SECOND MONITORING REPORT

PROJECT: ACHEMA UKL-7 plant N₂O abatement project

Prepared by:

VERTIS FINANCE

October 18, 2010

Monitoring periods

Line 1

 Project campaign 1

 FROM:
 04/11/2008

 TO:
 10/05/2010

 ERUs
 221,400

Line 4

 Project campaign 2

 FROM:
 07/05/2009

 TO:
 06/05/2010

 ERUs
 104,372

Line 6

 Project campaign 2

 FROM:
 27/04/2009

 TO:
 25/11/2009

 ERUs
 116,735

Line 6 Project campaign 3 FROM: 27/11/2009 TO: 20/09/2010 ERUs 143,005

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N₂O abatement projectLINE:Line 1MONITORINGPERIOD:FROM:04/11/2008

TO: 10/05/2010

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.			3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N₂O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1 4.1	 PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR 2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR 	8 8 8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 1 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the first project campaign on Line 1.

The first project campaign on Line 1 started on 04/11/2008, when the secondary catalyst was installed. Total quantity of emission reductions generated during the first project period from 04/11/2008 through 10/05/2010 on Line 1 is **221 400 ERUs**.

T 1 Emis	ssion red	luction ca	alculations
----------	-----------	------------	-------------

EMISSION REDUCTION								
Baseline Emission Factor EF_BL 9.63 kgN2O/tHt								
Project Campaign Emission Factor	EF_P	2.10	kgN2O/tHNO3					
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 691	tHNO3					
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	60 691	tHNO3					
Nitric Acid Produced in the Project Campaign	NAP_P	94 846	tHNO3					
GWP	GWP	310	tCO2e/tN2O					
Emission Reduction	ER	221 400	tCOe					
ER=(EF_BL-EF_P)*NAP_P*GWP/1000								
Abatement Ratio 78.2%								

EMISSION REDUCTION PER YEAR									
Year	2008	2009	2010						
Date from	04 Nov 2008	01 Jan 2009	01 Jan 2010						
Date to	31 Dec 2008	31 Dec 2009	10 May 2010						
Nitric Acid Production	1 913	55 103	37831						
Emission Reduction	4 465	128 626	88309						
ER_YR = ER * NAP_P_YR / NAP_P									

Baseline emission factor established for the Line 1 during baseline measurement carried from 14/03/2008 through 21/10/2008 is 9.63 kgN₂O/tHNO₃.

Project emission factor during the first project campaign after installation of secondary catalysts on Line 1, which started on 04/11/2008 and went through 10/05/2010 with secondary catalyst installed and commissioned on 30/10/2008, is 2.10 kgN₂O/tHNO₃.

During the project campaign 94 846 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 1 emission reductions including information on baseline emission factor setting for the Line 1.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 1 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 1 has been carried out from 14/03/2008 through 21/10/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 1 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 1 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N ₂ O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because this campaign was first project campaign on Line 1 there has been no moving average emission factor established yet for this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF_{man} and EF_{n})

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF=L1_Flow_N2O*(273.15/(273.15+L1_Temp))*(L1_Press/101.325)*((100-L1_Humi)/100)

where Humi (water content)=

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula $Q=C^*sqrt(dp)$, where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 27/11/2007 and ending on 29/07/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 65 461 tHNO₃ and time duration was on average 261 days. Table contains also information on suppliers of primary catalysts for the line 1.

T 2 Historic o	campaigns
----------------	-----------

Line	ACHEMA UKL-1	Production	Start	End	Days	Production per	Primary Catalyst	Composition
						day		
Historic Campaigns	1 t HNO3	61 581	29 Jul 2004	26 Apr 2005	271	227	Johnson Matthey	90/5/5
	2 t HNO3	-	29 Apr 2005	24 Oct 2005	178	-	Heraeus	61/4/35
	3 t HNO3	58 648	24 Oct 2005	20 Sep 2006	331	177	Johnson Matthey	90/5/5
	4 t HNO3	65 266	21 Sep 2006	24 Jul 2007	306	213	Umicore	95/5
	5 t HNO3	76 351	07 Aug 2007	13 Mar 2008	219	349	Johnson Matthey	n.a.
Average HNO3 production	t HNO3	65 461			261	251		
Project Campaigns	BL t HNO3	60 691	14 Mar 2008	21 Oct 2008	221	275	Johnson Matthey	n.a.
	PL t HNO3	94 846	04 Nov 2008	10 May 2010	552	172	Johnson Matthey	n.a.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 14/03/2008 and continued through 21/10/2008 when the 60 691 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-1	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign		
Dates	2008 Mar 13	2008 Mar 14	2008 Oct 21	2008 Oct 21	2008 Oct 22		
Baseline Factor kgN2O/tHNO3	-	-	9.63	9.63	9.63		
Production tHNO3		-	60 691	60 691	-		
Per Day Production tHNO3	250.8						
Baseline less Historic Production	(4 770.2)						
Baseline less Historic Days	(19.0)						

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 1 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 14/03/2008 through 21/10/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 620 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.670%, which is further modified by an uncertainty of 0.089% due to under-sampling. As a result we have arrived to the baseline emission factor of 9.63 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 1 during the project campaign. Project campaign started on 04/11/2008 and went through 10/05/2010.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (*PE_n*) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.10 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

This emission factor has been used in further calculation of emission reductions. Neither moving average emission factor nor minimum emission factor was established, since it was the first project campaign.

