Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" page 1

JI MONITORING REPORT FORM. ANNUAL REPORT

Version 2.0 21 August 2008

CONTENTS

- A. General project activity and monitoring information
- B. Key monitoring activities
- C. Quality assurance and quality control measures
- D. Calculation of GHG emission reductions

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" page 2

Initial remark (referring to Decision 17/CP.7, Annex H, paragraph 54, 56, 58 and 60)

- 54. A monitoring plan for a proposed project activity shall be based on a previously approved monitoring methodology or a new methodology, in accordance with paragraphs 37 and 38 above, that:
- (a) Is determined by the designated operational entity as appropriate to the circumstances of the proposed project activity and has been successfully applied elsewhere;
- (b) Reflects good monitoring practice appropriate to the type of project activity.
- 56. Project participants shall implement the monitoring plan contained in the registered project design document.
- 58. The implementation of the registered monitoring plan and its revisions, as applicable, shall be a condition for verification, certification and the issuance of CERs.
- 60. The project participants shall provide to the designated operational entity, contracted by the project participants to perform the verification, a monitoring report in accordance with the registered monitoring plan set out in paragraph 53 above for the purpose of verification and certification.

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" page 3

SECTION A. General Project activity information

A.1 Title of the project activity:

"Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko".

A.2. JI registration number:

JI 0035

A.3. Short description of the project activity:

According to data of the mine the following amount of methane was utilized during six months year 2008:

For electricity (and heat) m ³ (fuel gas)	18,668,161
For electricity (and heat) m ³ (ignition gas)	704,027
For AGFCP m ³	1,079,419
Total	20,451,607

Table 1: Amount of methane utilized during monitoring period.

A.4. Monitoring period:

Monitoring period starting date: 1/01/2008;
 Monitoring period closing date: 30/06/2008.¹

A.5. Methodology applied to the project activity (incl. version number):

A.5.1. Baseline methodology: The approved consolidated methodology ACM0008/Version 03 "Consolidated baseline methodology for coal bed methane and coal mine methane capture and use for power (electrical or motive) and heat and/or destruction by flaring") has been used to identify the baseline scenario of the proposed JI project. This methodology also refers to the "Tool for calculation of emission factor for electricity systems", the latest version of the "Tool for the demonstration and assessment of additionality" and the latest version of the "Tool to determine project emissions from flaring gases containing Methane".

A.5.2. Monitoring methodology: The approved consolidated methodology ACM0008/Version 03 "Consolidated monitoring methodology for coal bed methane and coal mine methane capture and use for power (electrical or motive) and heat and/or destruction by flaring") has been used to monitor the proposed JI project.

A.6. Status of implementation including time table for major project parts:

Activity	Date
Commissioning of blocks (#1,#2) at gas filling compressor stations at Vostochnaya site	March 2004
Commissioning of new block #3 at gas filling compressor station at Vostochnaya site	March 2005
Commissioning of the 1st CHP modules at Vostochnaya site	January 2006
Commissioning of the 12 th CHP modules at Vostochnaya site	April 2006
Shut-down of boilers at Vostochnaya site	September 2006

¹ Both days were included Monitoring period includes time from 00-00 01/01/08 up to 24-00 30/06/08.

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" page 4

Construction of vacuum pump station N 4 at Grigoryevskaya shaft with six vacuum pumps VVN-150 and build up 3 pipe lines	
Commissioning of the twelfth power unit on Yakovlevskaya industrial site	July- December 2009
Construction of heat supply unit on Central industrial site; Shut down of boiler houses on Centralnaya industrial site	May 2008
Construction and laying of heating main from Centralnaya site to municipal boiler houses	September 2008
Construction of heating main from Yakovlevskaya to Vostochnaya site. Construction of main Heat Substation. Shutdown boilers at Yakovlevskaya.	October 2009

Table 2: Status of implementation (according to PDD version 4.4)

A.7. Intended deviations or revisions to the registered PDD:

Activity	Date		
Construction of the first power unit on Yakovlevskaya industrial site	Third Quarter 2008		
Commissioning of the power units on Yakovlevskaya industrial site	First Quarter 2009		
Construction of heat supply unit on Central industrial site; Shut down of boiler houses on Centralnaya industrial site	Second Quarter 2009		
Construction and laying of heating main from Centralnaya site to municipal boiler houses	Second Quarter 2009		
Construction of heating main from Yakovlevskaya to Vostochnaya site. Construction of main Heat Substation. Shutdown boilers at Yakovlevskaya.	Second Quarter 2009		
Construction of heating main from Vostochnaya to Centralnaya industrial site	Third quarter 2008		

Table 3: Status of implementation

A.8. Intended deviations or revisions to the registered monitoring plan (Decision 17/CP.7, Annex H, paragraph 57 to be considered):

There are deviations in the monitoring plan compared to the monitoring plan as described in the PDD version 4.4. These deviations are improvement to the monitoring system

For years 2004-2007 metering system for CMM consumption was following:

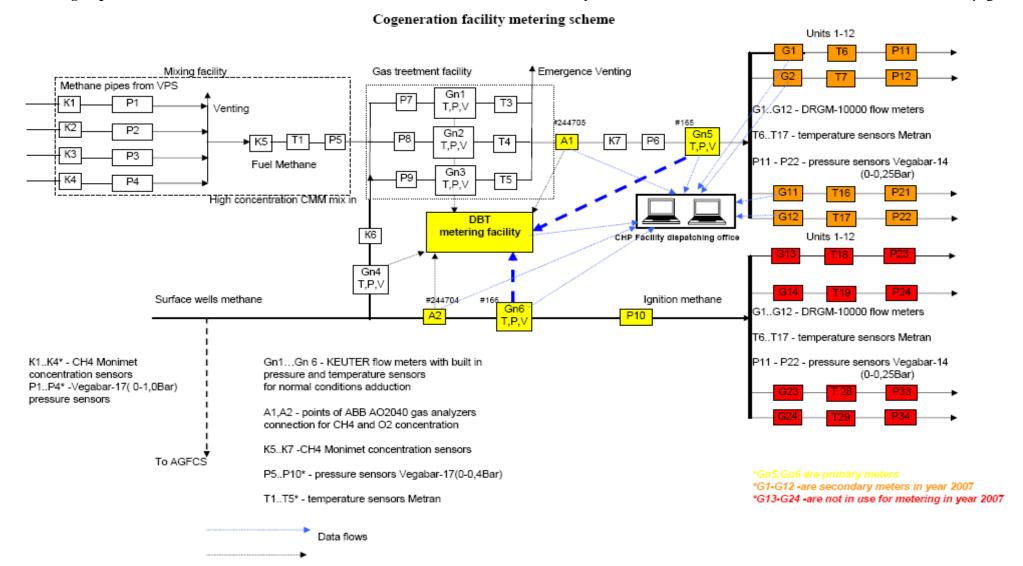


Figure 1 CMM metering scheme for years 2004-2007

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" page 6

In the scheme above, the different meters and sensors indicated that installed at the Vostochnaya site. We can classify the different meters/sensors:

- Primary meters/sensors that supply the data for determining the emission reductions as provided in section D of the Monitoring Report;
- Secondary meters/sensors used for cross-checking the data of the primary meters;
- Tertiary meters/sensors used to operated and control the installation.

The tertiary meters/sensors are not of interest for monitoring purposes and not mentioned further. In the table below the primary (yellow) and secondary meters/sensors (orange) are indicated with their number which listed in the scheme.

