността на действително получената топлиниа снергия;
- Да се подобри комфорта на микросредата и чистотата на околната среда.
- Като цило реализирането на проекта да има положителен социален ефект.

Като се има предвид държавната политика, провеждана от AEE за насърчаване и съдействие на мерките за енергийна ефективност и реализиране на проекти за намаляване на енергийните разходи на крайните потребители, предлагам да се подкрени реализирането на проекта.

AGENCY FOR ENERY EFFICIENCY

STATEMENT

Regarding Project for energy efficiency – Expanding of the activities and increasing the energy efficiency at Yambol Heat Station

The target of the project is to provide the existence of the company and to take steps for company's future development. This target is supposed to be implemented through the motivation of big number of subscribers buying up the heat energy produced by the company. Probably the managers of the company, based on experience or/and through a survey and analysis of the factors influencing the financial receipts from the sale of heat energy, have reached to the conclusion of developing of the production and realization of a product with guaranteed market and normatively provided rhythmical payments. The upper described circumstances are attained through the production of electricity as far as the sale of electricity guarantees sure and rhythmic financial incomes.

The case with the heat energy is different as far as it is difficult to be reached the number of the planned subscribers. The conclusion is made out of the experience of the heating stations. Here there are some complicating circumstances:

- the necessity of an agreement between the groups of owners for the financing of the acquiring of Group Subscribers' Stations;
- acquiring from owners of individual micro subscribers stations, measuring devices, current repairs and so on.
- Low gathering of the amounts due, the financial receipts are significantly falling behind from the sales and are not rhythmical.

The company approves a plan for restructuring of the manufacture and distribution of energy. For that purpose the company attains financial resources and has already completed some construction and repair works. The company is seeking for an outside financing for the completion of the reconstruction and further implementation of the phases of the project. The most essential issue is the delivery and installation of co-generation module. The project should be completed till 2007 on the condition of the fulfilment of the investment plant of the company.

At present a part of the planned construction and assembly works are in a process of realization. In an advanced state is the phase of Rehabilitation of the existing heat-conveying network and construction of a new heat-conveying network based on preliminary isolated pipes with length of 5000 m.

The replacement of the conveying network in Zlaten Rog estate is completed and 500 subscribers are attached.

The increasing of the energy efficiency will be attained after the implementation of the measures as follows:

- Technical measures – new pipelines for supplying of the company with fuel; new heat-conveying network; transition from one heat carrier to another – t.e. from vapour to hot water; new subscribers' stations; individual reading of more than a half of the planned subscribers; assembling of technical equipment in order of flexible regime of control and alternation of the parameters of heating conduct....

- Organizational measures possibility of applying energy saving measures towards the consumers of heat energy at the public and state sector.
- Installation of co-generation aggregate

Significantly great effect will be attained after the implementation of the project in reference to the reduction of the emissions of carbon oxide after the dropping out of the consumption of solid and liquid fuels for heating of residential and public buildings.

With the completion of the projects the following results are expected:

Cogeneration gas power stations • AKB Fores PLC • ERUPT5 • April 2005 • Page No. 133 from 147

- Yambol Heat Station Company to be stabilized and technological and financial opportunities for the future expanding of the conveying system to be provided
- The confidence in the consumers to be increased in reference to the payment of actually delivered heat energy
- The comfort of the micro climate and the cleanliness of the environment to be increased
- The implementation of the project as a whole to have a positive social effect.

Regarding the state policy conducted through Agency for Energy Efficiency pointed towards encouraging and assistance of the measures for energy efficiency and realization of projects for reduction of energy expenses of the ultimate consumers I propose the implementation of the project to be supported.

Tasko Ermenkov Executive Director

ДО ИЗПЪЛНИТЕЛНИЯ ДИРЕКТОР НА "ТОПЛОФИКАЦИЯ ЯМБОЛ" ЕАД ГР. ЯМБОЛ

становище

от представители на жителите в ж.к."Златен рог", ж.к."В. Левски", квартал "Вьзраждане" и централна част на гр. Ямбол

ОТПОСНО: Проект за снергийна ефективност на "Топлофикания Ямбол" ЕАД и централно топлофициране на град Ямбол.

Уважаеми господин Изпылнителен Дириктор,

На основание проведените срещи и направената от Вас разяснителна дейност но смисъла, екологичната значимост и социалния ефект от осъществяването на дългосрочен проект за едновременно производство на топлинна и електрическа енергия и централно топлофициране гр Ямбол, подкрепяме вашите усилия и желаем успешното му реализиране.