T 4 Baseline emission factor

	BASELINE EMISSION FACTOR											
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid	
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure	Operation	Production	
							Ratio				NCSG	
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP		NAP	
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa	h	t/h	
Elimination of extreme values												
Lower limit			0	0	0	0	0	- 50	0		0	
Upper Limit			50.00	3 000	120 000	10,000	20.00	1 200	1 000		50	
opport and					120 000	10 000	20.00	1200	1000		00	
Raw Data Measured Range												
Count		4 933	4 999	4 989	4 921	5 054	5 028	5 275	5 275	4 483	4 999	
as % of Dataset		93%	94%	94%	93%	95%	95%	99%	99%	85%	94%	
Minimum			-	0	80	1 246	-	0	0		-	
Maximum			15.28	2 401	82 164	6 281	17.17	902	605		15	
Mean			12.14	1 806	67 547	5 825	10.28	857	554		12	
Standard Deviation			3.42	261	11 066	194	1.04	162	46		3	
Total			60 691		-						60 691	
N2O Emissions (VSG * NCSG * OH)		602	t N2O	1								
Emission Factor		9.35	kgN20 / tHNO3									
Pormitted Pange												
Minimum					-	4 500	0	880	0			
Maximum						7 500	12.50	910	800			
Dete within the normitted ren re												
Count		1 926		4 627	4 6 2 7					1 1 9 2		
an W of Operating Hours		4 320		4 021	4 027					4 403		
as % of Operating Hours		100%		94%	94%					91%		
Minimum				219	3 822							
Maximum				2 401	227 671							
Mean				1 /52	69 348							
Standard Deviation				318	3 984							
N2O Emissions (VSG * NCSG * OH)		599	t N2O]								
Emission Factor		9.32	kgN20 / tHNO3	_								
Data within the confidence interval					_							
95% Confidence interval												
Lower bound				1 130	61 538							
Upper bound				2 375	77 158							
Count				4 353	4 610							
as % of Operating Hours				4 000	4 010							
Minimum				1 220	93% 65.000							
Movimum				1 320	72 602							
Moon				∠ 3/4 1 000	13 092							
Standard Doviation				1 808	09474							
				218	1 214							
N2O Emissions (VSG * NCSG * OH)		620	t N2O	1								
Emission Factor (EF BL)		9.63	kaN20 / tHNO3									
(==-,		0.00	3	1								

T 5 Project emission factor

			PR <u>OJECT E</u>	MISSION <u>FACTOR</u>					
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxidation Pressure
	Code Unit	ОН b	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT ℃	OP kPa
	C		d'II	ing itze/itile	11110/11	11110/11	70	•	ia u
Elimination of extreme values									
Lower limit			0	0	0	0	0	- 50	0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000
Raw Data Measured Range									
Count		6 329	8 471	6 624	6 374	13 249	9 724	13 236	11 726
as % of Dataset		48%	64%	50%	48%	100%	73%	100%	89%
Minimum			-	0	57	-	-	(0)	0
Maximum			17.32	831	84 931	7 506	20.00	905	672
Mean			11.20	402	72 568	3 278	10.23	435	396
Standard Deviation			4.94	123	8 893	2 713	3.03	437	260
lotal			94 846						
N2O Emissions (VSG * NCSG * OH)		185	t N2O						
Emission Factor		1.95	kaN20 / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				161	55 137				
Upper bound				642	89 999				
Count				5 991	6 282				
as % of Operating Hours				95%	99%				
Minimum				181	60 346				
Maximum				642	85 717				
Mean				427	73 626				
Standard Deviation				59	3 156				
N20 Emissions (VSG * NCSG * OH)		100	t N2O						
Actual Project Emission Factor (FE PActual)		2 10	kaN20/tHN03						
Abatement Ratio		78.2%	kghz07 thitoo						
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule					
	1	2.10	2.10						
	2	-							
	3	-			I				
Project Emission Factor (EF_P)		2.10	kgN2O / tHNO3						
Abatement Ratio		78.2%							

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 4MONITORINGPERIOD:FROM:07/05/2009

TO: 06/05/2010

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.			3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N₂O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1 4.1	 PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR 2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR 	8 8 8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 4 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the second project campaign on Line 4.

Total quantity of emission reductions generated during the second project period from 07/05/2009 through 06/05/2010 on Line 4 is **104 372 ERUs**.

EMISSION REDUCTION					
Baseline Emission Factor	EF_BL	7.73	kgN2O/tHNO3		
Project Campaign Emission Factor	EF_P	2.57	kgN2O/tHNO3		
Nitric Acid Produced in the Baseline Campaign	NAP_BL	58 683	tHNO3		
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	58 683	tHNO3		
Nitric Acid Produced in the Project Campaign	NAP_P	65 249	tHNO3		
GWP	GWP	310	tCO2e/tN2O		
Emission Reduction	ER	104 372	tCOe		
ER=(EF_BL-EF_P)*NAP_P*GWP/1000					
Abatement Ratio 69.4%					

T 1 Emission reduction	on calculations
------------------------	-----------------

EMISSION REDUCTION PER YEAR				
Year	2008	2009	2010	
Date From		07 May 2009	01 Jan 2010	
Date To		31 Dec 2009	06 May 2010	
Nitric Acid Production		42 744	22505	
Emission Reduction		68 373	35999	
ER_YR = ER * NAP_P_YR / NAP_P				

Baseline emission factor established for the Line 4 during baseline measurement carried from 28/12/2007 through 31/07/2008 is 7.73 kgN₂O/tHNO₃.