	Primary meters/sensors used for determining CMM	Secondary meters/sensors for cross-
	consumption	checking purposes
Fuel gas	Î	
Concentration (%)	ABB AO 2040 (A1)	K7
Flow (V)	Gn5	G1-G12
Temperature (T)	Gn5 sensor	T6-T17
Pressure (P)	P6(Gn5's sensor)	P11-P22
Unit that converts data	DBT equipment	Automatic control
into pure methane (m3)		system in dispatch
Ignition gas		
Concentration (%)	ABB AO 2040 (A2)	K6
Flow (V)	Gn6	
Temperature (T)	Gn6 sensor	
Pressure (P)	P10(Gn6's sensor)	
Unit that converts data into pure methane (m3)	DBT equipment	
AGFCP gas		
Concentration (%)	ABB AO 2040 (A2)	Interferometer (locally)
Flow (V)	Calculations according to pressure difference	
Temperature (T)		Equipment at automatic
Pressure (P)	Manometers at AGFCS	filling blocks
Unit that converts data	Calculations	
into pure methane (m3)		

The general flow of CMM and the metering can be described as follows:²

Two Vacuum Pump Station (VPS) supply CMM through four lines to gas mixing section of the gas treatment plant. The concentration and pressure of methane are different in each pipe-line. These parameters are measured by K1...K4 Monimet concentration sensors and P1...P4 Vegabar pressure sensors. Measurements data are channeled to automatic control system of the dispatch and used only for controlling purposes in order to obtain at the output homogeneous fuel methane with necessary concentration

The methane concentration that is fed to the gas treatment section is measured by the Monimet K5 sensor, temperature by the T1 sensor and pressure by the P5 sensor. Methane from surface wells is mixed in to fuel methane in case of necessity to increase it's concentration. The flow of surface wells methane is measured by Gn4

-

² From year 2008 DBT equipment used as cross-checking equipment. Main meters installed at each CHP unite and channels data to BKTM metering system. The BKTM meters channels data to computer system. Besides all the data are store at four BKTM. Every "BKTM unite" combines three CHP's. These systems are operate with fuel methane. The ignition methane for all CHP units is measured with a new metering system "Universal" which is include LGK-Meter, temperature, pressure and flow sensors.

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" page 7

flow meter Keuter together with velocity, pressure and temperature sensors. The concentration of mix in methane from surface wells is measured by Monimet K6 sensor. Having all this data the automatic control system of the dispatch can calculate amount of methane in the gas mixture.

At the gas treatment section methane distributes between three lines. It is dried, cooled, cleaned and warmed. Acting flow measurements is provided with Gn1 - Gn3 Keuter flow meters together with velocity, pressure and temperature sensors. They transmitted information to calculation equipment developed by DBT which is installed in a separate premise. This block calculates the values of actual consumption for normal conditions and channeled them to automatic control system of the dispatch computer system for operation and data base storage. For checking and reserve, temperature T3 - T5 and pressure sensors have been installed in pipelines.

At the outflow of gas treatment section the processing discharge valve was installed which smoothes the pressure swings at abrupt changes of CHP operation regime. Pressure at the out flow of the section is controlled by processing sensor P6.

With the purpose of fuel gas concentration definition gas testing is made at the outflow of gas treatment section at point A1 which is feeds to gas analyzer AO 2040 (ABB) mounted at gas metering unit. Metered concentration is checked for the compliance with sensor date Monimet K7. Flow meter Gn5 (Keuter) as a unit with speed, pressure and temperature sensors measures the gas amount used by CHP units. The methane amount is calculated based on the data of methane concentration.

Then fuel gas is supplied to the units of CHPs engine rooms. The flow meters G1- G12, type DPG.M-10000, temperature sensors T6 - T17 and pressure sensors P11 - P22 are mounted on the line of each 12 units. Their data are transmitted to automatic control system of dispatch service for calculation of fuel gas amount which is used by each unit. There is no data in case of by-pass unit work which is required for filters cleaning. Taking into account this fact the consumption amount for the units gives total amount of consumed fuel gas. Fuel gas amount is calculated based on the data of methane concentration in it which is used for checking data received before.

Ignition gas is supplied to CP units from gas pipes of surface degasification boreholes. Total current ignition gas consumption is metered by flow meter Gn6 (Keuter) similar mentioned above. Gas concentration is metered by gas analyzer AO 2040 (ABB) with gas test at the point A2. Based on it automatic control system of dispatch service determines the methane amount which is feeds to CP with ignition gas. Ignition gas consumption used by each unit should be determined according to flow meters data G13 - G24 (type DPG.M-160, temperature sensors T6 - T17 and pressure sensors P11 - P22.

Because of some processing reasons there are no data of flow meters, therefore the metering in 2004-2007 was done based on the data of flow meter Gn6 only. Ignition gas consumption used by each unit was calculated as a part of total amount metered by flow meter proportionate in size to fuel gas consumption.³

Change to the montiring system starting 1 January 2008:

For monitoring starting 1 January 2008 the primary and secondary meters are swapped as the metering at the CHP units was upgraded and improved (see below). In addition new metering system blocks for methane of high concentration were installed:

- The Universal 1 Meter for Ignition methane at CHP facility site instead of Gn6 with it's sensors
- The Universal 2 for meter for fuel methane at AGFCS instead of interferometer locale and equipment of gas filling blocks. (They are use only foe cross-checking.)
- BKTM metering systems for fuel methane instead of Keuter, ADM Electronic

For detailed description of scheme and operation of equipment refer please to section B.

A.9. Changes since last verification:

Refer please	to section A	4 .8.
--------------	--------------	--------------

³ 5% of fuel gas at normal conditions

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" page 8

A.10. Person(s) responsible for the preparation and submission of the monitoring report:

Lease enterprise "Coal Mine named after A.F. Zasyadko"

• Boris Bokiy, Deputy General Director

Global Carbon B.V.

- Lennard de Klerk, Director
- Valeriy Sade, Consultant

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" page 9

SECTION B. Key monitoring activities according to the monitoring plan⁴ for the monitoring period stated in A.4. (Referring to Decision 17/CP.7, Annex H, paragraph 53 (a) – (d) on data collection and archiving)⁵

The control and monitoring system can be divided into an electrical part, a heat part and a gas part⁶.

Electrical measurements

There are no changes since last monitoring period.

Heat measurements

There are no changes since last monitoring period⁷.

Measurement of CMM consumption

Foir the purpose of monitoring the emission reductions the following parameters are measured:

- CMM consumed as fuel and ignition gas at the CHP modules (MM_{CHP});
- CMM that consumed as fuel at the gas filling stations (MM_{GAS}).

A modern automatic controlling on-line system made by DBT has been introduced⁸ at the gas treatment plants, including high accuracy measuring instruments and sensors as well as control and stop valves activated by remote drives. All data collected are been screened at the operator's desk monitors in the vacuum pumping station and in the cogeneration plant. Afterwards the work parameters are been channeled to the central dispatching office for further review and storing.

The system has to monitor the followings parameters:

- Mixture flow rate;
- Mixture pressure and temperature;
- Methane and oxygen concentration;

B.1. Monitoring equipment types

⁴ Monitoring manual will be available at the site during verification.

⁵ Electricity and heart generation as well as methane consumption are calculated at hourly bases by computer system.uuu

⁶ All calibration information for metering equipment will be submitted as separate documents.

⁷ As there were no changes in heat distributing over the Mine sites and no heat was supplied to DH network yet (planned later). Parameters B15, B17, B18, B21 and B23 are therefore not measured and monitored in 2008 monitoring period. All changes will be after commissioning of Yakovlevskaya CHP facility and construction main heat distribution substation at Centralnaya site.

⁸ DBT system works for Vostochnaya CHP plant since beginning of year 2006. Sensors for methane concentration have been used to provide data for computer monitoring system. All sensors have now Ukrainian Metrology Certificates.

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" page 10

- 1. Electricity meters "Elster-Metronika"
- 2. Heat meter SA-94/2 M
- 3. Gas Analyzer ABB A02040 (for fuel and ignition methane)
- DBT equipment.⁹ (for fuel and ignition methane)
 DRGM flow meters¹⁰ (for fuel methane) as a part of BKTM metering systems.
- 6. Metering system "Universal"

⁹ For the information about DBT equipment refer please to annex 4. Standard Manufacturer guarantee for calibration is valid till year 2007. This equipment is for supplying of proceeded data to computer system (cross-checking).

