# **FOURTH MONITORING REPORT**

PROJECT: ACHEMA UKL-7 plant N₂O abatement project

Prepared by:



**VERTIS FINANCE** 

April 20, 2012

# **Monitoring periods**

#### Line 1

Project campaign 2

FRÓM: 13/09/2010 TO: 21/08/2011 ERUs 267,237

#### Line 2

Project campaign 5

FROM: 13/05/2011 TO: 08/12/2011 ERUs 150,047

#### Line 3

Project campaign 4

FROM: 19/11/2010 TO: 25/08/2011 ERUs 69,520

#### Line 4

Project campaign 4

FROM: 16/03/2011 TO: 05/10/2011 ERUs 105,340

#### Line 5

Project campaign 4

FROM: 17/03/2011 TO: 09/11/2011 ERUs 82,177

#### Line 6

Project campaign 4

FROM: 01/10/2010 TO: 10/08/2011 ERUs 214,833

#### Line 7

Project campaign 4

FROM: 10/12/2010 TO: 30/08/2011 ERUs 163,985

#### Line 8

Project campaign 4

FRÓM: 09/11/2010 TO: 01/09/2011 ERUs 111,857

Fourth monitoring period start and end:

September 13, 2010 - December 8, 2011

Fourth monitoring period ERUs in total: 1,164,996

Emission Reductions (year 2010):200,103t CO2 equivalentsEmission Reductions (year 2011):964,893t CO2 equivalentsEmission Reductions (total):1,164,996t CO2 equivalents

# **MONITORING REPORT**

PROJECT: ACHEMA UKL nitric acid plant N<sub>2</sub>O abatement project

LINE: Line 1

**MONITORING PERIOD:** 

FROM: 13/09/2010

TO: 21/08/2011

# Prepared by:



**VERTIS FINANCE** 

www.vertisfinance.com



# **Table of Contents**

| 1. |                   | EXECUTIVE SUMMARY                                                             | 3             |
|----|-------------------|-------------------------------------------------------------------------------|---------------|
| 2. |                   | DESCRIPTION OF THE PROJECT ACTIVITY                                           | 4             |
| 3. |                   | BASELINE SETTING                                                              | 5             |
|    | 3.1<br>3.1<br>3.1 |                                                                               | <b>6</b><br>6 |
|    | 3.2               | PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT              | 6             |
|    | 3.3               | HISTORIC CAMPAIGN LENGTH                                                      | 7             |
| 4. | 4.1               | PROJECT EMISSIONS  1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR | <b>8</b>      |
|    | 4.1               | 2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR                              | 8             |
|    | 4.2               | MINIMUM PROJECT EMISSION FACTOR                                               | 8             |
|    | 4.3               | PROJECT CAMPAIGN LENGTH                                                       | 8             |
|    | 4.4               | LEAKAGE                                                                       | 9             |
|    | 4.5               | EMISSION REDUCTIONS                                                           | 9             |
| 5. |                   | MONITORING PLAN                                                               | 10            |
| 6. |                   | QAL 2 CALIBRATION ADJUSTMENTS                                                 | 20            |
|    | 6.1               | APPLIED PRINCIPLE                                                             | 20            |
|    | 6.2               | STACK GAS VOLUME FLOW                                                         | 21            |
|    | 6.3               | NITRIC ACID CONCENTRATION IN STACK GAS                                        | 21            |
|    | 6.4               | STACK GAS TEMPERATURE                                                         | 21            |
|    | 6.5               | STACK GAS PRESSURE                                                            | 21            |
| 7  |                   | EMISSION REDUCTION CALCUL ATIONS                                              | 22            |



## 1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 1 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the second project campaign on Line 1.

The first project campaign on Line 1 started on 11/11/2008. Secondary catalyst was installed on 30/10/2008. Total quantity of emission reductions generated during the second project period from 13/09/2010 through 21/08/2011 on Line 1 is **267 237 ERUs**.

#### T 1 Emission reduction calculations

| EMISSIC                                            | ON REDUCTION |         |             |
|----------------------------------------------------|--------------|---------|-------------|
| Baseline Emission Factor                           | EF_BL        | 9.63    | kgN2O/tHNO3 |
| Project Campaign Emission Factor                   | EF_P         | 1.77    | kgN2O/tHNO3 |
| Nitric Acid Produced in the Baseline Campaign      | NAP_BL       | 60 691  | tHNO3       |
| Nitric Acid Produced in the NCSG Baseline Campaign | NAP_BL_NCSG  | 60 691  | tHNO3       |
| Nitric Acid Produced in the Project Campaign       | NAP_P        | 109 676 | tHNO3       |
| GWP                                                | GWP          | 310     | tCO2e/tN2O  |
| Emission Reduction                                 | ER           | 267 237 | tCOe        |
| ER=(EF_BL-EF_P)*NAP_P*GWP/1000                     |              |         |             |
| Abatement Ratio                                    |              | 85.1%   | )           |

| EMISSION REDUCT               | ION PER YI | EAR         |             |
|-------------------------------|------------|-------------|-------------|
| Year                          | 2009       | 2010        | 2011        |
| Date from                     |            | 13 Sep 2010 | 01 Jan 2011 |
| Date to                       |            | 31 Dec 2010 | 21 Aug 2011 |
| Nitric Acid Production        |            | 36 738      | 72 938      |
| Emission Reduction            |            | 89 516      | 177 721     |
| ER_YR = ER * NAP_P_YR / NAP_P |            |             |             |

Baseline emission factor established for the Line 1 during baseline measurement carried from 14/03/2008 through 21/10/2008 is 9.63 kgN<sub>2</sub>O/tHNO<sub>3</sub>.

Project emission factor during the second project campaign after installation of secondary catalysts on Line 1, which started on 13/09/2010 and went through 21/08/2011 with secondary catalyst installed and commissioned on 30/10/2008, is 1.77 kgN<sub>2</sub>O/tHNO<sub>3</sub>.

3

During the project campaign 109 676 tonnes of nitric acid was produced.



## 2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide ( $N_2O$ ) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary  $N_2O$  reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 1 emission reductions including information on baseline emission factor setting for the Line 1.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.



## 3. BASELINE SETTING

Baseline emission factor for line 1 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 1 has been carried out from 14/03/2008 through 21/10/2008.

N<sub>2</sub>O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N<sub>2</sub>O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of  $N_2O$  concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N<sub>2</sub>O concentration of stack gas (NCSG))

The average mass of  $N_2O$  emissions per hour is estimated as product of the NCSG and VSG. The  $N_2O$  emissions per campaign are estimates product of  $N_2O$  emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average  $N_2O$  emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of  $N_2O$  emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The  $N_2O$  emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:



| Variable           | Definition                                                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $EF_BL$            | Baseline N <sub>2</sub> O emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                                             |
| $BE_{BC}$          | Total N <sub>2</sub> O emissions during the baseline campaign (tN <sub>2</sub> O)                                             |
| NCSG <sub>BC</sub> | Mean concentration of $N_2O$ in the stack gas during the baseline campaign $(mgN_2O/m^3)$                                     |
| $OH_{BC}$          | Operating hours of the baseline campaign (h)                                                                                  |
| VSG <sub>BC</sub>  | Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)                                              |
| $NAP_{BC}$         | Nitric acid production during the baseline campaign (tHNO <sub>3</sub> )                                                      |
| UNC                | Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment. |

# 3.1 Measurement procedure for N<sub>2</sub>O concentration and tail gas volume flow

#### 3.1.1 Tail gas N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 1 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4 $^{\circ}$ C), so N<sub>2</sub>O concentration is measured on a dry basis.

 $N_2O$  concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis.