Project emission factor during the second project campaign after installation of secondary catalysts on Line 4, which started on 07/05/2009 and went through 06/05/2010 with secondary catalyst installed and commissioned on 06/10/2008, is 2.57 kgN₂O/tHNO₃.

During the project campaign 65 249 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 4 emission reductions including information on baseline emission factor setting for the Line 4.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 4 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 4 has been carried out from 28/12/2007 through 31/07/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 4 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 4 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF=L1_Flow_N2O*(273.15/(273.15+L1_Temp))*(L1_Press/101.325)*((100-L1_Humi)/100)

where Humi (water content)=

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula $Q=C^*sqrt(dp)$, where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 31/10/2007 and ending on 10/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 65 823 tHNO₃ and time duration was on average 275 days. Table contains also information on suppliers of primary catalysts for the line 4.

Т2	Historic	campaigns
----	----------	-----------

Line	ACHEMA UKL-4	Production	Start	End	Days	Production per	Primary Catalyst	Composition
						day		
Historic Campaigns	1 t HNO3	69 782	18 Apr 2003	11 Dec 2003	237	294	Johnson Matthey	90/5/5
	2 t HNO3	65 420	11 Dec 2003	06 Dec 2004	361	181	Johnson Matthey	90/5/5
	3 t HNO3	66 129	07 Dec 2004	08 Nov 2005	336	197	Umicore	95/5
	4 t HNO3	66 826	22 Mar 2006	23 Nov 2006	246	272	Johnson Matthey	n.a.
	5 t HNO3	60 959	23 Nov 2006	04 Jun 2007	193	316	Johnson Matthey	n.a.
Average HNO3 production	t HNO3	65 823			275	240		
Project Campaigns	BL t HNO3	58 683	28 Dec 2007	31 Jul 2008	216	272	Johnson Matthey	n.a.
_	PL t HNO3	65 249	07 May 2009	06 May 2010	364	179	Johnson Matthey	n.a.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 28/12/2007 and continued through 31/07/2008 when the 58 683 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-4	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jun 04	2007 Dec 28	2008 Jul 31	2008 Jul 31	2008 Aug 01
Baseline Factor kgN2O/tHNO3	-	-	7.73	7.73	7.73
Production tHNO3		-	58 683	58 683	-
Per Day Production tHNO3	239.7				
Baseline less Historic Production	(7 140.4)				
Baseline less Historic Days	(29.8)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 4 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 28/12/2007 through 31/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 479 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.450%, which is further modified by an uncertainty of 0.104% due to under-sampling. As a result we have arrived to the baseline emission factor of 7.73 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 4 during the project campaign. Project campaign started on 07/05/2009 and went through 06/05/2010.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (*PE_n*) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.57 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

	BASELINE EMIS	SION FACTOR									
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure	Operation	Production
							Ratio	•			
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP		NAP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa	h	t/h
									•		
Elimination of extreme values					_						
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 564	4 906	4 891	4 467	4 733	5 086	5 161	4 755	4 028	4 906
as % of Dataset		88%	95%	94%	86%	91%	98%	100%	92%	78%	95%
Minimum		0070	-	0.70	-	266	-	1	3	1070	-
Maximum			15 12	2 925	92 5 4 1	6 465	10.29	006	624		15
Maan			11.02	1 495	03 341	5 740	19.20	300	570		13
Stendard Deviation			11.90	1 400	66 846	5718	9.71	791	572		12
Standard Deviation			4.35	378	10 182	881	2.96	272	62		4
lotal			58 683		-						58 683
N2O Emissions (VSG * NCSG * OH)		453	t N2O	1							
Emission Factor		7.30	kgN20 / tHNO3								
Remained Reman			0								
Minimum					-	4 500	0	000	0		
Maximum						4 500	11 70	000	800		
Maximum						7 300	11.70	910	000		
Data within the permitted range											
Count		4 399		4 152	4 210					4 0 2 8	
as % of Operating Hours		96%		91%	92%					88%	
Minimum				511	-						
Maximum				2 208	75 876						
Moon				1 511	67 076						
Stondard Doviation				274	07 273						
Standard Deviation				274	8270						
N2O Emissions (VSG * NCSG * OH)		464	t N2O	1							
Emission Factor		7.47	kgN2O / tHNO3								
Data within the confidence interval				-							
95% Confidence interval											
Lower bound				973	51 066						
Upper bound				2 048	83 484						
					00101						
Count				3 735	4 149						
as % of Operating Hours				82%	91%						
Minimum				1 108	59 51 2						
Maximum				2 0/6	75 976						
Mean				2 040	69.005						
Standard Deviation				1 340	00 235						
Standard Deviation				203	2 154						
N2O Emissions (VSG * NCSG * OH)		479	t N2O	1							
Emission Factor (FE_BL)		773	kaN20 / tHNO3								
		1.15		1							