¹⁰ Primary meters

page 11

B.1.2. Table providing information on the equipment used (incl. manufacturer, type, serial number, date of installation, date of last calibration, information to specific uncertainty, need for changes and replacements)¹¹:

The control and monitoring system can be divided into an electrical part, a heat part, and a gas part.

Electrical measurements

There are no changes since last monitoring period. For the purpose of monitoring the emission reductions the following parameters are to be measured:

- 1. Net electricity generation of both CHP systems¹²;
- 2. Net electricity consumption of the mine (all four production sites);

Electrical Meters

Measuring	Work	Manufacturer	Type	Serial	Uncertainty	Date	Data	Data	Diffe	Date of	Date of	Remarks ¹³
instrument	parameter			Number	level of	of	1.01.2008	30.062008	rence	last calibr.	next	
	kWh, kVar				data and	instal-					calibr.	
					accuracy	lation						
Electricity	Net	"Elster-	Electr	01116374	$\pm 0.2\%^{14}$	N/A	3748.553	4571.951	823.398	14.05.200	2-nd	Double
meter at CHP	electricity	Metronika"	onic							5	Quarter	side.
system (6 kV)	generated by	Russia									2011	Cubicle
Wireway	CHP system.											#A2
-	P,Q											

-

¹¹ For all technical data refer please to Monitoring Report for year 2004-2006.

¹² At the moment only electricity generated by CHP facility Vostochnaya is measured. The commercial amount of net electricity supplied to consumer is reflected in statement submitted by Chief Energy Manager of the Mine. Refer please to Supporting Document 8. Real amount of net electricity generated is reflected in Supporting Document 4

The Meters in cubicles from A2 to #16 are installed at CHP facility used as secondary meters for cross-checking at CHP facility.

¹⁴ measurement range (accuracy) 80...120 V;0...5 (10-max) A.

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko"

page 12

Measuring instrument	Work parameter kWh, kVar	Manufacturer	Туре	Serial Number	Uncertainty level of data and accuracy	Date of installation	Data 1.01.2008	Data 30.06.2008	Diffe rence	Date of last calibr.	Date of next calibr.	Remarks
Electricity meter at CHP system (6 kV) Wireway	Net electricity generated by CHP system. P,Q	"Elster- Metronika" Russia	Electronic	01116376	±0.2%	N/A	3651.190	4541.015	889.825	14.05.200	2-nd quarter 2011	Double side. Cubicle #A22
Electricity 15 meter at CHP system (6 kV) Auxiliary transformer	Auxiliary electricity generated by CHP system	"Elster- Metronika" Russia	Electr- onic	01103251	±0.2%	N/A	1879.733	2320.401	440.668	03.09.200	3-d quarter 2010	Cubicle #1
Electricity meter at CHP system (6 kV) Auxiliary transformer	Auxiliary electricity generated by CHP system	"Elster- Metronika" Russia	Electr- onic	01103208	±0.2%	N/A	2115.038	2545.635	430.597	03.09.200	3-d quarter 2010	Cubicle #2
Electricity meters at individual CHP modules (6 kV) #1	Gross electricity generated by CHP system P,Q	"Elster- Metronika" Russia	Electr- onic	01117846	±0.2%	N/A	3325.768	4305.705	979.937	16.06.200	2-nd quarter 2011	Double side. Cubicle #5
Electricity meters at individual CHP modules (6 kV) #3	Gross electricity generated by CHP system P,Q	"Elster- Metronika" Russia	Electr- onic	01117849	±0.2%	N/A	4145.375	5162.092	1016.717	16.06.200	2-nd quarter 2011	Double side. Cubicle #7

¹⁵ Auxiliary transformer meters are located at distribution board at CHP facility.

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko"

page 13

Measuring	Work	Manufactur	Type	Serial	Uncertainty	Date	Data	Data	Diffe	Date of	Date of	Remarks
instrument	parameter kWh, kVar	er		Number	level of data and accuracy	of instal- lation	1.01.2008	01.07.2008	rence	last calibr.	next calibr.	
Electricity meters at individual CHP modules (6 kV) #5	Gross electricity generated by CHP system P,Q	"Elster- Metronika" Russia	Electr- onic	01117851	±0.2%	N/A	4879.196	5733.136	853.940	16.06.200	2-nd quarter 2011	Double side. Cubicle #9
Electricity meters at individual CHP modules (6 kV) #7	Gross electricity generated by CHP system P,Q	"Elster- Metronika" Russia	Electr- onic	01117852	±0.2%	N/A	4610.584	6128.105	1517.521	16.06.200	2-nd quarter 2011	Double side. Cubicle #11
Electricity meters at individual CHP modules (6 kV) #9	Gross electricity generated by CHP system P,Q	"Elster- Metronika" Russia	Electronic	01117855	±0.2%	N/A	5024.958	6255.314	1230.356	16.06.200	2-nd quarter 2011	Double side. Cubicle #13
Electricity meters at individual CHP modules (6 kV) #11	Gross electricity generated by CHP system P,Q	"Elster- Metronika" Russia	Electr- onic	01117856	±0.2%	N/A	4588.729	5911.937	1323.208	16.06.200	2-nd quarter 2011	Double side. Cubicle #15
Electricity meters at individual CHP modules (6 kV) #2	Gross electricity generated by CHP system P,Q	"Elster- Metronika" Russia	Electronic	01117848	±0.2%	N/A	4785.782	6089.818	1304.036	16.06.200	2-nd quarter 2011	Double side. Cubicle #6

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" page 14 Serial Work Manufacturer Uncertainty Data Diffe Date of Date of Remarks Measuring Type Date Data 1.01.2008 01.07.2008 Number level of of last calibr. instrument parameter rence next kWh, kVar data and instalcalibr. accuracy lation Electricity "Elster-№ $\pm 0.2\%$ N/A 4274.116 4865.285 591.169 10.08.200 3-d Double Gross Electr-onic electricity Metronika" 01122645 meters at 5 quarter side. individual generated by Russia 2011 Cubicle #8 CHP modules CHP system (6 kV) #4P,Q Electricity "Elster-Electr-onic № ±0.2% N/A 4251.701 5224.365 972.664 10.08.200 3-d Gross Double meters at electricity Metronika" 01122650 side. 5 quarter individual generated by Russia 2011 Cubicle CHP modules CHP system #10 (6 kV) #6 P,Q "Elster-No ±0.2% Double Electricity Gross N/A 5158.059 6564.53 1406.471 16.06.200 2nd Electr-onic Metronika" side. electricity 01117845 meters at 5 quarter individual generated by Russia 2011 Cubicle CHP modules CHP system #12 (6 kV) #8P,Q "Elster-No Double Electricity Gross $\pm 0.2\%$ N/A 4886.848 6091.700 1204.852 09.02.200 Electr-onic 1-t Metronika" electricity 01132765 side. meters at 6 quarter individual generated by Russia 2012 Cubicle #14 CHP modules CHP system

(6 kV) #10

P,Q

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko"

page 15

Measuring	Work	Manufactur	Type	Serial	Uncertainty	Date	Data	Data	Diffe	Date of	Date of	Remarks
instrument	parameter	er		Number	level of data	of instal-	1.01.2008	01.07.2008	rence	last calibr.	next	
	kWh, kVar				and accuracy	lation					calibr.	
Electricity	Gross	"Elster-	Electr-	\mathcal{N}_{2}	±0.2%	N/A	5163.289	6101.178	937.889	09.02.200	1-t	Double
meters at	electricity	Metronika"	onic	01132766						6	quarter	side.
individual	generated by	Russia									2012	Cubicle
CHP modules	CHP system											#16
(6 kV) #12	P,Q											
Commercial	Power	"Elster-	Electr-	No	±0.2%	N/A	280.211	289.371	9,160,00	N/A	N/A	Substation
electricity	consumption	Metronika"	onic	1116378						Belongs		110kV
meter at 110	from or supply	Russia								to supply		T10k v
kV	to the									company		11
	Ukrainian grid											
Commercial	Power	"Elster-	Electr-	\mathcal{N}_{2}	±0.2%	N/A	285.586	303.921	18,335,00	N/A	N/A	Substation
electricity	consumption	Metronika"	onic	1116380						Belongs		110kV
meter at 110	from or supply	Russia								to supply		T2
kV	to the									company		12
	Ukrainian grid											

Calibration interval for electricity meters is six years.