Изразяваме нашата увереност, че при цялостната реализация на проекта до края на 2007 год., ще се стимулира присъединявансто на много по-голям брой потребители на топлинна енергия.

Известно е на обществеността, че централизираното топлоснабдяване при голям брой на абонатите, дава възможност за найсвтин начин на отопление и за включване на по-голям брой социално слаби ссмейства.

Монтирането на нови съвременни абонатни стащии облегчава индивидуалното топлоснабдяване на всички желаещи, исзависимо от мненисто на останалите собственици във входа на жилищния блок.

Съвременните средства за мерене, дават възможност по всяко време за точно и обективно отчитане на потребецата топлинна енергия от всеки абонат.

Като се има в предвид, че до сега в града не е имало централно топлоснабдяване, с изпълнението на Вашия проект ще се даде възможност на гражданите да избират различни алтернативни източници за отопление при икономически най-изгодни пазарни условия.

Като изразяваме мнението на по-голяма част от гражданите в нашите квартали, подкрепяме проекта за топлофициране на града с едновременното производство на топлинна и електрическа спергия

С уважение !

Представители на: Ж.К. "Златен рог": ... Ж.К. "В.Левски": Квартал "Възраждане Център:

TO

ECECUTIVE DIRECTOR OF "TOPLOFICACIA JAMBOL"J.S.C. Town JAMBOL

POSITION

from represent of inhabitants in Lc."Zlaten rog", Lc. "V.Levski", qarter "Vuzrajdane" and central part of town Jambol

ABOUT: Project for energy effective of "Toplofikacia Jambot"J.S.C. and central heating of town Jambol.

Dear mr. Executive Director,

Basis of organize meetings and your explained activity on sense, ecological importance and social effect from raelization of long – term project for coincident production of warm and electricity energy and central heating of town Jambol we support yours efforts and want it's successful realization.

We express our confidence that at entire realization of this project until end of 2007 year will be stimulated join of more clients of warm energy.

It's popular, that there are more clients of central heating, this is possibility for cheapest way of heating and for including of more social - poor families.

Mounting of new contemporary subscribery stations make lighter individual warm supply for all desire to, independence from opinion of other owner in entry of living block.

Contemporaneous means for measure give possibility on every time for exactly and objectivity reading of using warm energy by every subscriber.

When make reference to that by now in the town doesn't have central heating, with execution of yours project will be given possibility of citizens for heating at leonomical favourable market conditons.

As we express the opinion of large part of citizens in our garters, we suport project for heating of town with coincident generating of warm and electricity energy.

With respect!

Representatives of: I.c. "Zlaten rog": I.c. "V. Levski" Quarter "Vuzrajdane".... Center

Annex No. 19

Letters of Regional Environmental Agency

Polymeri JSC

пери Ад - Девня

тел. 0519 9 28-16, факс 0519 9 27-17, e-mail: office@polimeri.org

U3x. №232--- 24.022005r.

До Директора На РИОСВ Гр. Варна

¢

Относно: Преценяване на необходимост от извършване на ОВОС

Уважаема г-жо Караиванова,

Приложено Ви изпращаме документи по чл.6, от Наредба за условията и реда за извършване на оценка на въздействието върху околната среда на инвестиционно предложение за строителство, дейности и технологии (ДВ бр.25/18.03.2003г.) за преценявана на необходимост от извършване на ОВОС на инсталация за когенерация на територията на "Полимери" АД, гр. Девня заедно с информация по приложение №2 от горе посочената наредба.

Приложение: съгласно текста

С уважение,

sponsible Carr

МОСВ-Регионална инспекция 3 dpm, yn "He Hanax" a run 153-45-79

28-00-1126

tel.. 0519 9 28-16, fax 0519 9 27-17, e-mail: office@polimeri.org

Reg. No232-c. 124.02.200 Sr.

To the Director of Regional Environmental and Water Inspection city of Varna

¢

Regarding: Consideration of the necessity of implementing an assessment of environmental influence

Dear Mrs. Karaivanova,

Please find the enclosed documentation in relation to article 6 of the Decree of the clauses and the regulation for the environmental assessment of the investment offer for construction, activities and technologies (State gazette, issue 25/ March 18, 2003) for assessment of the necessity of performing an assessment of environmental influence of installations of co-generation within the territory of "Polymeri" PLC, town of Devnya, together with information regarding application No.2 of the aforementioned decree.