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure
							Ratio		
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa
The last and for the second second									
Limination of extreme values			0	0	0	0	0	50	0
			50.00	3 000	120.000	10,000	20.00	- 50	1 000
			50.00	3 000	120 000	10 000	20.00	1 200	1000
Raw Data Measured Range									
Count		4 832	5 476	4 754	4 810	5 654	5 206	8 727	8 694
as % of Dataset		55%	63%	54%	55%	65%	60%	100%	100%
Minimum			0.62	2	-	262	3	(23)	15
Maximum			14.97	1 476	88 570	6 419	19.34	916	737
Mean			11.92	487	66 443	5 323	10.21	516	524
Standard Deviation			3.24	185	4 680	1 487	1.16	425	204
Total			65 249						
NOO Emissions (1/80 * NCSC * OH)		150	+ N2O						
M20 Emissions (V3G MC3G OF)		100	t N2O kaN2O / t⊟NO2						
		2.55	kylv207 ti liv03						
Data within the confidence interval									
95% Confidence interval									
Lower bound				124	57 270				
Upper bound				850	75 617				
				4 400					
				4 409	4 7 4 4				
as % of Operating Hours				91%	98%				
Maximum				199	57 989				
Maximum				849	75 605				
Mean Standard Deviation				480	66 558				
Standard Deviation				152	3 1 37				
N2O Emissions (VSG * NCSG * OH)		154	t N2O						
Actual Project Emission Factor (EF_PActual))	2.37	kgN2O / tHNO3						
Abatement Ratio		69.4%							
					-				
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule					
	1	2.77	2.77						
	2	2.37	2.57		I				
Project Emission Factor (EF_P)		2.57	kgN20/tHNO3						
Abatement Ratio		66.8%							

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 6MONITORINGPERIOD:FROM:27/04/2009

TO: 25/11/2009

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.			3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N₂O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1 4.1	 PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR 2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR 	8 8 8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 6 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the second project campaign on Line 6.

Total quantity of emission reductions generated during the second project period from 27/04/2009 through 25/11/2009 on Line 6 is **116 735 ERUs**.

EMISSIC	ON REDUCTION				
Baseline Emission Factor	EF_BL	10.34	kgN2O/tHNO3		
Project Campaign Emission Factor	EF_P	4.66	kgN2O/tHNO3		
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 850	tHNO3		
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	60 850	tHNO3		
Nitric Acid Produced in the Project Campaign	NAP_P	66 297	tHNO3		
GWP	GWP	310	tCO2e/tN2O		
Emission Reduction	ER	116 735	tCOe		
ER=(EF_BL-EF_P)*NAP_P*GWP/1000					
Abatement Ratio	Abatement Ratio 57.6%				

T 1	1	Emission	reduction	calculations
------------	---	----------	-----------	--------------

EMISSION REDUCT	ION PER YE	AR	
Year	2008	2009	2010
Date From		27 Apr 2009	
Date To		25 Nov 2009	
Nitric Acid Production		66 297	
Emission Reduction		116 735	
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 6 during baseline measurement carried from 11/01/2008 through 21/07/2008 is 10.34 kgN₂O/tHNO₃.

Project emission factor during the second project campaign after installation of secondary catalysts on Line 6, which started on 27/04/2009 and went through 25/11/2009 with secondary catalyst installed and commissioned on 25/07/2008, is $4.66 \text{ kgN}_2\text{O/tHNO}_3$.

During the project campaign 66 297 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 6 emission reductions including information on baseline emission factor setting for the Line 6.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 6 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 6 has been carried out from 11/01/2008 through 21/07/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 6 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 6 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor $(tN_2O/tHNO_3)$
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF=L1_Flow_N2O*(273.15/(273.15+L1_Temp))*(L1_Press/101.325)*((100-L1_Humi)/100)

where Humi (water content)=

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula $Q=C^*sqrt(dp)$, where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 08/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

Yn=An + (Bn/Bo)*(Yo-Ao)

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data. The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa). The calibration AST test report on July 24, 2009 determined that the pressure transmitter was broken. Later communication with the laboratory Airtec performing the AST test in the plant concluded that a constant average pressure of 103.38 hPa has to be used from the beginning of the failure period (April 27, 2009) until the transmitter was replaced on December 29, 2009, which includes the whole second campaign.

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 61 599 tHNO₃ and time duration was on average 241 days. Table contains also information on suppliers of primary catalysts for the line 6.

Line	ACHEMA UKL-6	Production	Start	End	Days	Production per	Primary Catalyst	Composition
						day		
Historic Campaigns	1 t HNO3	62 918	28 Aug 2003	25 Mar 2004	210	300	Heraeus	90/5/5
	2 t HNO3	61 366	01 Apr 2004	02 Feb 2005	307	200	Johnson Matthey	90/5/5
	3 t HNO3	64 872	26 Jul 2005	10 Mar 2006	227	286	Johnson Matthey	90/5/5
	4 t HNO3	55 693	10 Mar 2006	29 Nov 2006	264	211	Umicore	90/5
	5 t HNO3	63 148	29 Nov 2006	12 Jun 2007	195	324	Heraeus	63/4/33
Average HNO3 production	t HNO3	61 599			241	256		
Project Campaigns	BL t HNO3	60 850	11 Jan 2008	21 Jul 2008	192	317	Heraeus	63/4/33
_	PL t HNO3	66 297	27 Apr 2009	25 Nov 2009	212	313	Heraeus	63/4/33

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 11/01/2008 and continued through 21/07/2008 when the 60 850 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-6	Historic	Start of Baseline	End of Baseline	End of Baseline	End of Baseline
	Campaings End	Measurement	Measurement NCSG	Measurement	Campaign
Dates	2007 Jun 12	2008 Jan 11	2008 Jul 21	2008 Jul 21	2008 Jul 22
Baseline Factor kgN2O/tHNO3	-	-	10.34	10.34	10.34
Production tHNO3		-	60 850	60 850	-
Per Day Production tHNO3	256.0				
Baseline less Historic Production	(749.3)				
Baseline less Historic Davs	(2.9)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 6 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 11/01/2008 through 21/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 667 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.620%, which is further modified by an uncertainty of 0.105% due to under-sampling. As a result we have arrived to the baseline emission factor of 10.34 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 6 during the project campaign. Project campaign started on 27/04/2009 and went through 25/11/2009.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (*PE_n*) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 4.66 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