 $N_2O$  concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

## 3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# 3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline  $N_2O$  emission factor may be outside the permitted range or limit corresponding to normal operating conditions.  $N_2O$  baseline data measured during hours



where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

# 3.3 Historic Campaign Length

The average historic campaign length ( $CL_{normal}$ ) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.



## 4. PROJECT EMISSIONS

During the first project campaign on line 1 the tail gas volume flow in the stack of the nitric acid plant as well as  $N_2O$  concentration have been measured on the continuous basis.

# 4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for  $N_2O$  concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

#### where:

| variable | Definition                                                                                   |
|----------|----------------------------------------------------------------------------------------------|
| VSG      | Mean stack gas volume flow rate for the project campaign (m <sup>3</sup> /h)                 |
| NCSG     | Mean concentration of $N_2O$ in the stack gas for the project campaign $(mgN_2O/m^3)$        |
| $PE_n$   | Total N <sub>2</sub> O emissions of the n <sup>th</sup> project campaign (tN <sub>2</sub> O) |
| OH       | Is the number of hours of operation in the specific monitoring period (h)                    |

# 4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# 4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

8

# 4.3 Project Campaign Length



Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

# 4.4 Leakage

No leakage calculation is required.

#### 4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of  $N_2O$ :

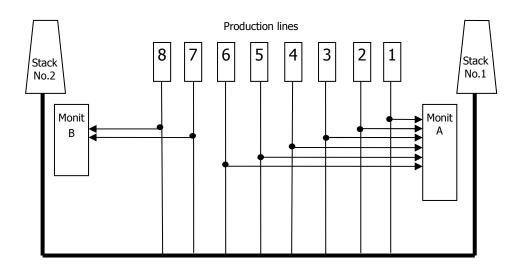
$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

#### Where:

| Variable | Definition                                                                        |
|----------|-----------------------------------------------------------------------------------|
| ER       | Emission reductions of the project for the specific campaign (tCO <sub>2</sub> e) |
| NAP      | Nitric acid production for the project campaign (tHNO <sub>3</sub> ). The maximum |
|          | value of NAP shall not exceed the design capacity.                                |
| EFBL     | Baseline emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                  |
| EFP      | Emissions factor used to calculate the emissions from this particular             |
|          | campaign (i.e. the higher of EF <sub>ma,n</sub> and EF <sub>n</sub> )             |

9




## 5. MONITORING PLAN

#### Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of  $N_2O$  from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

#### Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.



Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions.  $N_2O$  concentration in the tail gas is measured by 3 switched concentration meters.

#### **Monitoring System architecture**

Methodology AM0034/Version 02 requires installation of an  $N_2O$  monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of  $N_2O$ .



But tail gas  $N_2O$  concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of  $N_2O$  in t  $CO_2e$  per 1 tonne of  $HNO_3$  (100%), it is necessary to include also  $HNO_3$  measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only  $N_2O$  emissions and tail gas mass volume part of the MS.

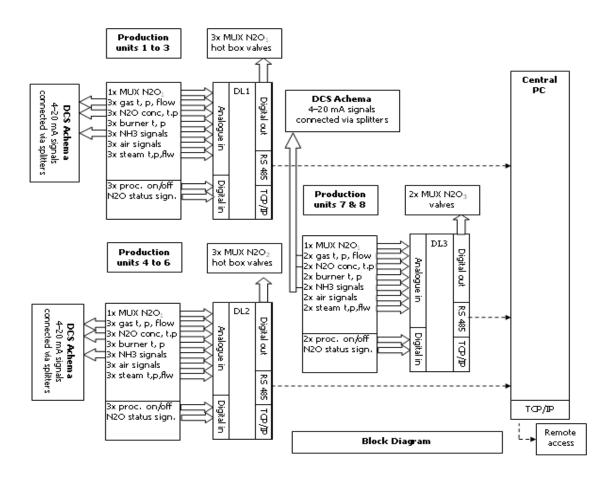
Monitoring System (MS) for purpose of this monitoring plan means:

#### monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

#### nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature


and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N<sub>2</sub>O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

11





#### N<sub>2</sub>O automated measurement system

Main purpose of the  $N_2O$  automated measurement system (AMS) is to measure total mass of  $N_2O$  emitted during particular campaigns (both baseline and project). In order of calculation of total mass of  $N_2O$  emitted during particular campaign it is necessary to measure on an extractive basis the  $N_2O$  concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

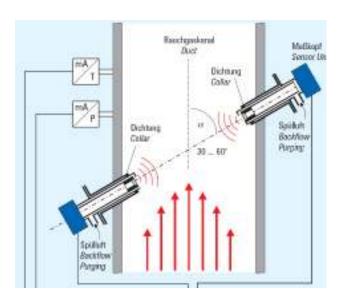
#### N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so  $N_2O$  concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail



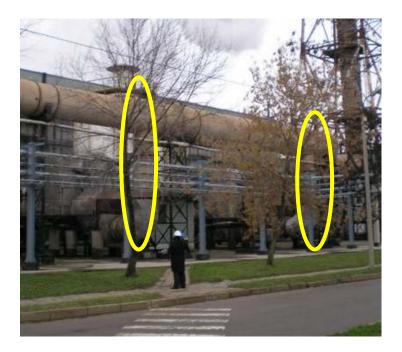
gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N<sub>2</sub>O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

N<sub>2</sub>O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

#### Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.



The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

13





Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

#### Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow N2O\*(273.15/(273.15+Temp))\*(Press/101.325)\*((100-Humi)/100)

where Humi (water content)=

(Flow\_steam\*1.2436)/(Flow\_N2O\*(273.15/(273.15+Temp))\*(Press/101.325))\*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow\_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.



Achema measures steam flow in kg/h using formula Q=C\*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

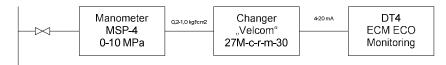
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

#### EN14181 compliance

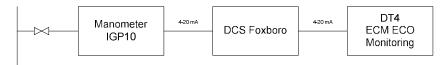
As required by the AM0034/Version 02 methodology the  $N_2O$  automated measurement system (AMS) complies with requirements of the technical norm EN14181.  $N_2O$  AMS consists from the  $N_2O$  concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the  $N_2O$  measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

## **Operating conditions**

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


15

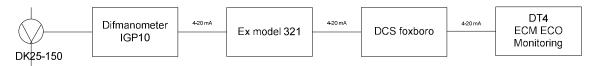
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



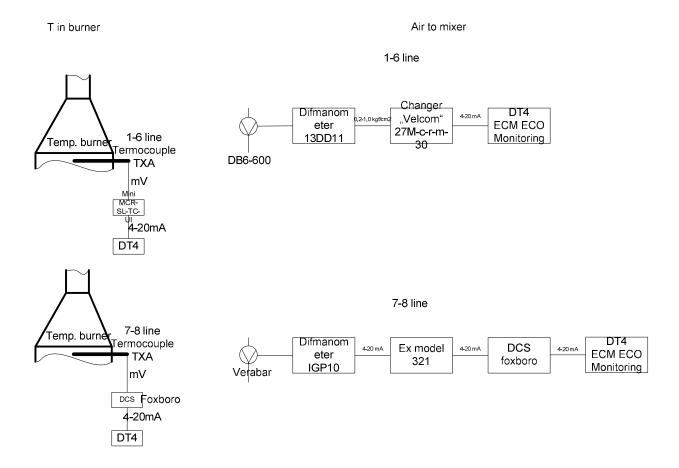

All these parameters are measured by the plant monitoring system as presented on diagrams below:

#### P in mixer 1-6 line




#### P in mixer 7-8 line




#### NH3 to mixer 1-6 line



#### NH3 to mixer 7-8 line







Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

#### Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.