Application: according to text

Best regards,

÷.

Responsible Care

ЮСВ-регионална инспекция риа, ул. "Ян Палах" 4 тел. 63 45 79

N 28-00-1126

Kostenets HHI JSC

индустриален концерн акб форес холди

- 1 26-00 -195 25 62

До Директора на РИОСВ гр. София

Относно: Инвестиционно предложение за газов ко-генератор в Костенец

УВАЖАЕМА Г-ЖО БЛАГИЕВА,

1

Във връзка с Инвестиционния проект "Газов ко-генератор в "Костенец – ХХИ" АД на ФИК"АКБ ФОРЕС" ХАД и в частност на "КОСТЕНЕЦ – ХХИ" АД като Дружество в структурата на Концерна, в изпълнение на изискванията на чл. 81, (1), т.2 и чл. 93, (1), т.1 от ЗООС, приложено Ви предоставяме необходимата информация за преценка на необходимостта от ОВОС, изготвена съгласно изискванията, посочени в Приложение №2 към чл. 6 на НАРЕДБА за условията и реда за извършване на ОВОС на инвестиционни предложения за строителство, дейности и технологии.

В приложението са включени следните документи:

- 1. Информация за преценяване необходимостта от ОВОС на Инвестиционното намерение
- 2. Техническо описание на инсталацията UGT1000 S1 STIG
- 3. Спецификация на характеристиките на газотурбинния генератор тип UGT1000 на англ. език
- 4. Данни за инсталацията с оборудване на "МАШПРОЕКТ" за емисии в атмосферния въздух
- 5. Копия от: Разрешително за водоползване № 405/04.07.2001 МОСВ; Разрешително за заустване на отпадъчни води в повърхностен воден обект № 0437/12.04.2002 РИОСВ, Разрешение за дейности по отпадъците № 12-ДО-23-01/04.04.2003
- 6. Извадка от карта на РБ района на гр. Костенец, предоставена от ГУГК София
- 7. Копие на Скица на парцел III, кв. 137 от Градоустрой вствен план на гр. Костенец
- 8. Копие от Чертеж 183-А-06/3 Ген. план на "Костенец ХХИ" АД
- 9. Копие от Чертеж 183-А-06/3 Водопроводи на площадката
- 10. Копие от Чертеж 183-А-06/5 Канализации на площадката
- 11. Технологично описание на ПСПОВ към "Костенец ХХИ" АД
- 12. Копие от Чертеж 183-А-04/2 Външна кабелна мрежа н.н. и в.н.
- 13. Копие от Чертеж 183-А-02/1 Технологични междуцехови комуникации

ИЗП. ДИРЕКТОР:

2030 Костенец, ул. Съединение 2

Централа: 07142 2131 02 984 8381 Aupermop: mex.: 07142 2125, φarc: 07142 2311 GSM: 0888 570 876 e-mail: kosthhi@mbox.infotel.bg (mailto: kosthhi@mbox.infotel.bg)

Търговски отдел: тел.: 07142 2260 тел/факс: 07142 2178 e-mail: marketing-spl@hhl-bg.com (maito:marketing-spl@hhl-bg.com)

Производственотехнологичен отдел; e-mail: tehno@htii-bg.com

Офис: 1113 София у.А. Фр. Ж. Кюри 20 етаж: 10 тел.: 02 963 4160 Факс: 02 963 4165 те-mail: hhi_sales@ mail.bc

Translation from English:

Attn: Director of RIEW Sofia

Subject: Investment Proposal for Gas Co-Generator in Kostenez

DEAR MRS. BLAGIEVA,

In regard with the Investment Project "Gas Co-Generator in Kostenez – HHI JSC" of FIC AKB Fores HJSC, and Kostenez – HHI JSC in particular as a Company of the Concern Portfolio, considering the requirements of Section 81, Para (1), Item 2 and Section 93, Para (1), Item 1 of Environmental Protection Law, attached hereunder we present the information needed to estimate the necessity of Environmental Impact Evaluation, compiled as per App.No2 to Section 6 of Regulation for Fulfillment of Environmental Impact Evaluation of Investment Proposals for Construction, Activities and Technologies.