BASELINE EMISSION FACTOR											
		Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure	Operation	Production
					-		Ratio				NCSG
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP		NAP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa	h	t/h
					•					•	
Elimination of extreme values					-						
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 233	4 363	4 494	4 290	4 324	4 361	4 585	4 564	3 944	4 363
as % of Dataset		92%	95%	98%	93%	94%	95%	100%	99%	86%	95%
Minimum			-	1	2	568	-	(1)	0		-
Maximum			16.37	2 303	117 970	6 423	15.58	905	634		16
Mean			13.95	1 422	99 960	6 050	10.50	833	583		14
Standard Deviation			3.18	416	17 673	456	1 70	201	44		3
Total			60 850		11 010	400	1.70	201			60 850
				_							
N2O Emissions (VSG * NCSG * OH)		602	t N2O								
Emission Factor		9.33	kgN2O / tHNO3								
Permitted Range											
Minimum					-	4 500	0	880	0		
Maximum					-	7 500	11.70	910	800		
Data within the permitted range											
Count		4 116		4 015	4 015					3 944	
as % of Operating Hours		97%		95%	95%					93%	
Minimum				7	10 156						
Maximum				2 074	110 925						
Mean				1 456	103 058						
Standard Deviation				312	2 541						
N2O Emissions (VSG * NCSG * OH)		635	t N2O								
Emission Factor		9.85	kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound				844	98 078						
Upper bound				2 068	108 039						
O				0.005							
Count				3 695	3 991						
as % of Operating Hours				87%	94%						
Minimum				997	98 180						
Maximum				2 062	108 018						
Mean				1 528	103 105						
Standard Deviation				201	1 728						
		~~~	( 1100	1							
N2O Emissions (VSG * NCSG * OH)		667									
Emission Factor (EF_BL)		10.34	kgN20 / tHNO3	J							

## T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Patio	Oxidation Temperature	Oxidation Pressure
	Code Unit	OH h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT ℃	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 20.00	- 50 1 200	0 1 000
Raw Data Measured Range									
Count		4 463	4 668	4 375	4.388	5 081	4 451	5 081	5 0 5 3
as % of Dataset		88%	92%	86%	86%	100%	87%	100%	99%
Minimum		0070	0.66	0	100 275	126	2	49	3
Maximum			16 52	1 010	119614	6 642	10.64	904	638
Mean			14.20	620	105 623	5 703	10.04	829	574
Standard Deviation			3.08	101	1 5 9 5	1 763	0.18	198	40
Total			66 297	101	1000	1700	0.10	100	10
N2O Emissions (VSG * NCSG * OH)		292	t N2O						
Emission Factor		4.41	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				423	102 497				
Upper bound				818	108 7 48				
Count				4 009	4 206				
as % of Operating Hours				90%	94%				
Minimum				423	102 502				
Maximum				818	108 744				
Mean				617	105 642				
Standard Deviation				97	1 335				
N2O Emissions (VSG * NCSG * OH)		201	t N2O						
Actual Project Emission Factor (EE PActual	<b>`</b>	4 3 9	kaN20 / tHNO3						
Abatement Ratio	/	57.6%	kghze, thtee						
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	Rule	1				
····· ···· ··· ··· ··· ··· ··· · · · ·	1	4.94	4.94						
	2	4.39	4.66						
	3	-							
					-				
Project Emission Factor (EF_P)		4.66	kgN20 / tHNO3						
Abatement Ratio		54.9%	-	I					

# **MONITORING REPORT**

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 6MONITORINGPERIOD:FROM:27/11/2009

TO: 20/09/2010

Prepared by:



**VERTIS FINANCE** 

www.vertisfinance.com



## **Table of Contents**

1.			3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	<b>3.1</b> 3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N₂O CONCENTRATION	<b>6</b> 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.	4.1 4.1	<ul> <li><b>PROJECT EMISSIONS</b></li> <li>1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR</li> <li>2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR</li> </ul>	<b>8</b> 8 8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22



## 1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 6 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the third project campaign on Line 6.

Total quantity of emission reductions generated during the third project period from 27/11/2009 through 20/09/2010 on Line 6 is **143 005 ERUs**.

EMISSION REDUCTION					
Baseline Emission Factor	EF_BL	10.34	kgN2O/tHNO3		
Project Campaign Emission Factor	EF_P	5.00	kgN2O/tHNO3		
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 850	tHNO3		
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	60 850	tHNO3		
Nitric Acid Produced in the Project Campaign	NAP_P	86 387	tHNO3		
GWP	GWP	310	tCO2e/tN2O		
Emission Reduction	ER	143 005	tCOe		
ER=(EF_BL-EF_P)*NAP_P*GWP/1000					
Abatement Ratio 51.7%					

#### T 1 Emission reduction calculations

EMISSION REDUCT	TION PER YI	EAR	
Year	2008	2009	2010
Date From		27 Nov 2009	01 Jan 2010
Date To		31 Dec 2009	20 Sep 2010
Nitric Acid Production		9 863	76524
Emission Reduction		16 327	126678
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 6 during baseline measurement carried from 11/01/2008 through 21/07/2008 is 10.34 kgN₂O/tHNO₃.

Project emission factor during the third project campaign after installation of secondary catalysts on Line 6, which started on 27/11/2009 and went through 20/09/2010 with secondary catalyst installed and commissioned on 25/07/2008, is  $5.00 \text{ kgN}_2\text{O/tHNO}_3$ .

During the project campaign 86 387 tonnes of nitric acid was produced.



## 2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide ( $N_2O$ ) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary  $N_2O$  reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 6 emission reductions including information on baseline emission factor setting for the Line 6.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.



## 3. BASELINE SETTING

Baseline emission factor for line 6 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 6 has been carried out from 11/01/2008 through 21/07/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for  $N_2O$  concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of  $N_2O$  concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of  $N_2O$  emissions per hour is estimated as product of the NCSG and VSG. The  $N_2O$  emissions per campaign are estimates product of  $N_2O$  emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average  $N_2O$  emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of  $N_2O$  emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The  $N_2O$  emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$ 

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃ )
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of $N_2O$ in the stack gas during the baseline campaign (mgN ₂ O/m ³ )
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period $(m^3/h)$
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃ )
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

# 3.1 Measurement procedure for $N_2O$ concentration and tail gas volume flow

#### 3.1.1 Tail gas N₂O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 6 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so  $N_2O$  concentration is measured on a dry basis.

 $N_2O$  concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis.

 $N_2O$  concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

#### 3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

#### 3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline  $N_2O$  emission factor may be outside the permitted range or limit corresponding to normal operating conditions.  $N_2O$  baseline data measured during hours



where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

## 3.3 Historic Campaign Length

The average historic campaign length ( $CL_{normal}$ ) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.



## 4. PROJECT EMISSIONS

During the first project campaign on line 6 the tail gas volume flow in the stack of the nitric acid plant as well as  $N_2O$  concentration have been measured on the continuous basis.

#### 4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for  $N_2O$  concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of $N_2O$ in the stack gas for the project campaign $(mgN_2O/m^3)$
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

#### 4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

#### 4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

#### 4.3 **Project Campaign Length**



Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

#### 4.4 Leakage

No leakage calculation is required.