The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

#### PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

18



After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 27/11/2007 and ending on 29/07/2008 project uses HNO<sub>3</sub> concentration data provided by the laboratory measurements.

© 2008, Vertis Finance

19



# 6. QAL 2 CALIBRATION ADJUSTMENTS

# 6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA
Y is the value of the parameter being objective of the measurement
a is a constant of the regression Line
b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old



This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions ( $0^{\circ}$  C, 1 atm.).

# 6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM\_0034.

## 6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in  $mgN_2O/m_3$ . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

## 6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

# 6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

21



## 7. EMISSION REDUCTION CALCULATIONS

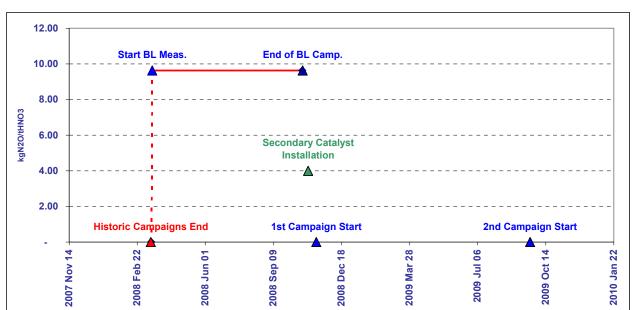
Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was  $65 \text{ tHNO}_3$  and time duration was on average 261 days. Table contains also information on suppliers of primary catalysts for the line 1.

Line **ACHEMA UKL-1** Production Start End Days Production per Primary Catalyst Composition Historic Campaigns 1 t HNO3 61 581 29 Jul 2004 26 Apr 2005 271 227 Johnson Matthey Heraeus 2 t HNO3 29 Apr 2005 24 Oct 2005 178 N/A \* 3 t HNO3 58 648 24 Oct 2005 20 Sep 2006 331 177 Johnson Matthey N/A \* N/A \* 4 t HNO3 65 266 21 Sep 2006 24 Jul 2007 306 213 Umicore Johnson Matthey 76 351 07 Aug 2007 N/A 5 t HNO3 13 Mar 2008 219 349 Average HNO3 production t HNO3 65 461 261 251 \* Confidential but available for the verification Project Campaigns BL t HNO3 60 691 14 Mar 2008 21 Oct 2008 221 275 Johnson Matthey 13 Sep 2010 21 Aug 2011 PL t HNO3 109 676 343

T 2 Historic campaigns

The project campaign production value of 109 676 tHNO3 was higher than historic nitric acid production set at level of 65 461 tHNO3.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.


T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 14/03/2008 and continued through 21/10/2008 when the  $60\,691\,$  tHNO $_3$  nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO $_3$ .

#### T 3 Baseline campaign length

22

| ACHEMA UKL-1                              | Historic<br>Campaings End | Start of Baseline<br>Measurement | End of Baseline<br>Measurement NCSG | End of Baseline<br>Measurement | End of Baseline<br>Campaign |
|-------------------------------------------|---------------------------|----------------------------------|-------------------------------------|--------------------------------|-----------------------------|
| Dates<br>Baseline Factor kgN2O/tHNO3      | 2008 Mar 13               | 2008 Mar 14                      | 2008 Oct 21<br>9.63                 | 2008 Oct 21<br>9.63            | 2008 Oct 22<br>9.63         |
| Production tHNO3 Per Day Production tHNO3 | 250.8                     | -                                | 60 691                              | 60 691                         | -                           |
| Baseline less Historic Production         | (4 77 0.2)                |                                  |                                     |                                |                             |
| Baseline less Historic Days               | (19.0)                    |                                  |                                     |                                |                             |





# C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 1 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 14/03/2008 through 21/10/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N<sub>2</sub>O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and  $N_2$ O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least  $600^{\circ}$ C occurred. Calculated baseline N2O emissions were 620 tN<sub>2</sub>O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 5.670%, which is further modified by an uncertainty of 0.089% due to under-sampling. As a result we have arrived to the baseline emission factor of  $9.63~kgN_2O/tHNO_3$ .



Table T 5 shows the calculation of the project emission factor on Line 1 during the project campaign. Project campaign started on 13/09/2010 and went through 21/08/2011.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of  $N_2O$  emissions ( $PE_n$ ) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of  $N_2O$  emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.77 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# T 4 Baseline emission factor

| BASELINEEM                                                  | EEMISS | ION FACTOR  |                           |                      |                     |                      |                    |                          |                       |                     |                           |
|-------------------------------------------------------------|--------|-------------|---------------------------|----------------------|---------------------|----------------------|--------------------|--------------------------|-----------------------|---------------------|---------------------------|
| Param                                                       | _      | <u>ا</u> ق  | Nitric Acid<br>Production | N2O<br>Concentration | Gas Volume<br>Flow  | Ammonia<br>Flow Rate | Ammonia<br>to Air  | Oxidation<br>Temperature | Oxidation<br>Pressure | AMS in<br>Operation | Nitric Acid<br>Production |
| 3                                                           | Code   | ОН          | NAP<br>t/h                | NCSG<br>mg N2O/Nm3   | VSG<br>Nm3/h        | AFR<br>Nm3/h         | Ratio<br>AIFR<br>% | OT<br>°C                 | OP<br>kPa             | h                   | NCSG<br>NAP<br>th         |
| Elimination of extreme values                               |        |             |                           | •                    |                     |                      |                    |                          |                       |                     |                           |
| Lower limit<br>Upper Limit                                  |        |             | 0<br>50.00                | 3 000                | 0<br>120 000        | 0<br>10 000          | - 0<br>20.00       | 50<br>1 200              | 0<br>1 000            |                     | 0 50                      |
| Raw Data Measured Range                                     |        |             |                           |                      |                     |                      |                    |                          |                       |                     |                           |
| Count                                                       |        | 4 933       | 4 999                     | 4 989                | 4 921               | 5 0 5 4              | 5 028              | 5 275                    | 5 275                 | 4 4 8 3             | 4 999                     |
| as % of Dataset                                             |        | %86         | 94%                       | 94%                  | %86                 | %96                  | %96                | %66                      | %66                   | 85%                 | 94%                       |
| Minimum                                                     |        |             | ' !                       | 0                    | 80                  | 1246                 | '!                 | 0                        | 0                     |                     |                           |
| Maximum                                                     |        |             | 15.28                     | 2 401                | 82 164              | 6281                 | 17.17              | 902                      | 605                   |                     | 15                        |
| Standard Deviation<br>Total                                 |        |             | 3.42<br>60 691            | 261                  | 11 066              | 194                  | 1.04               | 162                      | 4 4                   |                     | 60 691                    |
|                                                             |        |             |                           |                      |                     |                      |                    |                          |                       |                     |                           |
| N2O Emissions ( VSG * NCSG * OH) Emission Factor            |        | 602<br>9.35 | t N2O<br>kgN2O / tHNO3    |                      |                     |                      |                    |                          |                       |                     |                           |
| Permitted Range                                             |        |             | •                         |                      |                     |                      |                    |                          |                       |                     |                           |
| Minimum                                                     |        |             |                           |                      |                     | 4 500                | 0 11 70            | 880                      | 0                     |                     |                           |
| Data within the normitted range                             |        |             |                           |                      |                     |                      |                    |                          | 8                     |                     |                           |
|                                                             |        | 4 626       |                           | 4 607                | 1001                |                      |                    |                          |                       | 7                   |                           |
| South as % of Operating Hours                               |        | 100%        |                           | 4 62/<br>64%         | 4 627<br>94%        |                      |                    |                          |                       | 4483                |                           |
| Minimum                                                     |        |             |                           | 219                  | 3 822               |                      |                    |                          |                       |                     |                           |
| Maximum                                                     |        |             |                           | 2 401                | 227 671             |                      |                    |                          |                       |                     |                           |
| Mean                                                        |        |             |                           | 1 752                | 69 348              |                      |                    |                          |                       |                     |                           |
| Standard Deviation                                          |        |             |                           | 318                  | 3 984               |                      |                    |                          |                       |                     |                           |
| N2O Emissions (VSG * NCSG * OH)<br>Emission Factor          |        | 599<br>9.32 | t N2O<br>kgN2O / tHNO3    |                      |                     |                      |                    |                          |                       |                     |                           |
| Data within the confidence interval                         |        |             |                           |                      |                     |                      |                    |                          |                       |                     |                           |
| 95% Confidence interval                                     |        |             |                           |                      |                     |                      |                    |                          |                       |                     |                           |
| Lower bound<br>Upper bound                                  |        |             |                           | 1 130<br>2 375       | 61 538<br>77 158    |                      |                    |                          |                       |                     |                           |
| ti oʻ                                                       |        |             |                           | 7 353                | 7.840               |                      |                    |                          |                       |                     |                           |
| as % of Operating Hours                                     |        |             |                           | %%<br>t              | 4 0 0               |                      |                    |                          |                       |                     |                           |
| Minimum                                                     |        |             |                           | 1 320                | 65 098              |                      |                    |                          |                       |                     |                           |
| Maximum                                                     |        |             |                           | 2 374                | 73 692              |                      |                    |                          |                       |                     |                           |
| Mean<br>Standard Deviation                                  |        |             |                           | 1 808<br>218         | 69 4 7 4<br>1 2 1 4 |                      |                    |                          |                       |                     |                           |
|                                                             |        |             |                           |                      |                     |                      |                    |                          |                       |                     |                           |
| N2O Emissions ( VSG * NCSG * OH)<br>Emission Factor (EF_BL) |        | 620<br>9.63 | t N2O<br>kgN2O / tHNO3    |                      |                     |                      |                    |                          |                       |                     |                           |
|                                                             |        |             |                           |                      |                     |                      |                    |                          |                       |                     |                           |