The attachment includes the following documents:

- 1. Information for Estimation of the Necessity of Environmental Impact Evaluation of the Investment Proposal
- 2. Technical Description of UGT1000 S1 STIG Installation
- 3. Specification of the characteristics of gas turbine engine, type UGT 10000
- 4. Atmospheric Emissions Data for the Installation equipped by "MASHPROJECT"
- Copies of: Permission for Water Consumption No 405/04.07.2001 MOEW; Permission for Waste Water Discharging into Surface Waters No 0437/12.04.2002 RIEW; Permission for Waste Treatment Activities No 12-DO-23-01/04.04.2003 RIEW
- 6. Excerpt Map of Republic of Bulgaria, Kostenez Region, supplied by Geodesy and Cartography Main Headquarters Sofia
- 7. Copy of Drawing of Lot III, Quarter 137 of Kostenetz Urban Plan
- 8. Copy of Drawing 183-A-06/3 General Plan of Kostenez HHI JSC
- 9. Copy of Drawing 183-A-06/3 Water Main of the Site
- 10. Copy of Drawing 183-A-06/5 Sewers of the Site
- 11. Technological Description of WWTS of Kostenez HHI JSC
- 12. Copy of Drawing 183-A-04/2 External Electrical Wiring law and medium voltage
- 13. Copy of Drawing 183-A-02/1 Technological Internal Communications

MAN. DIRECTOR: /signed, stamped/

Dipl. Eng. Evgeni Titev

2, Seadinenie Str., 2030 Kostenetz, Bulgaria Tel. Operator: +359 7142/21 31; +359 887 52 27 84 Director: +359 7142/21 25, fax: +359 7142/23 11; +359 888 570 876, e-mail: kosthhi@mbox.infotel.bg Sales Department: +359 7142/22 60, fax: 21 78, e-mail: marketing-spi@hhi-bg.com Office: 20, F-J Curie Str., Floor 10, 1113 Sofia, Bulgaria, +359 2/963 41 60, fax: +359 2/963 41 55, e-mail: hhi-sales@mail.bg

МИНИСТЕРСТВО НА ОКОЛНАТА СРЕДА И ВОДИТЕ РЕГИОНАЛНА ИНСПЕКЦИЯ - СТАРА ЗАГОРА

Стара Загора 6000 ул. " Стара Планина " № 2 тел. 042 / 602 683 факс 042 /602 447 e-mail: riosvsz@stz.orbitel.bg

регионална инспекция по окоаната среда и водите стара загора вз. м <u>633</u> их-их 05 г. ДО : "Топлофикация Казанлък" ЕАД гр. Казанлък, ул. "Цар Освободител" № 42

Относно: Уведомление за инвестиционно намерение за "Въвеждане в експлоатация на два броя газотурбинни модула с мощност всеки по 3,2 MWth и 3 MWe, работещи с гориво природен газ, извеждане в експлоатация на двата броя енергийни котли с обща мощност 70 MWth и преустройство на три броя промишлени котли КМ 12 за работа с природен газ" на площадката на "Топлофикация Казанлък" ЕАД.

Във връзка с прилагане на разпоредбите на раздел III от Глава шеста "Екологична оценка и оценка на въздействието върху околната среда" от Закона за опазване на околната среда и чл. 5 от Наредбата за условията и реда за извършване на оценка на въздействието върху околната среда на инвестиционни предложения за строителство, дейности и технологии, утвърдена с ПМС № 59 от 7 март 2003 г./ДВ бр.25 от 2003г./, Ви уведомяваме, че инвестиционното Ви намерение не попада в приложното поле на ЗООС /Приложение 1 и 2 /към чл. 81, ал. 1 т.2/ за инвестиционни намерения за строителство, дейности и технологии/.

За реализацията на инвестиционното предложение <u>не е необходимо</u> мотивирано решение за преценка необходимостта от ОВОС или решение по оценка на въздействието върху околната среда.

Становището не отменя задълженията на инвеститора (собственика) по Закона за опазване на околната среда и други специални закони и подзаконови нормативни актове и не може да служи като основание за отпадане на отговорността съгласно действащата нормативна уредба.