#### 4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of  $N_2O$ :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$ 

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃ ). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃ )
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and $EF_n$ )



## 5. MONITORING PLAN

#### Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of  $N_2O$  from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

#### Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.



Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions.  $N_2O$  concentration in the tail gas is measured by 3 switched concentration meters.

#### Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an  $N_2O$  monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of  $N_2O$ .



But tail gas  $N_2O$  concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of  $N_2O$  in t  $CO_2e$  per 1 tonne of  $HNO_3$  (100%), it is necessary to include also  $HNO_3$  measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only  $N_2O$  emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

#### monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

#### nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

# and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.





#### N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

#### N₂O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so  $N_2O$  concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail



gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 $N_2O$  concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

#### Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.



The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".





Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

#### Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF=L1_Flow_N2O*(273.15/(273.15+L1_Temp))*(L1_Press/101.325)*((100-L1_Humi)/100)

where Humi (water content)=

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.



Achema measures steam flow in kg/h using formula  $Q=C^*sqrt(dp)$ , where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

#### EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

#### **Operating conditions**

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure





## All these parameters are measured by the plant monitoring system as presented on diagrams below:



P in mixer 7-8 line



NH3 to mixer 1-6 line



NH3 to mixer 7-8 line





Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

#### Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.





The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 08/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.



## 6. QAL 2 CALIBRATION ADJUSTMENTS

#### 6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old



This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

Yn=An + (Bn/Bo)*(Yo-Ao)

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data. The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

#### 6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

#### 6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in  $mgN_2O/m_3$ . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

#### 6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

#### 6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa). The calibration AST test report on July 24, 2009 determined that the pressure transmitter was broken. Later communication with the laboratory Airtec performing the AST test in the plant concluded that a constant average pressure of 103.38 hPa has to be used from the beginning of the failure period (April 27, 2009) until the transmitter was replaced on December 29, 2009. From December 30, 2009 through September 20, 2010 (end of the third campaign) we have applied usual QAL2 calculations.



## 7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 61 599 tHNO₃ and time duration was on average 241 days. Table contains also information on suppliers of primary catalysts for the line 6.

Т2	Historic	campaigns
----	----------	-----------

Line	ACHEMA UKL-6	Production	Start	End	Days	Production per	Primary Catalyst	Composition
						day		
Historic Campaigns	1 t HNO3	62 918	28 Aug 2003	25 Mar 2004	210	300	Heraeus	90/5/5
	2 t HNO3	61 366	01 Apr 2004	02 Feb 2005	307	200	Johnson Matthey	90/5/5
	3 t HNO3	64 872	26 Jul 2005	10 Mar 2006	227	286	Johnson Matthey	90/5/5
	4 t HNO3	55 693	10 Mar 2006	29 Nov 2006	264	211	Umicore	90/5
	5 t HNO3	63 148	29 Nov 2006	12 Jun 2007	195	324	Heraeus	63/4/33
Average HNO3 production	t HNO3	61 599			241	256		
Project Campaigns	BL t HNO3	60 850	11 Jan 2008	21 Jul 2008	192	317	Heraeus	63/4/33
_	PL t HNO3	86 387	27 Nov 2009	20 Sep 2010	297	291	Heraeus	63/4/33

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 11/01/2008 and continued through 21/07/2008 when the 60 850 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-6	Historic	Start of Baseline	End of Baseline	End of Baseline	End of Baseline Campaign	
	Campaings End	Measurement	Measurement NCSG	Measurement		
Dates	2007 Jun 12	2008 Jan 11	2008 Jul 21	2008 Jul 21	2008 Jul 22	
Baseline Factor kgN2O/tHNO3	-	-	10.34	10.34	10.34	
Production tHNO3		-	60 850	60 850	-	
Per Day Production tHNO3	256.0					
<b>Baseline less Historic Production</b>	(749.3)					
Baseline less Historic Davs	(2.9)					

#### T 3 Baseline campaign length



#### C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 6 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 11/01/2008 through 21/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of  $N_2O$  concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and  $N_2O$  concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 667 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.620%, which is further modified by an uncertainty of 0.105% due to under-sampling. As a result we have arrived to the baseline emission factor of 10.34 kgN₂O/tHNO₃.



Table T 5 shows the calculation of the project emission factor on Line 6 during the project campaign. Project campaign started on 27/11/2009 and went through 20/09/2010.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of  $N_2O$  emissions (*PE_n*) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of  $N_2O$  emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 5.00 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

#### T 4 Baseline emission factor

	BASELINE EMISSION FACTOR												
		Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid		
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure	Operation	Production		
					-		Ratio				NCSG		
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP		NAP		
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa	h	t/h		
									•		•		
Elimination of extreme values					-								
Lower limit			0	0	0	0	0	- 50	0		0		
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50		
Raw Data Measured Range													
Count		4 233	4 363	4 494	4 290	4 324	4 361	4 585	4 564	3 944	4 363		
as % of Dataset		92%	95%	98%	93%	94%	95%	100%	99%	86%	95%		
Minimum			-	1	2	568	-	(1)	0		-		
Maximum			16.37	2 303	117 970	6 423	15.58	905	634		16		
Mean			13.95	1 422	99 960	6 050	10.50	833	583		14		
Standard Deviation			3.18	416	17 673	456	1 70	201	44		3		
Total			60 850		11 010	400	1.70	201			60 850		
				_									
N2O Emissions (VSG * NCSG * OH)		602	t N2O										
Emission Factor		9.33	kgN2O / tHNO3										
Permitted Range													
Minimum					-	4 500	0	880	0				
Maximum					-	7 500	11.70	910	800				
Data within the permitted range													
Count		4 116		4 015	4 015					3 944			
as % of Operating Hours		97%		95%	95%					93%			
Minimum				7	10 156								
Maximum				2 074	110 925								
Mean				1 456	103 058								
Standard Deviation				312	2 541								
N2O Emissions (VSG * NCSG * OH)		635	t N2O										
Emission Factor		9.85	kgN2O / tHNO3										
Data within the confidence interval													
95% Confidence interval													
Lower bound				844	98 078								
Upper bound				2 068	108 039								
0				0.005									
Count				3 695	3 991								
as % of Operating Hours				87%	94%								
Minimum				997	98 180								
Maximum				2 062	108 018								
Mean				1 528	103 105								
Standard Deviation				201	1 728								
		~~~	( 1100	1									
NZO EMISSIONS (VSG * NCSG * OH)		667											
Emission Factor (EF_BL)		10.34	kgN20 / tHNO3	J									