As it is impossible to use meters data directly to check electricity generated we have to take in account special coefficients which is appears from multiplying of coefficients transformation for current and voltage transformers connected to each meter. Their data are presented in table bellow.

Mea	asuring	Work	Type	Serial	Data	Data	Diffe	Current	Voltage	Coefficient	Electricity
inst	rument	parameter		Number	1.01.2008	1.072008	rence	transformer	transformer	for	Ammount
		kWh, kVar								calculations	KW

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko"

page 16

Electricity	Net	Electr	01116374	3748.553	4571.951	823.398	3000/5	6300/100	37800	31,124.444 ¹⁶
meter at CHP	electricity	onic								
system (6 kV)	generated									
Wireway	by CHP									
	system. P,Q									
Electricity	Net	Electronic	01116376	3651.190	4541.015	889.825	3000/5	6300/100	37800	33,635.385
meter at CHP	electricity									
system (6 kV)	generated									
Wireway	by CHP									
	system. P,Q									
Electricity	Auxiliary	Electronic	01103251	1879.733	2320.401	440.668	200/5	6300/100	2520	1,110.483
meter at CHP	electricity									
system (6 kV)	generated									
Auxiliary	by CHP									
transformer	system									
Electricity	Auxiliary	Electronic	01103208	2115.038	2545.635	430.597	200/5	6300/100	2520	1,085.104
meter at CHP	electricity									
system (6 kV)	generated									
Auxiliary	by CHP									
transformer	system									
Electricity	Gross	Electronic	01117846	3325.768	4305.705	979.937	400/5	6300/100	5040	4,938.882
meters at	electricity									
individual	generated									
CHP modules	by CHP									
(6 kV) #1	system P,Q									

¹⁶ Because of high voltage and currents there is impossible to get direct figures from electricity meters for electricity generation or consumption without current and voltage transformers for monitor equipment ,the way of calculation used as following. F.e for meter # 01116374: Current is 3000/5=600A; Voltage is 6300/100=63V.(cumulative rate is 600x63=37800VA). Data of meter are 823.398. Electricity power monitored with this meter will be: 823.398 x 600x63=31 124 444.4 VA=31,124.444 kW.

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko"

Measuring instrument	Work parameter kWh, kVar	Туре	Serial Number	Data 1.01.2008	Data 1.072008	Diffe rence	Current transformer	Voltage transformer	Coefficient for calculations	Electricity Amount KW
Electricity meters at individual CHP modules (6 kV) #3	Gross electricity generated by CHP system P,Q	Electronic	01117849	4145.375	5162.092	1016.717	400/5	6300/100	5040	5,124.254
Electricity meters at individual CHP modules (6 kV) #5	Gross electricity generated by CHP system P,Q	Electronic	01117851	4879.196	5733.136	853.940	400/5	6300/100	5040	4,303.858
Electricity meters at individual CHP modules (6 kV) #7	Gross electricity generated by CHP system P,Q	Electronic	01117852	4610.584	6128.105	1517.521	400/5	6300/100	5040	7,648.306
Electricity meters at individual CHP modules (6 kV) #9	Gross electricity generated by CHP system P,Q	Electronic	01117855	5024.958	6255.314	1230.356	400/5	6300/100	5040	6,200.994
Electricity meters at individual CHP modules (6 kV) #11	Gross electricity generated by CHP system P,Q	Electronic	01117856	4588.729	5911.937	1323.208	400/5	6300/100	5040	6,668.968

page 17

Electricity meters at	Gross electricity	Electronic	1117848	4785.782	6089.818	1304.036	400/5	6300/100	5040	6,572.341
individual CHP modules (6 kV) #2	generated by CHP system P,Q									
Electricity meters at individual CHP modules (6 kV) #4	Gross electricity generated by CHP system P,Q	Electronic	01122645	4274.116	4865.285	591.169	400/5	6300/100	5040	2,979.492
Electricity meters at individual CHP modules (6 kV) #6	Gross electricity generated by CHP system P,Q	Electronic	01122650	4251.701	5224.365	972.664	400/5	6300/100	5040	4,902.226
Electricity meters at individual CHP modules (6 kV) #8	Gross electricity generated by CHP system P,Q	Electronic	01117845	5158.059	6564.53	1406.471	400/5	6300/100	5040	7,088.614
Electricity meters at individual CHP modules (6 kV) #10	Gross electricity generated by CHP system P,Q	Electronic	01132765	4886.848	6091.700	1204.852	400/5	6300/100	5040	6,072.454
Electricity meters at individual CHP modules (6 kV) #12	Gross electricity generated by CHP system P,Q	Electronic	01132766	5163.289	6101.178	937.889	400/5	6300/100	5040	4,726.960
Commercial electricity meter at 110 kV	Power consumption from or sup- ply to the Ukrainian	Electronic	01116378	280.211	289.371	9,160,00	1000/5	110000/1	220000	2,015.035

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko"

	f									
	grid									
Commercial	Power	Electronic	01116380	285.586	303.921	18,335,00	1000/5	110000/1	220000	4,033.656
electricity	consumption							00		
meter at 110	from or sup-									
kV	ply to the									
	Ukrainian									
	grid									

page 19

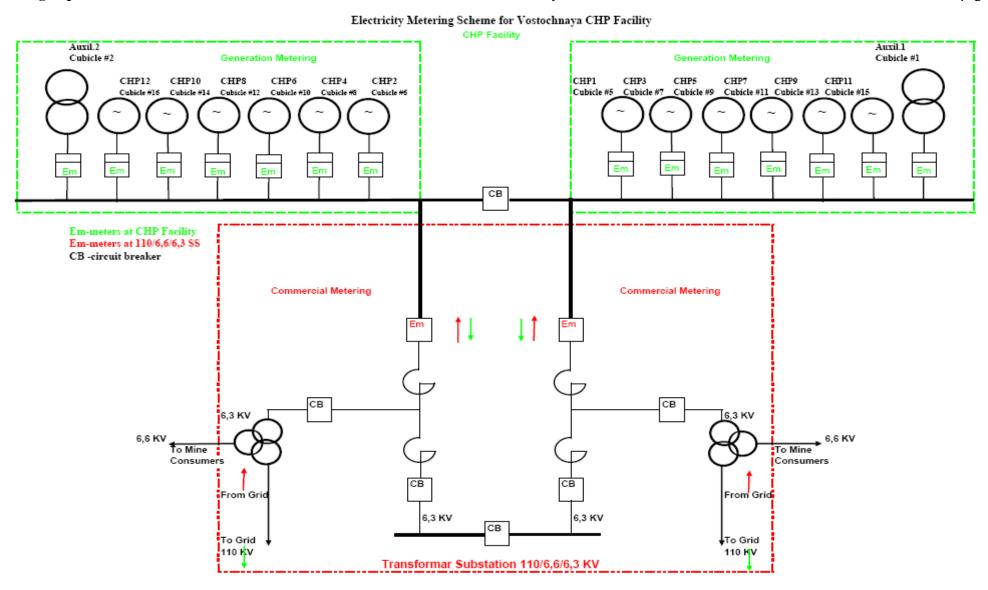


Figure 2: Electricity Metering Scheme for Vostochnaya CHP Facility

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" Heat Meter

page 21

Heat measurements

The amount of generated heat is measured at each individual cogeneration unit. The total amount of heat supplied by the CHP station to Vostochnaya site indicates meter below.