МΠ

SD "Interpreto - Nacheva, Tsankova & Kozhuharova"

Page *I* Translated from Bulgarian BG-6100 Kazan la k 2, DondukovStr., Apt. B2 Tel./Fax: +359 431 6 42 76 E-mail: interpreto@orbinet.bg

MINISTRY OF ENVIRONMENT AND WATER

Regional Inspectorate of Environment and Water - Stara Zagora

2, Stara Planina street 6000 Stara Zagora tel: +359 42 602 683, fax: +359 42 602 447 e-mail: riosv<u>sz@)stz.o</u>rbitel.bg

Regional Inspectorate Stara Zagora Ref. No. 633 Date: 18/02/2005

To: "Toplofikacia Kazanlak" Ltd. 42, "Tsar Osvoboditel" street

Ref: Notification for investment intentions for "Leading into exploitation two gas-turbine modules with a capacity 3,2 MWth and 3 MWe each, working with natural gas; leading away of exploitation two power boilers with a total capacity 70 MWth; and reconstruction of three industrial boilers KM 12 for working with natural gas" on the platform of "Toplofikacia Kazanlak" Ltd.

Regarding the decrees enforce in part III, chapter six "Ecological evaluation and evaluation of the impact on the environment " by the Law for environment

protection" as well as art. 5 of Decree for the conditions and procedures for evaluation preparation, related to the impact on the environment of investment proposals for construction, activities and technologies, approved by Council of Ministers Decree No. 59 as from 7th of March, 2003 (Official Gazette 25/2003), we would like to inform you that your investment proposal does not belong to the field of applications of the Law for environment protection /Appendix 1 and 2, art. 81, paragraph 1, item 2/ concerning the investment intentions for construction, activities and technologies/.

For execution of investment intention a motivated decision <u>is not necessary</u> related to the estimation the necessity from evaluation of the impact on the

The present standpoint does not cancel investor (owner) obligations according to the Law for environment protection as well as other special laws and under-law normative documents and it does not serve for a reason of responsibility invalidation according operative normative documents.

Director Regional Inspectorate of Environment and Water: (eng. P. Nacheva) /subscribed/ Followed by the official seal of Regional Inspectorate of Environment and Water Toplofikatsia Yambol JSC

Bo 264/30.08.2004-

МИНИСТЕРСТВО НА ОКОЛНАТА СРЕДА И ВОДИТЕ РЕГИОНАЛНА ИНСПЕКЦИЯ - СТАРА ЗАГОРА

Стара Загора 6000 ул. " Стара планина " № 2 тел. 042 / 602 683 факс 042 / 602 447 e-mail: riosvsz@stz.orbitel.bg

министерство на околната среда и водите регионална инспекция изв. № <u>2911. (_____</u>

2408.04 21 CTAPA 3AFOPA гр. Ямбол, кң. "Индустриален"

ДО "Топлофикация Ямбол" ЕАД

КОПИЕ Община Ямбол

РЕЩЕҢИЕ № 109-04/19.08.2004г.

По преценка необходимостта от извършване на ОВОС / по чл. 93, ал. 5 от ЗООС /

За инвестиционно предложение - "Топлофициране на гр. Ямбол. Инсталиране на ко – генерационен модул на площадката на "Топлофикация Ямбол" ЕАД"

Инвеститор: "Топлофикация Ямбол" ЕАД

Инвестиционното предложение е свързано с оптимизиране на дейността на "Топлофикация Ямбол" ЕАД чрез монтиране на газов модул за комбинирано производство на електрическа и топлинна енергия на базата на ко – генерационен двигател с вътрешно горене и гориво природен газ, и изграждане на нова топлопреносна мрежа за гореща вода. Общата инсталирана мощност ще бъде 7 076 кW. Трасето на мрежата е с дължина 5000м. Монтажът на модула ще се осъществи на съществуващата производствена площадка в обособено помещение с площ 500м². Топлофицирането на града ще се осъществява на база линеен график за строително монтажни работи по сервитутните зони за инфраструктурната мрежа на кварталите, на общинска земя. Предвижда се използване на предварително изолирани тръби. Промяна на съществуващата пътна инфраструктура на се налага.

На основание чл. 93, ал. 3, ал. 4 и ал. 5 от Закона за опазване на околната среда За инвестиционното предложение <u>не се налага</u>извършване на ОВОС, поради следните мотиви:

1. Монтажът на ко - генерационния модул ще се извършва на площадка с предназначение за производство на топло- и електроенергия.

2. С реализирането на инвестиционното намерение, при поддържане на оптимален горивен процес ще се намалят емисиите на въглероден оксид / СО / в атмосферния въздух.