# T 5 Project emission factor

|                                                                              |           |                 | PROJECT EI                | PROJECT EMISSION FACTOR |                    |                      |                    |                          |                       |
|------------------------------------------------------------------------------|-----------|-----------------|---------------------------|-------------------------|--------------------|----------------------|--------------------|--------------------------|-----------------------|
|                                                                              | Parameter | Operating Hours | Nitric Acid<br>Production | N2O<br>Concentration    | Gas Volume<br>Flow | Ammonia<br>Flow Rate | Ammonia<br>to Air  | Oxidation<br>Temperature | Oxidation<br>Pressure |
|                                                                              | Code      | OH<br>h         | NAP<br>t/h                | NCSG<br>mg N2O/Nm3      | VSG<br>Nm3/h       | AFR<br>Nm3/h         | Ratio<br>AIFR<br>% | OT<br>°C                 | ОР                    |
| Elimination of extreme values                                                |           |                 |                           |                         |                    |                      |                    |                          |                       |
| Lower limit<br>Upper Limit                                                   |           |                 | 0 20.00                   | 3 000                   | 0<br>120 000       | 0<br>10 000          | - 0 - 20.00        | 50<br>1 200              | 0<br>1 000            |
| Raw Data Measured Range                                                      |           |                 |                           |                         |                    |                      |                    |                          |                       |
| Count                                                                        |           | 5 461           | 7 859                     | 7 298                   | 7 318              | 8 232                | 7 461              | 8 204                    | 8 186                 |
| as % of Dataset<br>Minimum                                                   |           | %00             | 95%<br>0.69               | 09%<br>2                | 69%<br>55 734      | %001                 | % e                | (0)                      | %66<br>0              |
| Maximum                                                                      |           |                 | 17.36                     | 649                     | 90 166             | 8 000                | 19.69              | 919                      | 693                   |
| Mean<br>Standard Deviation<br>Total                                          |           |                 | 13.96<br>3.20<br>109 676  | 395                     | 73 424<br>3 758    | 5 396<br>1 542       | 10.44<br>0.55      | 811<br>255               | 255<br>44<br>44       |
|                                                                              |           |                 |                           |                         |                    |                      |                    |                          |                       |
| N2O Emissions ( VSG * NCSG * OH)<br>Emission Factor                          |           | 159<br>1.45     | t N2O<br>kgN2O / tHNO3    |                         |                    |                      |                    |                          |                       |
| Data within the confidence interval                                          |           |                 |                           |                         |                    |                      |                    |                          |                       |
| 95% Confidence interval                                                      |           |                 |                           |                         |                    |                      |                    |                          |                       |
| Lower bound                                                                  |           |                 |                           | 277                     | 66 057             |                      |                    |                          |                       |
| Upper bound                                                                  |           |                 |                           | 514                     | 80 790             |                      |                    |                          |                       |
| Count                                                                        |           |                 |                           | 4 590                   | 4 903              |                      |                    |                          |                       |
| as % of Operating Hours                                                      |           |                 |                           | 84%                     | %06                |                      |                    |                          |                       |
| Maximum                                                                      |           |                 |                           | 514                     | 80 784             |                      |                    |                          |                       |
| Mean<br>Standard Deviation                                                   |           |                 |                           | 397                     | 72 603<br>3 305    |                      |                    |                          |                       |
|                                                                              |           |                 |                           |                         |                    |                      |                    |                          |                       |
| N2O Emissions ( VSG * NCSG * OH) Actual Project Emission Factor (EF PActual) |           | 157             | t N2O<br>kaN2O / tHNO3    |                         |                    |                      |                    |                          |                       |
| Abatement Ratio                                                              |           | 85.1%           |                           |                         |                    |                      |                    |                          |                       |
| Moving Average Emission Factor Correction                                    | 4         | Actual Factors  | Moving Average Rule       | ule                     |                    |                      |                    |                          |                       |
|                                                                              |           | 2.10            | 2.10                      |                         |                    |                      |                    |                          |                       |
|                                                                              | 1 m       | <u>2</u>        | 1.1.1                     |                         |                    |                      |                    |                          |                       |
|                                                                              | 4 10      | 1 1             |                           |                         |                    |                      |                    |                          |                       |
|                                                                              | •         |                 |                           |                         |                    |                      |                    |                          |                       |
| Project Emission Factor (EF_P)                                               |           | 1.77            | kgN2O / tHNO3             |                         |                    |                      |                    |                          |                       |
| Abatement Ratio                                                              |           | 81.7%           |                           |                         |                    |                      |                    |                          |                       |
|                                                                              |           |                 |                           |                         |                    |                      |                    |                          |                       |

# **MONITORING REPORT**

PROJECT: ACHEMA UKL nitric acid plant N<sub>2</sub>O abatement project

LINE: Line 2

**MONITORING PERIOD:** 

FROM: 13/05/2011

TO: 08/12/2011

# Prepared by:



**VERTIS FINANCE** 

www.vertisfinance.com



# **Table of Contents**

| 1. |                   | EXECUTIVE SUMMARY                                                             | 3             |
|----|-------------------|-------------------------------------------------------------------------------|---------------|
| 2. |                   | DESCRIPTION OF THE PROJECT ACTIVITY                                           | 4             |
| 3. |                   | BASELINE SETTING                                                              | 5             |
|    | 3.1<br>3.1<br>3.1 |                                                                               | <b>6</b><br>6 |
|    | 3.2               | PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT              | 6             |
|    | 3.3               | HISTORIC CAMPAIGN LENGTH                                                      | 7             |
| 4. | 4.1               | PROJECT EMISSIONS  1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR | <b>8</b>      |
|    | 4.1               | 2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR                              | 8             |
|    | 4.2               | MINIMUM PROJECT EMISSION FACTOR                                               | 8             |
|    | 4.3               | PROJECT CAMPAIGN LENGTH                                                       | 8             |
|    | 4.4               | LEAKAGE                                                                       | 9             |
|    | 4.5               | EMISSION REDUCTIONS                                                           | 9             |
| 5. |                   | MONITORING PLAN                                                               | 10            |
| 6. |                   | QAL 2 CALIBRATION ADJUSTMENTS                                                 | 20            |
|    | 6.1               | APPLIED PRINCIPLE                                                             | 20            |
|    | 6.2               | STACK GAS VOLUME FLOW                                                         | 21            |
|    | 6.3               | NITRIC ACID CONCENTRATION IN STACK GAS                                        | 21            |
|    | 6.4               | STACK GAS TEMPERATURE                                                         | 21            |
|    | 6.5               | STACK GAS PRESSURE                                                            | 21            |
| 7  |                   | EMISSION REDUCTION CALCUL ATIONS                                              | 22            |



## 1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 2 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the fifth project campaign on Line 2.