For the year 2007 only heat will be supplied to the Vostochnaya site so for this year the amount of heat supplied by the CHP system to the heat transportation pipes is identical to the heat consumed by the Vostochnaya site. After Yakovlevskaya CHP plant will be commissioned it is planned to combine heat system from both Vostochnaya and Yakovlevskaya sites with a help of Central Heat Distribution facility where all metering for the consumed heat of each site and the heat delivered to district heating will be individually measured. This would mean the installation of separate meters for the Centralnaya and Grigoryevskaya sites and the delivery to the DH-system.

As it is impossible to stop electricity generation all generated heat is dissipated in case of no demand. For this purpose the system contains lamellate radiators and was installed at the roof of CHP facility.

Measuring	Work	Manufactu	Type	Serial	Uncertainty	Date	Data	Data	Diffe	Date of	Date of	Remarks
instrument	parameter	rer		number	level of	of	1.01.2008	30.06.2008	rence	last calibre.	next	
	GCal				data,	installation	Gcal	Gcal			calibre.	
					accuracy							
Heat meter	Amount of	ASWEGA	Mecha	22903	±2%	N/A	41675.59	57659.09	15983.5	04.06.07	04.06.09	T,V,Q
SA	heat		tronic									(Total)
94/2M ¹⁷	delivered to											
	site system											

Calibration interval for heat meters is two years

 $^{^{17}\} For\ meter\ SA\ 94/2M\ \ DN=300mm;\ Q=1000m^3/h$

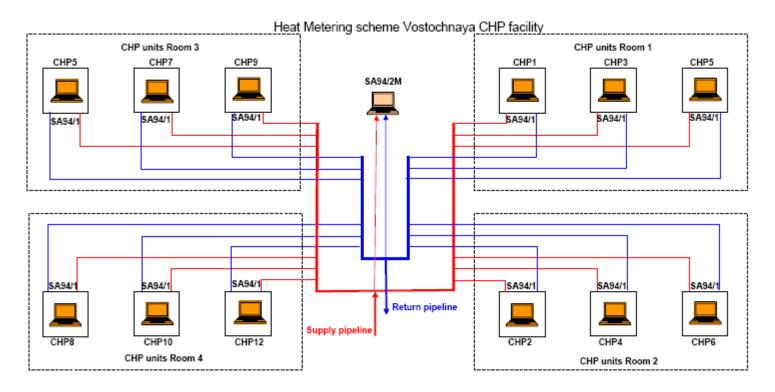


Figure 3: Heat Metering Scheme for Vostochnaya CHP Facility

CMM Meters

Measurement of CMM consumption

The CMM consumption of the project is can be separated in three parts:

- 1. Fuel gas consumption of the CHP units
- 2. Ignition gas consumption of the CHP units
- 3. Gas consumption of the AGFCP

To determine the amount of pure consumed CH4 (in tonnes) the amount of pure CH4 (in m³) has to be measured under normal conditions. The amount of pure CH4 (in m³) can be measured (or more correctly: calculated) based on four parameters:

- Concentration (%) of CH₄ in the gas mixture
- Flow (m³) of gas mixture
- Temperature (C) of gas mixture
- Pressure (bar) of gas mixture

In the scheme below the different meters and sensors are indicated that are installed at the Vostochnaya site. We can classify the different meters/sensors:

- Primary meters/sensors that supply the data for determining the emission reductions as provided in section D of the Monitoring Report;
- Secondary meters/sensors used for cross-checking the data of the primary meters;
- Tertiary meters/sensors used to operated and control the installation.

The tertiary meters/sensors are not of interest for monitoring purposes and are not mentioned further. In the table below the primary (yellow) and secondary meters/sensors (orange) are indicated with their number which listed in the scheme.

	Primary meters/sensors	Secondary meters/sensors used for determining CMM consumption for cross-checking purposes
Fuel gas		
Concentration (%)	K7	ABB AO 2040 (A1)
Flow (V)	G1-G12 ¹⁸	Gn5
Temperature (T)	T6-T17	Gn5 sensor
Pressure (P)	P11-P22	P6(Gn5's sensor)
Unit that converts data into	Automatic control system in	DBT equipment

¹⁸Meters G1-G12 are being used as primary meters.

pure methane (m3)	dispatch	
Ignition gas		
Concentration (%)	ABB AO 2040 (A2)	ABB AO 2040 (A2)
Flow (V)	G13	Gn6
Temperature (T)	T5	Gn6 sensor
Pressure (P)	P10	P10(Gn6's sensor)
Unit that converts data into pure methane (m3)	'Universal" metering system	DBT equipment
AGFCP gas		
Concentration (%)	ABB AO 2040 (A2)	ABB AO 2040 (A2)
Flow (V)	G14	Calculations according to pressure difference
Temperature (T)	T18	
Pressure (P)	P23	Manometers at AGFCS
Unit that converts data into pure methane (m3)	G14	Calculations

Table 4: Primary and secondary (cross-checking) metering of CMM

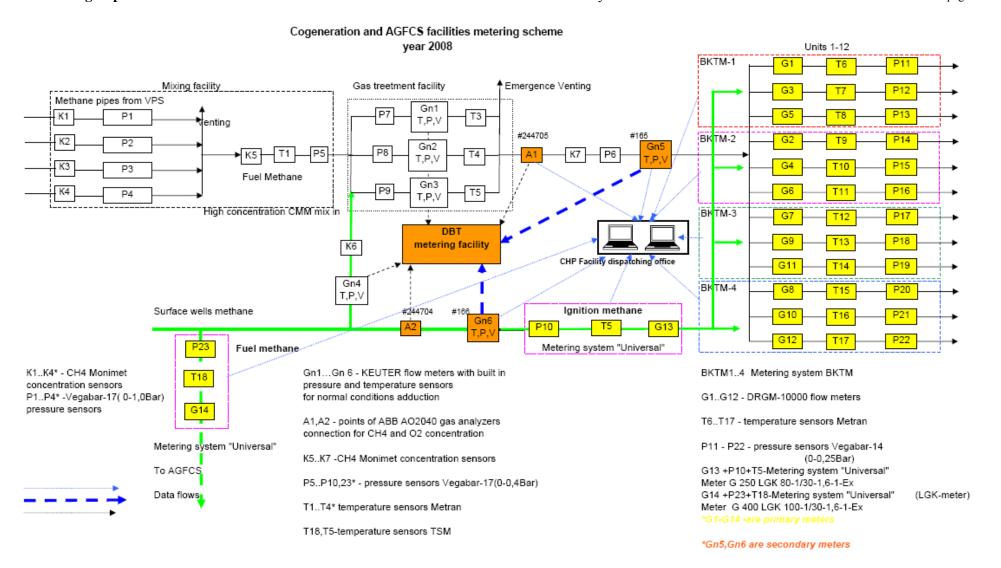


Figure 4: CMM metering scheme since year 2008

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" page 26

The general flow of CMM and the metering can be described as follows. 19

Coal mine gas of degassing and gas-suction is supplied through four lines from two Vacuum Pump Station (VPS) to gas mixing section of the CHP gas treatment facility. The concentration and pressure of methane are different in each pipe-line. These parameters are measured by K1...K4 Monimet concentration sensors and P1...P4 Vegabar pressure sensors. *Measurements data of these sensors are not used in gas metering and have technological meaning*; these data are channeled to automatic control system of the dispatch *and used only for controlling purposes* in order to obtain at the output homogeneous fuel methane with necessary concentration.

The methane concentration that is fed to the gas treatment facility is measured by the Monimet K5 sensor. Also in line are installed the T1 temperature sensor and the P5 pressure sensor. Methane from surface wells is mixed in to fuel methane in case of necessity to increase it concentration. The flow of goaf wells methane is measured by Gn4 flow meter Keuter together with velocity pressure and temperature sensors. The concentration of mix in methane from goaf wells is measured by Monimet K6 sensor. Having all this data the automatic control system of the dispatch can calculate amount of methane in the gas mixture.