3. Дейността не е свързана с генериране на производствени и опасни отпадъци, и емитиране на замърсители във водите.

4. За извършване на дейността няма да се използват значителни количества други природни ресурси освен използвания за гориво природен газ.
5. Осъществяването на инвестиционното намерение ще окаже незначително въздействие върху останалите компоненти на околната среда.

6. Не са депозирани писмено мотивирани възражения срещу реализацията на инвестиционното предложение.

Решението не отменя задълженията на инвеститора (собственика) по Закона за опазване на околната среда и други специални закони и подзаконови нормативни актове и не може да служи като основание за отпадане на отговорността съгласно действащата нормативна уредба.

Община Ямбол да извърши публично обявяване на Решението на определените за това места съгласно чл. 93, ал. 5 от Закона за опазване на околната среда.

Решението може да бъде обжалвано по реда на Закона за административното производство пред Министъра на околната среда и водите в седем дневен срок или пред Окръжен съд - Стара Загора в четиринадесет дневен срок от предоставянето му.

БМ

LL VAHUAA JUPE І. НАЧЕВА)

Interpret PSA-Petia Arnaudova Ñî . 20A D. Blagoev str., Ap 12, 8600 Yambol, Bulgaria, tel.: + + 359 46 2 82 50 fax: + + 359 46 6 42 79

MINISTRY OF ENVIRONMENT AND WATER OF BULGARIA

STARA ZAGORA REGIONAL INSPECTORATE

Stara Zagora 6000 2 Stara Planina Street Tel. +359 42 602 683 Fax: +359 42 602 447 E-mail: <u>riosvsz@stz.orbitel.bg</u>

Ministry of Environment and Water of Bulgaria EAD Stara Zagora Regional Inspectorate Ref. No. 2915 Date: 24 Aug 2004 Place: Stara Zagora TO: "TOPLOFIKATSIA YAMBOL"

Industrial Quarter, town of Yambol

C/C: Yambol Municipality

D E C I S I O N No.109-04 / 19.08.2004

Estimated necessity of performing an Assessment of Impact on Environment

<u>**On Investment Proposal**</u> – "Supply of Central Heating System of the town of Yambol. Installation of a co-generation module on the site of "Toplofikatsia Yambol" EAD"

Investor: "Toplofikatsia Yambol" EAD

Investment proposal is related with the operation optimization of "Toplofikatsia Yambol" EAD trough installation of a natural gas operated module for combined production of electrical and thermal power based on an internal combustion engine-co-generator using natural gas fuel and construction of a new heat transfer system for hot water. The total installed capacity is intended to be 7,076 kW. System route is 5,000 m long. Module installation will be carried out on the existing production site in an independent room having area of 500 m². The supply of Central Heating System of the town will be accomplished according to a liner schedule for construction and installation works on the sufferance zones of the quarters' infrastructure system over owned by the municipality land. It is intended that previously isolated pipes will be used. No any modification of the existing road infrastructure is needed.

Based on Par.93, Item 3, Item 4 and Item 5 of the Law for Environmental Protection

Assessment of its Impact on the Environment **is not needed** for this Investment Proposal due to the following reasons:

- 1. Co-generation module is to be installed on a site designed for thermal and electric power production.
- 2. Realization of the investment project and maintaining optimal combustion process will reduce carbon oxide emissions to the atmosphere.
- 3. Operation of the system is not related with generating production and harmful wastes and emitting of contaminants to the waters.

- 4. With the exception of the natural gas fuel no any considerable quantities of other natural resources will be used.
- 5. Realization of the investment project will have an insignificant impact on the other environmental components.
- 6. No any written motivated protests have been entered against the realization of the investment project.

This Decision will not override investor's (owner's) responsibility under the Law for Environmental Protection and other special laws and regulations, and cannot be considered ground for the withdrawal of responsibility according to the regulatory norms and documentation in force.

Municipality of Yambol shall publicly announce this Decision at the specified locations in accordance with Par. 93, Item 5 of the Law for Environmental Protection.

This Decision can be appealed in accordance with the provisions of the Law for Administrative Proceedings before the Minister of Environment and Water within a seven days period, or before Stara Zagora District Court within a fourteen days period from the date of its granting.

> DIRECTOR: Eng. P. Pancheva, Signed Stara Zagora Regional Inspectorate of the Ministry of Environment and Water SEAL