The first project campaign on Line 2 started on 30/05/2008. Secondary catalyst was installed on 07/11/2008. Total quantity of emission reductions generated during the fifth project period from 13/05/2011 through 08/12/2011 on Line 2 is **150 047 ERUs**.

#### T 1 Emission reduction calculations

| EMISSIC                                            | ON REDUCTION |         |             |
|----------------------------------------------------|--------------|---------|-------------|
| Baseline Emission Factor                           | EF_BL        | 9.51    | kgN2O/tHNO3 |
| Project Campaign Emission Factor                   | EF_P         | 1.75    | kgN2O/tHNO3 |
| Nitric Acid Produced in the Baseline Campaign      | NAP_BL       | 60 767  | tHNO3       |
| Nitric Acid Produced in the NCSG Baseline Campaign | NAP_BL_NCSG  | 60 767  | tHNO3       |
| Nitric Acid Produced in the Project Campaign       | NAP_P        | 62 374  | tHNO3       |
| GWP                                                | GWP          | 310     | tCO2e/tN2O  |
| Emission Reduction                                 | ER           | 150 047 | tCOe        |
| ER=(EF_BL-EF_P)*NAP_P*GWP/1000                     |              |         |             |
| Abatement Ratio                                    |              | 84.6%   | )           |

| EMISSION REDUCT               | TION PER YE | AR   |             |
|-------------------------------|-------------|------|-------------|
| Year                          | 2009        | 2010 | 2011        |
| Date From                     |             |      | 13 May 2011 |
| Date To                       |             |      | 08 Dec 2011 |
| Nitric Acid Production        |             |      | 62 374      |
| Emission Reduction            |             |      | 150 047     |
| ER_YR = ER * NAP_P_YR / NAP_P |             |      |             |

Baseline emission factor established for the Line 2 during baseline measurement carried from 09/11/2007 through 20/05/2008 is 9.51 kgN $_2$ O/tHNO $_3$ .

Project emission factor during the fifth project campaign after installation of secondary catalysts on Line 2, which started on 13/05/2011 and went through 08/12/2011 with secondary catalyst installed and commissioned on 07/11/2008, is 1.75 kgN<sub>2</sub>O/tHNO<sub>3</sub>.

3

During the project campaign 62 374 tonnes of nitric acid was produced.



## 2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide ( $N_2O$ ) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary  $N_2O$  reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 2 emission reductions including information on baseline emission factor setting for the Line 2.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.



## 3. BASELINE SETTING

Baseline emission factor for line 2 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 2 has been carried out from 09/11/2007 through 20/05/2008.

N<sub>2</sub>O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N<sub>2</sub>O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of  $N_2O$  concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N<sub>2</sub>O concentration of stack gas (NCSG))

The average mass of  $N_2O$  emissions per hour is estimated as product of the NCSG and VSG. The  $N_2O$  emissions per campaign are estimates product of  $N_2O$  emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average  $N_2O$  emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of  $N_2O$  emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The  $N_2O$  emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:



| Variable           | Definition                                                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $EF_BL$            | Baseline N <sub>2</sub> O emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                                             |
| $BE_{BC}$          | Total N <sub>2</sub> O emissions during the baseline campaign (tN <sub>2</sub> O)                                             |
| NCSG <sub>BC</sub> | Mean concentration of N <sub>2</sub> O in the stack gas during the baseline campaign (mgN <sub>2</sub> O/m <sup>3</sup> )     |
| $OH_{BC}$          | Operating hours of the baseline campaign (h)                                                                                  |
| VSG <sub>BC</sub>  | Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)                                              |
| $NAP_{BC}$         | Nitric acid production during the baseline campaign (tHNO <sub>3</sub> )                                                      |
| UNC                | Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment. |

# 3.1 Measurement procedure for N<sub>2</sub>O concentration and tail gas volume flow

#### 3.1.1 Tail gas N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 2 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4 $^{\circ}$ C), so N<sub>2</sub>O concentration is measured on a dry basis.

 $N_2O$  concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis.

N<sub>2</sub>O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

## 3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# 3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline  $N_2O$  emission factor may be outside the permitted range or limit corresponding to normal operating conditions.  $N_2O$  baseline data measured during hours



where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

# 3.3 Historic Campaign Length

The average historic campaign length ( $CL_{normal}$ ) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.



## 4. PROJECT EMISSIONS

During the first project campaign on line 2 the tail gas volume flow in the stack of the nitric acid plant as well as  $N_2O$  concentration have been measured on the continuous basis.

# 4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for  $N_2O$  concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

#### where:

| variable | Definition                                                                                   |
|----------|----------------------------------------------------------------------------------------------|
| VSG      | Mean stack gas volume flow rate for the project campaign (m <sup>3</sup> /h)                 |
| NCSG     | Mean concentration of $N_2O$ in the stack gas for the project campaign $(mgN_2O/m^3)$        |
| $PE_n$   | Total N <sub>2</sub> O emissions of the n <sup>th</sup> project campaign (tN <sub>2</sub> O) |
| OH       | Is the number of hours of operation in the specific monitoring period (h)                    |

# 4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# 4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

8

## 4.3 Project Campaign Length



Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

# 4.4 Leakage

No leakage calculation is required.

# 4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of  $N_2O$ :

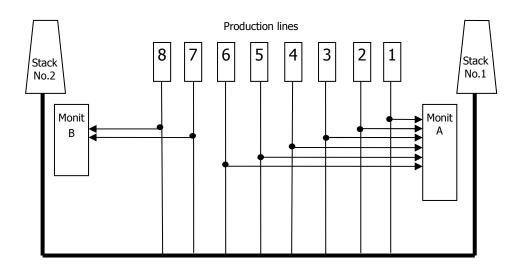
$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

#### Where:

| Variable | Definition                                                                        |
|----------|-----------------------------------------------------------------------------------|
| ER       | Emission reductions of the project for the specific campaign (tCO <sub>2</sub> e) |
| NAP      | Nitric acid production for the project campaign (tHNO <sub>3</sub> ). The maximum |
|          | value of NAP shall not exceed the design capacity.                                |
| EFBL     | Baseline emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                  |
| EFP      | Emissions factor used to calculate the emissions from this particular             |
|          | campaign (i.e. the higher of EF <sub>ma,n</sub> and EF <sub>n</sub> )             |

9




# 5. MONITORING PLAN

#### Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of  $N_2O$  from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

#### Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.



Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions.  $N_2O$  concentration in the tail gas is measured by 3 switched concentration meters.

#### **Monitoring System architecture**

Methodology AM0034/Version 02 requires installation of an  $N_2O$  monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of  $N_2O$ .