At the gas treatment section of facility methane is distributed between three lines where it is dried, cooled, cleaned and wormed. Acting flow measurements is provided by Gn1 - Gn3 Keuter flow meters together with velocity, pressure and temperature sensors. They transmitted information to calculation equipment developed by DBT which is installed in separate premise of gas metering section. This block calculates the values of actual consumption for normal conditions and channeled them to automatic control system of the dispatch computer system for operation. For checking and reserve, pressure P7 – P9 and temperature T2 – T4 sensors have been installed in pipe-lines.

At the outflow of gas treatment section the processing discharge valve is installed which smoothes the pressure swings at abrupt changes of CHP operation regime. Pressure at the outflow of the section is controlled by processing sensor P6.

With the purpose of fuel gas concentration definition gas testing is made at the outflow of gas treatment section of facility at point A1 which is feeded to gas analyzer AO 2040 (ABB) mounted at gas metering unit. Metered concentration is checked for the compliance with sensor date Monimet K7. Flow meter Gn5 (Keuter) as a unit with speed, pressure and temperature sensors measures the gas amount used by CHP units. The methane amount is calculated based on the data of methane concentration but is not used for data base creation and metering, it is used only for technological purposes.

Then fuel gas is supplied to the units of CHPs engine rooms. The flow meters G1- G12, type DPG.M-10000, temperature sensors T6 - T17 and pressure sensors P11 - P22 are mounted on the line of each 12 units. Their data are transmitted to microprocessing control system BKT.M for calculation

¹⁹ From year 2008 DBT equipment is used as cross-checking equipment. Main meters installed at each CHP unite will be channel data to BKTM metering system. The BKTM meters will channel data to computer system. Besides all the data will be store at four BKTM. Every "BKTM unite" combines three CHP's. These systems operates with fuel methane. The ignition methane for all CHP is measured with a new metering system "Universal" which is include LGK-Meter, temperature, pressure and flow sensors. All these data are stored at place and channel to Cogen plant computer system.

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" page 27

of fuel gas amount which is used by each unit and total amount in each engine room. Fuel gas amount is calculated based on the data of methane concentration in it. *Total amount in engine rooms gives the methane amount in fuel gas utilized by CHP and recorded in database.*

Ignition gas is supplied to CHP units from gas pipes of surface degasification boreholes. Total current ignition gas consumption is metered by flow meter G13 (Universal). Gas concentration is metered by gas analyzer AO 2040 (ABB) with gas test at the point A2, pressure and temperature are measured by sensors P10 and T5. Based on it automatic control system of dispatch service determines the methane amount which is feeded to CHP with *ignition gas which is recorded in database*.

Gas that is supplied for automobiles filling is metered by sensor G14 "Universal", pressure and temperature are measured by sensors P10 and T18. Based on it the methane amount feeded to AGFCS for automobiles filling and recorded in database.

Methane volume which is supplied with fuel gas and methane of ignition gas gives total amount of methane supplied to CHPs.

Methane volume which is supplied with fuel gas and methane of ignition gas, methane for automobiles filling gives total amount of methane consumed by Zasyad'ko coal mine Vostochnaya site.

Monitoring Report #3 "Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" page 28

Figure 5: Sensors of flow, temperature and pressure at the CHP unit fuel methane pipeline

In the table below the description of the secondary meters (indicated brown in the schema) are given:

page 29

Gas treatment section measuring equipment²⁰

Gas analyzers

Measuring instrument	Work	Manufacturer	Type	Serial	Uncertainty	Date	Date of	Date of	Remarks
Concentration ²¹	parameter,	22		number	level of data,	of	last calibr.	next calibr.	
	%				accuracy	installation			
Concentration of fuel	Concentrati	ABB	AO2040	3.244705.	±1%	2005	13.07.07	13.07.08	A1
gas	on, %		Electronic	5					connection
Concentration of	Concentrati	ABB	AO2040	3.244704.	±1%	2005	11.07.07	13.07.08	A2
ignition gas	on, %		Electronic	5					connection

Calibration interval for gas analyzers is two years

Flow meters

Measuring instrument	Work parameter, m ³ /h	Manufac turer	Type	Serial numbe r	Uncertainty level of data, accuracy	Date of install lation	Data 1.01.2008 m3	Data 30.06.2008 m3	Diffe rence	Date of last calibr.	Date of next calibr.	Re marks
Amount of ignition gas	Volume of combustible methane supplied to CHP modules	NVP"GREM PIS" ltd	Univers al-2	6023	±1%	4-th quarter 2007	515075.1	1272092.1	757017,00	27.08.07 23.07.08	23.07.10	Main meter
Amount of fuel gas	Volume of methane supplied to AGFCS	NVP"GREM PIS" ltd	Univers al-2	327	±1%	4-th quarter 2007	1321328	2477856	1156528	12.04.07 28.07.08	28.07.10	Main meter

Calibration interval for flow meters is two years

 22 One and a half year manufacturer warrantee obligations from commission date.

_

²⁰ For technical date of the pressure and temperature sensors please refer to annex 4

²¹ See supporting document SD_1_CMM analysis

Monitoring Report #3"Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko"

page 30

	1		ı	ı	1			ı		T	T	1
Measuring	Work parameter,	Manufactu	Type	Serial	Uncertainty	Date	Data	Data	Diffe	Date of	Date of	Remarks
instrument	m3/h	rer		number	level of	of	1.01.2008	30.06.2008	rence	last	next	
Flow meters					data,	instal	m3	m3		calibr.	calibr.	
					accuracy	lation						
Volume of combustible methane consumed as fuel gas at each CHP module (1)	Volume of combustible methane supplied to CHP modules	Sibnefte avtomati ca, Russia	DRGM Elec- tronic	102	±1%	N/A	2934529	7832046	4897517	21.06.05	16.07.08	DRGM flow meters at 1-3- 5 units belongs to #245 BKTM meter
												Refer table bellow
Volume of combustible methane consumed as fuel gas at each CHP module (2)	Volume of combustible methane supplied to CHP modules	Sibnefte avtomati ca, Russia	DRGM Elec- tronic	108	±1%	N/A	1525216	1525216	*	21.06.05	15.07.08	DRGM flow meters at 2-4- 6 units belongs to #094 BKTM meter
												Refer table bellow
Volume of combustible methane consumed as fuel gas at each CHP module (3)	Volume of combustible methane supplied to CHP modules	Sibnefte avtomati ca, Russia	DRGM Elec- tronic	109	±1%	N/A	1714301	6821492	5107191	21.06.05	18.07.08	
Volume of combustible methane consumed as fuel gas at each CHP module (4)	Volume of combustible methane supplied to CHP modules	Sibnefte avtomati ca, Russia	DRGM Elec- tronic	104	±1%	N/A	2544048	2602780	58732	17.06.05	15.07.08	*

^{*} See next table and explanations

Monitoring Report #3"Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko"

page 31

Volume of combustible methane consumed as fuel gas at each CHP module (5)	Volume of combustible methane supplied to CHP modules	Sibnefte avtomati ca, Russia	DRGM Elec- tronic	103	±1%	N/A	2686162	6895780	4209618	21.06.05	17.07.08	
Volume of combustible methane consumed as fuel gas at each CHP module (6)	Volume of combustible methane supplied to CHP modules	Sibnefte avtomati ca, Russia	DRGM Elec- tronic	97	±1%	N/A	2113216	2113216	*	21.06.05	16.07.08	*
Volume of combustible methane consumed as fuel gas at each CHP module (7)	Volume of combustible methane supplied to CHP modules	Sibnefte avtomati ca, Russia	DRGM Elec- tronic	98	±1%	N/A	2825530	8026030	5200500	21.06.05	16.07.08	DRGM flow meters at 7-9- 11 units belongs to #245 BKTM meter Refer table bellow
Volume of combustible methane consumed as fuel gas at each CHP module (8)	Volume of combustible methane supplied to CHP modules	Sibnefte avtomati ca, Russia	DRGM Elec- tronic	105	±1%	N/A	2552144	9550037	6997893	21.06.05	17.07.08	DRGM flow meters at 8- 10-12 units belongs to #095 BKTM meter Refer table bellow
Volume of combustible methane consumed as fuel gas at each	Volume of combustible methane supplied to CHP modules	Sibnefte avtomati ca, Russia	DRGM Elec- tronic	99	±1%	N/A	2647777	6129636	3481559	21.06.05	17.07.08	