T 5 Project emission factor

Parameter Operating Hours Nitric Acid N2O Gas Volume Ammonia Ammonia Oxidation Oxidation Oxidation Pressure Code OH NAP NCSG VSG AFR AIFR OT OP Unit h t/h mg N2O/Nm3 Nm3/h Nm3/h % °C kPa	PROJECT EMISSION FACTOR										
Production Concentration Flow Flow Rate to Air Temperature Pressure Code OH NAP NCSG VSG AFR AIFR OT OP Unit h t/h mg N2O/Nm3 Nm3/h Nm3/h % °C kPa		Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	
Code Unit OH NAP NCSG VSG AFR AIFR OT OP Linit h t/h mg N2O/Nm3 Nm3/h Nm3/h % °C kPa				Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure	
Code Unit OH h NAP t/h NCSG mg N2O/Nm3 VSG Nm3/h AFR Nm3/h AIFR % OT °C OP kPa Elimination of extreme values								Ratio			
Unit h t/h mg N2O/Nm3 Nm3/h Nm3/h % °C kPa Elimination of extreme values		Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP	
Elimination of extreme values		Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa	
	Elimination of extreme values										
	Lower limit			0	0	0	0	0	- 50	0	
Upper Limit 50.00 3 000 120 000 20.00 1 200 1 000	Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000	
Raw Data Magsurad Ranga	Paw Data Measured Pange										
Count 5459 7.089 5.421 5.677 7.129 5.609 7.129 7.104	Count		5 459	7 089	5 421	5 677	7 129	5 60 9	7 129	7 1 0 4	
as of Dataset 77% 99% 76% 80% 100% 79% 100% 100%	as % of Dataset		77%	99%	76%	80%	100%	79%	100%	100%	
Minimum - 1 2 31 1 13 0	Minimum		,0	-	1	2	31	1	13	0	
Maximum 18.64 1.427 116.339 8.000 19.94 1.100 6.96	Maximum			18.64	1 427	116 339	8 000	19.94	1 100	696	
Mean 12.19 772 101 316 5 004 10.17 718 568	Mean			12.19	772	101 316	5 004	10.17	718	568	
Standard Deviation 5.42 166 20 603 2 465 1.17 342 119	Standard Deviation			5.42	166	20 603	2 465	1.17	342	119	
Total 86 387	Total			86 387							
					1						
N2O Emissions (VSG * NCSG * OH) 427 t N2O	N2O Emissions (VSG * NCSG * OH)		427	t N2O							
Emission Factor 4.94 kgN20 / tHNO3	Emission Factor		4.94	kgN20 / tHNO3							
Data within the confidence interval	Data within the confidence interval										
95% Confidence interval	95% Confidence interval										
Lower bound 446 60 934	Lower bound				446	60 934					
Upper bound 1 097 141 699	Upper bound				1 097	141 699					
Count 4 758 5 453	Count				4 758	5 453					
as % of Operating Hours 87% 100%	as % of Operating Hours				87%	100%					
Minimum 453 67 499	Minimum				453	67 499					
Maximum 1 097 116 339	Maximum				1 097	116 339					
Mean 750 105 434	Mean				750	105 434					
Standard Deviation 120 3 155	Standard Deviation				120	3 1 5 5					
					I						
N2O Emissions (VSG * NCSG * OH) 432 t N2O	N2O Emissions (VSG * NCSG * OH)		432	t N2O							
Actual Project Emission Factor (EF_PActual) 5.00 kgn207(HN03	Actual Project Emission Factor (EF_PActual)		5.00	KGN207 THNO3							
Abatement Ratio 51.7%	Abatement Ratio		51.7%	J							
Moving Average Emission Factor Correction Actual Factors Moving Average Rule	Moving Average Emission Factor Correction		Actual Factors	Moving Average R	lule	ו					
1 4.94 4.94		1	4.94	4.94		1					
2 4.39 4.67		2	4.39	4.67							
3 5.00 5.00		3	5.00	5.00							
Design English Factor (EE D)	Decident Emission Factor (FF, D)		F ^ ^		I						
rioject Ellission ractor (Er_r) 5.00 KgN20 / thN03 Abstement Patia 51 7%	Project Emission Factor (EF_P)		5.00	KgN207 THNO3	l						
			31.7%	J							