But tail gas  $N_2O$  concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of  $N_2O$  in t  $CO_2e$  per 1 tonne of  $HNO_3$  (100%), it is necessary to include also  $HNO_3$  measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only  $N_2O$  emissions and tail gas mass volume part of the MS.

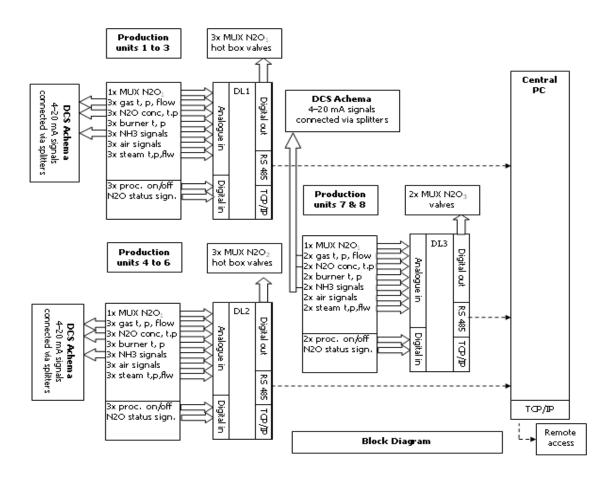
Monitoring System (MS) for purpose of this monitoring plan means:

# monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

#### nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature


and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N<sub>2</sub>O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

11





#### N<sub>2</sub>O automated measurement system

Main purpose of the  $N_2O$  automated measurement system (AMS) is to measure total mass of  $N_2O$  emitted during particular campaigns (both baseline and project). In order of calculation of total mass of  $N_2O$  emitted during particular campaign it is necessary to measure on an extractive basis the  $N_2O$  concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

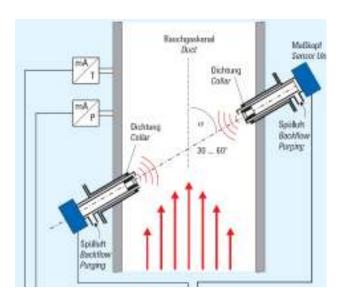
#### N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so  $N_2O$  concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail



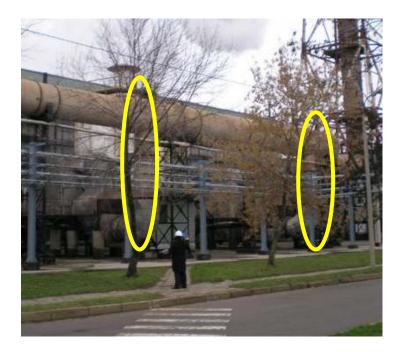
gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N<sub>2</sub>O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

N<sub>2</sub>O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.



The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

13





Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

### Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow N2O\*(273.15/(273.15+Temp))\*(Press/101.325)\*((100-Humi)/100)

where Humi (water content)=

(Flow\_steam\*1.2436)/(Flow\_N2O\*(273.15/(273.15+Temp))\*(Press/101.325))\*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow\_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.



Achema measures steam flow in kg/h using formula Q=C\*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

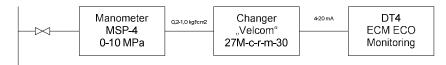
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

#### EN14181 compliance

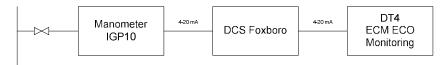
As required by the AM0034/Version 02 methodology the  $N_2O$  automated measurement system (AMS) complies with requirements of the technical norm EN14181.  $N_2O$  AMS consists from the  $N_2O$  concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the  $N_2O$  measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

# **Operating conditions**

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


15

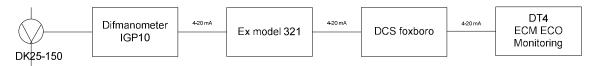
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



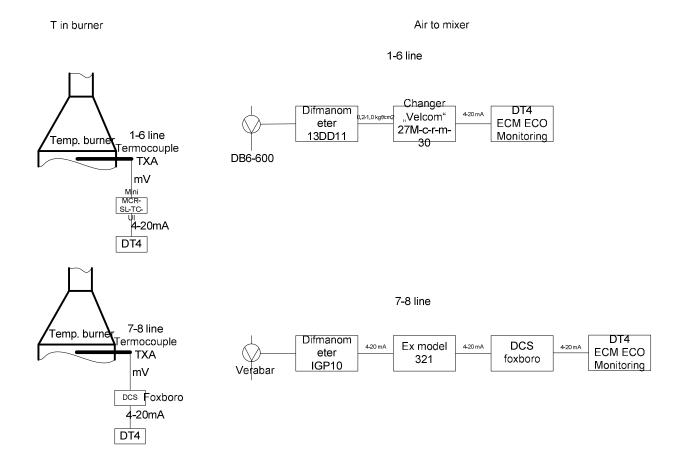

All these parameters are measured by the plant monitoring system as presented on diagrams below:

#### P in mixer 1-6 line




#### P in mixer 7-8 line




#### NH3 to mixer 1-6 line



#### NH3 to mixer 7-8 line







Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

# Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.







The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

#### PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

18



After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 08/11/2007 and ending on 29/07/2008 project uses HNO<sub>3</sub> concentration data provided by the laboratory measurements.

© 2008, Vertis Finance

19



# 6. QAL 2 CALIBRATION ADJUSTMENTS

# 6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA
Y is the value of the parameter being objective of the measurement
a is a constant of the regression Line
b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old



This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions ( $0^{\circ}$  C, 1 atm.).

# 6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM\_0034.

# 6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in  $mgN_2O/m_3$ . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

# 6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

# 6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

21



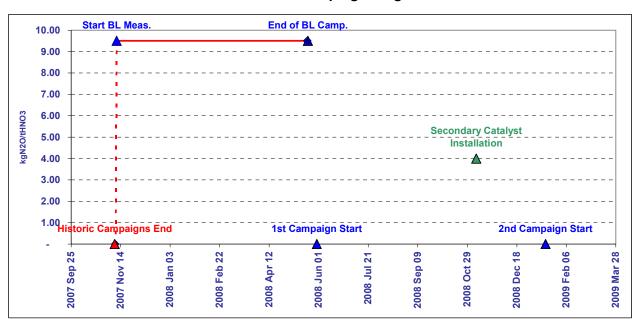
# 7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 62 Thom 3 and time duration was on average 239 days. Table contains also information on suppliers of primary catalysts for the line 2.

Line ACHEMA UKL-2 Production Start End Days Production per Primary Catalyst Composition Historic Campaigns 1 t HNO3 63 318 07 Jun 2004 26 Jan 2005 233 272 Heraeus 2 t HNO3 65 490 27 Jan 2005 21 Sep 2005 237 276 Umicore N/A \* 3 t HNO3 51 101 22 Sep 2005 10 Apr 2006 200 256 Heraeus N/A \* N/A \* 4 t HNO3 63 008 11 Apr 2006 24 Jan 2007 288 219 Heraeus Johnson Matthey 70 635 14 Mar 2007 N/A 5 t HNO3 08 Nov 2007 239 296 Average HNO3 production t HNO3 62 710 239 262 \* Confidential but available for the verification Project Campaigns BL t HNO3 60 767 09 Nov 2007 20 May 2008 193 315 Johnson Matthey PL t HNO3 62 374 13 May 2011 08 Dec 2011 209

T 2 Historic campaigns

The project campaign production value of 62 374 tHNO3 was lower than historic nitric acid production set at level of 62 710 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 09/11/2007 and continued through 20/05/2008 when the  $60~767~tHNO_3$  nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached -  $tHNO_3$ .