^{*} See next table and explanations

*

Monitoring Report #3"Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko"

page 32

CHP module (9)												
Volume of	Volume of	Sibnefte	DRGM	96	±1%	N/A	2382586	8496821	6114235	21.06.05	18.07.08	
combustible	combustible	avtomati	Elec-									
methane consumed	methane supplied	ca,	tronic									
as fuel gas at each	to CHP modules	Russia										
CHP module (10)												
Volume of	Volume of	Sibnefte	DRGM	101	±1%	N/A	2160516	6120278	3959762	21.06.05	17.07.08	
combustible	combustible	avtomati	Elec-									
methane consumed	methane supplied	ca,	tronic									
as fuel gas at each	to CHP modules	Russia										
CHP module (11)												
Volume of	Volume of	Sibnefte	DRGM	100	±1%	N/A	3049648	7843509	4793861	21.06.05	15.07.08	
combustible	combustible	avtomati	Elec-									
methane consumed	methane supplied	ca,	tronic									
as fuel gas at each	to CHP modules	Russia										
CHP module (12)												

Calibration interval DRGM flow meters is three years

During year 2008 it was necessary to replace for calibration some BKTM metering systems. So their data before and after calibration are present in the table bellow.

Measuring	Serial	Data	Data	Dif-
instrument	number	1.01.200	30.06.200	ference
Flow meters		8	8	
		m3	m3	
Volume of	102	2934529	7832046	4897517
combustible				
methane consumed				
as fuel gas at each				
CHP module (1)				

ſ	The initial	Data	Data after	Total ²³ ,
	data after	30.06.2008	replacing for	m3
	replacing,	m3	calibration,	
	m3		m3	
				4897517
				.057017

²³ This figures are used for calculations of methane consumption to generate electricity and heat for six months year 2008. They are reflect volume of methane- air mixture with average concentration 30%

Volume of combustible methane consumed as fuel gas at each CHP module (2)	108	1525216	1525216	0	Replacing of BKTM for calibration 02.01.2008	0	6473898	6473898	6473898
Volume of combustible methane consumed as fuel gas at each CHP module (3)	109	1714301	6821492	5107191					5107191
Volume of combustible methane consumed as fuel gas at each CHP module (4)	104	2544048	2602780	58732	Replacing of BKTM for calibration 02.01.2008	0	2923449	2923449	2982181
Volume of combustible methane consumed as fuel gas at each CHP module (5)	103	2686162	6895780	4209618					4209618
Volume of combustible methane consumed as fuel gas at each CHP module (6)	97	2113216	2113216	0	Replacing of BKTM for calibration 02.01.2008	0	4976744	4976744	4976744
Volume of combustible methane consumed as fuel gas at each CHP module (7)	98	2825530	8026030	5200500	Replacing of BKTM for calibration 01.05.2008	0	2472038	2472038	7672538
Volume of combustible methane consumed as fuel gas at each CHP module (8)	105	2552144	9550037	2472038					2472038

Volume of combustible methane consumed as fuel gas at each CHP module (9)	99	2647777	6129636	3481559	Replacing of BKTM for calibration 01.05.2008	0	2590533	2590533	6072392
Volume of combustible methane consumed as fuel gas at each CHP module (10)	96	2382586	8496821	6114235					6114235
Volume of combustible methane consumed as fuel gas at each CHP module (11)	101	2160516	6120278	3959762	Replacing of BKTM for calibration 01.05.2008	0	2676571	2676571	6636333
Volume of combustible methane consumed as fuel gas at each CHP module (12)	100	3049648	7843509	4793861					4793861

The monitoring system for the emission reductions achieved in the course of the project implementation has been integrated in the Zasyadko Coal Mine existing controlling and reporting system. That allows for obtaining reliable and easy verifiable data related to the project performance, ensuring thus the quality and efficiency of the monitoring system.

All source information on performance parameters and calculations have been obtained directly on site and after that reported to the Coal Mine dispatching office. The work parameters of CMM flows as well as heat and power produced will be crosschecked to provide quality and reliability of monitored data. To ensure reliable and non-stop performance of cogeneration plant the inputs of natural gas from the natural gas pipeline are envisaged.

CMM consumption of gas filling stations

Each of two blocks of Vostochnaya gas filling station has records in the registers. Calculations of methane fueled are executed according to data pressure difference of manometers. Concentration of methane is measured monthly with ABB AO 2040 at Power Station and ground wells analysis. Besides, the concentration of methane is measured locally with an interferometer. Temperature and pressure meters are installed too. The volume of methane is measured by "Universal-2" metering system.

B.1.3. Calibration procedures

	101			
Hor	HIAA	tricity	· N/Lat/	arc.
1'()	1 7150	11 IL II V	- IVICIO	

QA/QC procedures	Body responsible for calibration and certification
	Ukrainian Centre for Standardization and Metrology

For Heat Meters

QA/QC procedures	Body responsible for calibration and
QA/QC procedures	certification
	Certification
Calibration interval of such meters is two years. Calibration procedures for meters are implemented in compliance with calibration methodology developed for ASWEGA meters, Russia. Manufacturer's warranty-18 months	Ukrainian Centre for Standardization and Metrology

For CMM meters:

QA/QC procedures	Body responsible for calibration and certification
Keuter ADM1 Electronic. Calibration interval of such meters is 1 year ²⁴ .	Ukrainian Centre for Standardization and Metrology
Gas Analyzer ABB A02040. Calibration interval of such meters is 1 year.	Ukrainian Centre for Standardization and Metrology

B.1.4. Involvement of Third Parties:

Ukrainian Centre for Standardization and Metrology²⁵.

B.2. Data collection (accumulated data for the whole monitoring period):

For the operational and management structure of the project see PDD, Figure 6: Monitoring and quality control system for Vostochnaya and Yakovlevskaya sites

_

²⁴ As there is no state regulation for such kind of equipment there was a decision of Ukrainian Centre for Standardization and Metrology for one year calibration period.

²⁵ All measurement equipment should be calibrated according to terms and methodology defined by this centre requirements.

Monitoring Report #3"Utilization of Coal Mine Methane at the Coal Mine named after AF.Zasyadko"page 36

B.2.1. List of fixed default values:

ID number	Data variable	Source of data	Data unit	Comment
P6 CEF _{CH4}	Carbon emission factor for combusted methane	2006 IPCC Guidelines for National Greenhouse Gas Inventories.	tCO2e/tCH4	Set at 2.75 tCO2e /tCH4 See also table CMM meters
		Volume 2: Energy Chapter 4: Fugitive Emissions		
P12 Eff _{CHP}	Efficiency of methane destruction/oxidation in CHP	2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2: Energy Chapter 4: Fugitive Emissions	%	Set at 99,5%
P14 Eff _{GAS}	Overall efficiency of methane destruction/oxidation at the vehicles	2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2: Energy Chapter 4: Fugitive Emissions	%	Set at 98.5%
P15 GWP _{CH4}	Global warming potential of methane	2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2: Energy Chapter 4: Fugitive Emissions	tCO2e/tCH4	Set at 21