ANNEX TO THE MONITORING REPORT

PROJECT: ACHEMA UKL nitric acid plant N₂O abatement project

Prepared by:

VERTIS FINANCE
As required by PROCEDURES REGARDING CHANGES DURING PROJECT IMPLEMENTATION (Version 01) issued by the Joint Implementation Supervisory Committee we are stating that there have occurred following changes to the project design comparing to as described in the PDD document from the time when determination was deemed to be final (November 27, 2009):

Change Nr. 1

At the time of the project determination there was not selected yet any Investor Party. The Investor Party LoA has been issued on June 1, 2010 to the company ECOCOM BG Ltd. (the project participant) by The Netherlands (not the project participant).

Besides this change there have occured no other changes relating to project fundaments such as

- (a) physical location;
- (b) emission sources;
- (c) baseline scenario;

Comparison of the baseline emission factors against N_2O mass limit in the IPPC permit

Achema UKL-7 IPPC permit defines the regulatory level as total mass of N_2O allowed to be emitted from the UKL-7 plant in the years 2008 through 2012. N_2O mass emissions of the Achema UKL-7 plant were in all 3 years from 2008 through 2010, which are subject to the second periodic verification, below the IPPC mass limit value.

For purpose of comparison of the regulatory level and actual baseline emission factors we have applied the baseline emission factors on the nitric acid production which occurred in relevant years on the nitric acid lines subject to the verification (1-8).

As presented in the table below the Achema KL-7 plant would be below the regulatory cap also in case of absence of the JI project. It means, that project can use the baseline emission factors as measured.

Due to the structure of the UKL-7 plant where 8 nitric acid lines falling under the scope of the JI project are operated with different campaign schedules, there will come yet more campaigns to be verified in next verifications (does not apply to the year 2008, where all campaigns have been already finished and verified). It means that in next verifications the calculation will be conducted again and if there would occur any violation of the IPPC mass limit, then such violation would be balanced against the quantity of ERUs claimed in that particular verification making sure that no ERUs would be claimed above the regulatory level.

Results of calculation of hypothetical N_2O emissions from the UKL-7 plant (8 lines) in years 2008, 2009 and 2010 are presented in the table below.

Regulatory values	2008	2009	2010		
Regulatory N2O Cap	kgN2O	8,494,200	9,266,400	9,266,400	
Excluding Line 9	kgN2O	8,236,800	8,236,800	8,236,800	
Calculated plant emissions in absence of	JI project	2008	2009	2010	
Calculated plant emissions in absence of . Total Nitric Acid Produced	JI project <i>tHNO3</i>	2008 587,784	2009 521,216	2010 141,502	
Calculated plant emissions in absence of . Total Nitric Acid Produced Calculated N2O Emission in absence of JI project	JI project tHNO3 kgN2O	2008 587,784 4,472,161	2009 521,216 4,367,638	2010 141,502 1,360,220	

Nitric acid produced during project campaigns		2008	2009	2010	
Line	Campaign	BEF	NAP		
1	0	9.63	60,691		
2	0	7.92	28,951		
3	0	4.42	42,999		
4	0	7.20	57,815		
5	0	6.61	47,192		
6	0	10.34	60,850		
7	0	7.85	26,856		
8	0	6.61	34,716		
1	1	9.63	1,913	55,103	37,831
2	1	7.92	12,151	241	
3	1	4.42	13,520		
4	1	7.20	11,753	27,403	
5	1	6.61	39,871	20,358	
6	1	10.34	41,416	26,902	
7	1	7.85	31,445		
8	1	6.61	45,181		
1	2				
2	2	9.51		61,628	
3	2	5.45	24,950	31,372	
4	2	7.73		42,744	22,505
5	2	6.61		66,630	4,642
6	2	10.34		66,297	
7	2	9.09		58,897	
8	2	6.96	5,513	53,779	
1	3				
2	3				
3	3				
4	3				
5	3				
6	3	10.34		9,863	76,524
7	3				
8	3				