Table 5: Project variables

ID number	Data variable	Source of data	Data unit	Comment
B13 EF _{grid,produced,y}	Emissions factor of electricity of replaced grid electricity production by the project activity in year	See annex 2	tCO ₂ /MWh	See annex 2 PDD See also table "Electrical Meters"
B14 EF _{grid,reduced,y}	Emissions factor of electricity of replaced on-site electricity consumption by the project activity	See annex 2	tCO ₂ /MWh	See annex 2 PDD See also table "Electrical Meters"
B20 EF _{heat,vost}	Emissions factor for heat at Vostochnaya site in the baseline scenario	Boiler efficiency	tCO ₂ /GJ	See annex 2 PDD See also table "Heat Meters"
B22 EF _{heat,yak}	Emissions factor for heat at Yakovlevskaya site in the baseline scenario	Boiler efficiency	tCO ₂ /GJ	See annex 2 PDD See also table "Heat Meters"
B24 EF _{heat,centr}	Emissions factor for heat at Centralnaya site in the baseline scenario	Boiler efficiency	tCO ₂ /GJ	See annex 2 PDD. See also table "Heat Meters"
B25 VFUEL _y	Vehicle fuel provided by the project activity	Fuel Meters	GJ	This value will be calculated based MM _{GAS} of the project scenario

Monitoring Report #3"Utilization of Coal Mine Methane at the Coal Mine named after AF.Zasyadko"page 37

				multiplied with LHV of methane
B26 EF _v	Emissions factor for vehicle operation replaced by the project activity	2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2: Energy Chapter 4: Fugitive Emissions	tCO ₂ /GJ	See annex 2 PDD

Table 6:Baseline Variables

B.2.2. List of variables:

Project emissions variables to be measured:

MM_{CHP} Methane measured sent to power plant (tCH4)

 MM_{GAS} Methane measured supplied to gas grid for vehicle use (tCH4)

Baseline emissions variables to be measured:

GEN_{CHP} Net electricity generated by the project activity by the CHP plants

El_{Consumed} Net electricity consumed by the mine on-site

HEAT_{cons, vost,y} Heat consumed at Vostochnaya site delivered by the project year y

VFUEL, Vehicle fuel provided by the project activity

B2.3. Data concerning GHG emissions by sources of the project activity (referring to paragraph 53(a)):

Year	$MM_{GAS}(tCH4)$
2008	774
Total	774

Table 7: Data to be collected in the project scenario

Year	$MM_{CHP}(tCH4)$
2008	13,884
Total	13,884

Table 8: Data to be collected in the project scenario

For Methane analysis data refer please to Annex 1 document.

B.2.4. Data concerning GHG emissions by sources of the baseline (referring to paragraph 53(b)):

Year	$GEN_{CHP}(MWh)$	$El_{Cons}(MWh)$	$HEAT_{cons, vost, y}(GJ)$	$VFUEL_{y}(m3)$
2008	64,810	102,199	66,909	1,079,419
Total	64,810	102,199	66,909	1,079,419

Table 9: Data collected in the baseline scenario

B.2.5. Data concerning leakage (referring to paragraph 53(c)):

Not Applicable.

Monitoring Report #3"Utilization of Coal Mine Methane at the Coal Mine named after AF.Zasyadko"page 38

B.2.6. Data concerning environmental impacts (referring to paragraph 53(d)):

Not Applicable.

B.3. Data processing and archiving (incl. software used):

All data will be archived electronic and paper. (See CO2 calculation version 4)

B.4. Special event log:

The two explosions took place at October-November 2007 due to high depth of coal at the coal mine and unknown geological process. The two horizon-faces were closed and flooded. This caused decreasing of CMM extraction and electricity generation in November-December.

SECTION C. Quality assurance and quality control measures²⁶

C.1. Documented procedures and management plan:

C.1.1. Roles and responsibilities:

The general project management is implemented by the Deputy General Director of the Zasyadko Coal Mine through supervising and coordinating activities of his subordinates, such as deputy director on surface degasification, chief power engineer, chief heating engineer, and heads of safety engineering departments. Onsite day-to-day management is implemented by the manager of cogeneration station who directs two shift operators responsible for cogeneration modules and gas treatment plant performance. An on-duty electrician works at the plant. During the daytime a group of mechanics who are responsible for preventive measures and maintenance of all technological equipment, measuring instruments as well as of automation tools and telemechanics are present on-site. On-line information transmitted directly to the head of the shift into the Coal Mine Central Dispatching Office. The cogeneration plant is in 24 hours operation. Three shifts by eight hours have been introduced

At the main objects the responsibilities are as follows:

- VPS operator controls data before VPS and after VPS (at the gas treatment plant) including CMM and natural gas flow parameters;
- Two cogeneration plant operators control data at the inlets of cogeneration modules (at the gas treatment plant), work process parameters, and heat and power output;
- Substation operator controls data on electric power amounts dispatched to and supplied from the grid as well as in-house electricity consumption.

All the information will be channelled to the workstation of the Coal Mine central dispatching office and online monitored by the head of the shift that will be responsible for calculation of the CO₂ equivalent emission reductions. Such calculations are made on a monthly basis. The general supervision of the monitoring system is executed by Zasyadko Coal Mine administration under the existing control and reporting system.

C.1.2. Trainings:

The basic equipment for CHP plant, being the cogeneration units, was supplied by the GE Jenbacher Company (Austria). As stipulated in the delivery contract education of staff, that operates those units, were provided in

-

²⁶ See supporting document SD_2_Monitoring Manual

Monitoring Report #3"Utilization of Coal Mine Methane at the Coal Mine named after AF.Zasyadko"page 39

Austria. Additional training was provided by GE Jenbacher technicians during installation and commissioning works. The employees responsible for the monitoring control also were dully trained during installation of such system.

Extra trainings are to be provided during operation of equipment. Training programs for CHP and VPS staff as well as Emergency training will be submitted as separate document.

C.2. Involvement of Third Parties:

The Ukrainian Centre for Standardization and Metrology is a Third Party involved.

C.3. Internal audits and control measures:

Introduction of a modern computerized control system allows for efficient on-line monitoring and reviewing work process performance at the Zasyadko Central Dispatching office every fifteen minutes. (Especially for fuel and ignition gas consumption, their parameters and electricity and heat generated data can be obtained every 10 seconds if requested). Any considerable deviation of monitored data from given work parameters will be promptly noticed and source of such deviation will be easily identified. In turn this enables the head of shift to efficiently coordinate adjustment actions of his shift subordinates including on-duty technical staff that will improve work process and eliminate such deviations.

C.4. Troubleshooting procedures²⁷:

See C .1.2

In case of a break down of CMM supply system (either of whole system or separate feeding pipe) methane-air mixture will be urgently released into the atmosphere through the emergency gas vent stack. The shut-off valves will automatically close CMM supply pipes, natural gas will be fed into gas treatment plant and consequently into the inlets of engines and into pre-chambers. As the primary meters are *after* the venting stack, only combusted CMM will be accounted for.

²⁷ There is all necessary metering equipment of the same type at the CHP facility to replace main equipment for short period in case of break down or calibration – electrical and heat meters, CMM metering equipment, pressure, temperature sensors, e.t. c. Being connected or installed these devices are able to channel all data to computer system of monitoring and control. This equipment is also calibrated by the Ukrainian Centre for Standardization and Metrology in certain time.

Monitoring Report #3"Utilization of Coal Mine Methane at the Coal Mine named after AF.Zasyadko"page 40

SECTION D. Calculation of GHG emission reductions (referring to Decision 17/CP.7, Annex H, paragraph 53 (f) and 59)

D.3.1. Project emissions:

		2008
Project emissions	[tCO2e/yr]	
Total 2008	[tCO2e]	41,787

Table 10: Project emissions

D.3.2. Baseline emissions:

		2008
Baseline emissions	[tCO2e/yr]	
Total 2008	[tCO2e]	372,880

Table 11: Baseline emissions

D.3.3. Leakage:

Not Applicable

D.3.4. Summary of the emissions reductions during the monitoring period:

		2008
Emission reductions	[tCO2e/yr]	
Total 2008	[tCO2e]	331,093

Table 12: Emission Reductions