### T 3 Baseline campaign length

| ACHEMA UKL-2                      | Historic<br>Campaings End | Start of Baseline<br>Measurement | End of Baseline<br>Measurement NCSG | End of Baseline<br>Measurement | End of Baseline<br>Campaign |
|-----------------------------------|---------------------------|----------------------------------|-------------------------------------|--------------------------------|-----------------------------|
| Dates                             | 2007 Nov 08               | 2007 Nov 09                      | 2008 May 20                         | 2008 May 20                    | 2008 May 21                 |
| Baseline Factor kgN2O/tHNO3       | -                         | -                                | 9.51                                | 9.51                           | 9.51                        |
| Production tHNO3                  |                           | -                                | 60 767                              | 60 767                         | -                           |
| Per Day Production tHNO3          | 261.9                     |                                  |                                     |                                |                             |
| Baseline less Historic Production | (1 943.4)                 |                                  |                                     |                                |                             |
| Baseline less Historic Days       | (7.4)                     |                                  |                                     |                                |                             |





### C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 2 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 09/11/2007 through 20/05/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N<sub>2</sub>O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and  $N_2$ O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least  $600^{\circ}$ C occurred. Calculated baseline N2O emissions were 618 tN<sub>2</sub>O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 6.460%, which is further modified by an uncertainty of 0.087% due to under-sampling. As a result we have arrived to the baseline emission factor of  $9.51~kgN_2O/tHNO_3$ .



Table T 5 shows the calculation of the project emission factor on Line 2 during the project campaign. Project campaign started on 13/05/2011 and went through 08/12/2011.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of  $N_2O$  emissions ( $PE_n$ ) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of  $N_2O$  emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.75 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# T 4 Baseline emission factor

|                                                          | BASELINEEMISS | SION FACTOR |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
|----------------------------------------------------------|---------------|-------------|---------------------------------|----------------------|--------------------|----------------------|--------------------|--------------------------|-----------------------|---------------------|---------------------------|
|                                                          | Parameter     |             | Nitric Acid<br>Production       | N2O<br>Concentration | Gas Volume<br>Flow | Ammonia<br>Flow Rate | Ammonia<br>to Air  | Oxidation<br>Temperature | Oxidation<br>Pressure | AMS in<br>Operation | Nitric Acid<br>Production |
|                                                          | Code          | OH<br>u     | NAP<br>t/h                      | NCSG<br>mg N2O/Nm3   | VSG<br>Nm3/h       | AFR<br>Nm3/h         | Katio<br>AIFR<br>% | oT<br>°C                 | OP<br>kPa             | h                   | NCSG<br>NAP<br>t/h        |
| Elimination of extreme values                            |               |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Lower limit<br>Upper Limit                               |               |             | 0 20.00                         | 3 000                | 0<br>120 000       | 0<br>10 000          | - 0<br>20.00       | 50<br>1 200              | 0<br>1 000            |                     | 0                         |
| Raw Data Measured Range                                  |               |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Count                                                    |               | 4 2 5 4     | 4 633                           | 4 353                | 4 216              | 4 296                | 4 277              | 4 606                    | 4 576                 | 3828                | 4 633                     |
| as % of Dataset                                          |               | 95%         | 100%                            | 94%                  | 91%                | 83%                  | %26                | %66                      | %66                   | 83%                 | 100%                      |
| Minimum                                                  |               |             | . !                             | 0                    | 140                | 2 069                |                    | 42                       | 2                     |                     | •                         |
| Maximum                                                  |               |             | 15.73                           | 2 356                | 106 649            | 6243                 | 18.13              | 1 100                    | 679                   |                     | 16                        |
| ivicari<br>Standard Deviation<br>Total                   |               |             | 3.81<br>3.81<br>60.767          | 323                  | 18 036             | 263                  | 1.67               | 207                      | 45                    |                     | 60 767                    |
| 110 + 00014 + 0017                                       |               | i           |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| NZO Emissions ( VSG * NCSG * OH)<br>Emission Factor      |               | 561<br>8.64 | 561 t NZO<br>8.64 kgN2O / tHNO3 |                      |                    |                      |                    |                          |                       |                     |                           |
| Permitted Range                                          |               |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Minimum                                                  |               |             |                                 |                      |                    | 4 500                | 0                  | 880                      | 0                     |                     |                           |
| Maximum                                                  |               |             |                                 |                      |                    | 7 500                | 11.70              | 910                      | 800                   |                     |                           |
| Data within the permitted range                          |               |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Count                                                    |               | 3 7 1 0     |                                 | 3 710                | 3 710              |                      |                    |                          |                       | 3828                |                           |
| as % of Operating Hours                                  |               | 87%         |                                 | %28                  | 82%                |                      |                    |                          |                       | %06                 |                           |
| Minimum                                                  |               |             |                                 | 465                  | 10 197             |                      |                    |                          |                       |                     |                           |
| Maximum                                                  |               |             |                                 | 2 356                | 105 388            |                      |                    |                          |                       |                     |                           |
| Mean<br>Standard Deviation                               |               |             |                                 | 1 588                | 85 591<br>14 825   |                      |                    |                          |                       |                     |                           |
|                                                          |               |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| N2O Emissions ( VSG * NCSG * OH) Emission Factor         |               | 578<br>8.90 | t N2O<br>kgN2O / tHNO3          |                      |                    |                      |                    |                          |                       |                     |                           |
| Data within the confidence interval                      |               |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| 95% Confidence interval                                  |               |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Lower bound                                              |               |             |                                 | 1 014                | 56 534             |                      |                    |                          |                       |                     |                           |
|                                                          |               |             |                                 | 70. 7                | )<br>†<br>†        |                      |                    |                          |                       |                     |                           |
| Count                                                    |               |             |                                 | 3 430                | 3 604              |                      |                    |                          |                       |                     |                           |
| as % of Operating Hours                                  |               |             |                                 | 81%                  | 85%                |                      |                    |                          |                       |                     |                           |
| Minimum                                                  |               |             |                                 | 7 156                | 7 / 416<br>105 388 |                      |                    |                          |                       |                     |                           |
| Mean                                                     |               |             |                                 | 1 654                | 87 784             |                      |                    |                          |                       |                     |                           |
| Standard Deviation                                       |               |             |                                 | 173                  | 7 591              |                      |                    |                          |                       |                     |                           |
| ALC * COOK * COX / Considering COM                       |               | 0.70        | 0014.4                          |                      |                    |                      |                    |                          |                       |                     |                           |
| NZO Emissions ( VSG * NCSG * OH) Emission Factor (EF_BL) |               | 618<br>9.51 | t N2O<br>kgN2O / tHNO3          |                      |                    |                      |                    |                          |                       |                     |                           |
|                                                          |               |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |



# T 5 Project emission factor

|                                                  |              |                     | PROJECT EI                  | PROJECT EMISSION FACTOR |                    |                      |                    |                          |                       |
|--------------------------------------------------|--------------|---------------------|-----------------------------|-------------------------|--------------------|----------------------|--------------------|--------------------------|-----------------------|
|                                                  | Parameter    | Operating Hours     | Nitric Acid<br>Production   | N2O<br>Concentration    | Gas Volume<br>Flow | Ammonia<br>Flow Rate | Ammonia<br>to Air  | Oxidation<br>Temperature | Oxidation<br>Pressure |
|                                                  | Code<br>Unit | OH<br>u             | NAP<br>t/h                  | NCSG<br>mg N2O/Nm3      | VSG<br>Nm3/h       | AFR<br>Nm3/h         | Ratio<br>AIFR<br>% | OT<br>°C                 | OP<br>kPa             |
| Elimination of extreme values                    |              |                     |                             |                         |                    |                      |                    |                          |                       |
| Lower limit<br>Upper Limit                       |              |                     | 0 20.00                     | 3 000                   | 0<br>120 000       | 0<br>10 000          | - 0 20.00          | 50<br>1 200              | 1 000                 |
| Raw Data Measured Range                          |              |                     |                             |                         |                    |                      |                    |                          |                       |
| Count as % of Dataset                            |              | <b>4 231</b><br>84% | 4814                        | 4 177                   | 4 151              | 4 898                | 4 523              | 4 985                    | 4 985                 |
| Minimum                                          |              |                     | 3.34                        | 140                     | 55 634             | 277                  |                    | 20                       | 2 2 2                 |
| Maximum                                          |              |                     | 18.07                       | 598                     | 86 741             | 6 619                |                    | 1 100                    | 673                   |
| wean<br>Standard Deviation<br>Total              |              |                     | 12.90<br>3.37<br>62 374     | 53                      | 2 2 2 3 9          | 5 203<br>1 663       | 0.49               | 299                      | 378<br>116            |
|                                                  |              |                     | Н                           |                         |                    |                      |                    |                          |                       |
| N2O Emissions ( VSG * NCSG * OH) Emission Factor |              | 92<br>1.47          | t N2O<br>kgN2O / tHNO3      |                         |                    |                      |                    |                          |                       |
| Data within the confidence interval              |              |                     |                             |                         |                    |                      |                    |                          |                       |
| 95% Confidence interval                          |              |                     |                             |                         |                    |                      |                    |                          |                       |
| Lower bound                                      |              |                     |                             | 195                     | 68 481             |                      |                    |                          |                       |
| Upper bound                                      |              |                     |                             | 401                     | 77 259             |                      |                    |                          |                       |
| Count                                            |              |                     |                             | 3 677                   | 3 946              |                      |                    |                          |                       |
| as % of Operating Hours                          |              |                     |                             | 87%                     | 93%                |                      |                    |                          |                       |
| Maximum                                          |              |                     |                             | 193                     | 77 255             |                      |                    |                          |                       |
| Mean Mayiation                                   |              |                     |                             | 297                     | 72 776             |                      |                    |                          |                       |
|                                                  |              |                     |                             | ?                       | 4                  |                      |                    |                          |                       |
| N2O Emissions ( VSG * NCSG * OH)                 |              | 92                  | t N2O                       |                         |                    |                      |                    |                          |                       |
| Abatement Ratio                                  |              | 84.6%               |                             |                         |                    |                      |                    |                          |                       |
| Moving Average Emission Factor Correction        |              | Actual Factors      | Moving Average Rule         | ule                     |                    |                      |                    |                          |                       |
| )<br>)                                           |              | 1                   | 1.80                        |                         |                    |                      |                    |                          |                       |
|                                                  | 7 6          | 1.84                | 1.84                        |                         |                    |                      |                    |                          |                       |
|                                                  | ა 4          | 1.99                |                             |                         |                    |                      |                    |                          |                       |
|                                                  | r.           | 1.47                | 1.75                        |                         |                    |                      |                    |                          |                       |
|                                                  |              |                     |                             |                         |                    |                      |                    |                          |                       |
| Project Emission Factor (EF_P) Abatement Ratio   |              | 1.75                | 1.75 kgN2O / tHNO3<br>81.5% |                         |                    |                      |                    |                          |                       |
|                                                  |              | 200                 |                             |                         |                    |                      |                    |                          |                       |
|                                                  |              |                     |                             |                         |                    |                      |                    |                          |                       |

# **MONITORING REPORT**

PROJECT: ACHEMA UKL nitric acid plant N<sub>2</sub>O abatement project

LINE: Line 3

**MONITORING PERIOD:** 

FROM: 19/11/2010

TO: 25/08/2011

# Prepared by:



**VERTIS FINANCE** 

www.vertisfinance.com



# **Table of Contents**

| 1. |            | EXECUTIVE SUMMARY                                                             | 3             |
|----|------------|-------------------------------------------------------------------------------|---------------|
| 2. |            | DESCRIPTION OF THE PROJECT ACTIVITY                                           | 4             |
| 3. |            | BASELINE SETTING                                                              | 5             |
|    | 3.1<br>3.1 |                                                                               | <b>6</b><br>6 |
|    | 3.2        | PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT              | 6             |
|    | 3.3        | HISTORIC CAMPAIGN LENGTH                                                      | 7             |
| 4. | 4.1        | PROJECT EMISSIONS  1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR | <b>8</b>      |
|    | 4.1        | 2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR                              | 8             |
|    | 4.2        | MINIMUM PROJECT EMISSION FACTOR                                               | 8             |
|    | 4.3        | PROJECT CAMPAIGN LENGTH                                                       | 8             |
|    | 4.4        | LEAKAGE                                                                       | 9             |
|    | 4.5        | EMISSION REDUCTIONS                                                           | 9             |
| 5. |            | MONITORING PLAN                                                               | 10            |
| 6. |            | QAL 2 CALIBRATION ADJUSTMENTS                                                 | 20            |
|    | 6.1        | APPLIED PRINCIPLE                                                             | 20            |
|    | 6.2        | STACK GAS VOLUME FLOW                                                         | 21            |
|    | 6.3        | NITRIC ACID CONCENTRATION IN STACK GAS                                        | 21            |
|    | 6.4        | STACK GAS TEMPERATURE                                                         | 21            |
|    | 6.5        | STACK GAS PRESSURE                                                            | 21            |
| 7  |            | EMISSION REDUCTION CALCULATIONS                                               | 22            |



# 1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 3 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the fourth project campaign on Line 3.

The first campaign on Line 3 started on 27/08/2008. Secondary catalyst was installed on 04/07/2008. Total quantity of emission reductions generated during the fourth project period from 19/11/2010 through 25/08/2011 on Line 3 is **69 520 ERUs**.

#### T 1 Emission reduction calculations

| EMISSIO                                            | ON REDUCTION |        |             |
|----------------------------------------------------|--------------|--------|-------------|
| Baseline Emission Factor                           | EF_BL        | 5.46   | kgN2O/tHNO3 |
| Project Campaign Emission Factor                   | EF_P         | 2.76   | kgN2O/tHNO3 |
| Nitric Acid Produced in the Baseline Campaign      | NAP_BL       | 59 042 | tHNO3       |
| Nitric Acid Produced in the NCSG Baseline Campaign | NAP_BL_NCSG  | 59 042 | tHNO3       |
| Nitric Acid Produced in the Project Campaign       | NAP_P        | 83 058 | tHNO3       |
| GWP                                                | GWP          | 310    | tCO2e/tN2O  |
| Emission Reduction                                 | ER           | 69 520 | tCOe        |
| ER=(EF_BL-EF_P)*NAP_P*GWP/1000                     |              |        |             |
| Abatement Ratio                                    |              | 53.6%  | 1           |

| EMISSION REDUCT               | ION PER YI | EAR         |             |
|-------------------------------|------------|-------------|-------------|
| Year                          | 2009       | 2010        | 2011        |
| Date From                     |            | 19 Nov 2010 | 01 Jan 2011 |
| Date To                       |            | 31 Dec 2010 | 25 Aug 2011 |
| Nitric Acid Production        |            | 12 366      | 70 693      |
| Emission Reduction            |            | 10 350      | 59 170      |
| ER_YR = ER * NAP_P_YR / NAP_P |            |             |             |

Baseline emission factor established for the Line 3 during baseline measurement carried using overlapping approach from 01/02/2008 to 04/07/2008 and from 01/09/2007 through 03/11/2007 is  $5.46~kgN_2O/tHNO_3$ .

Project emission factor during fourth project campaign after installation of secondary catalysts on Line 3, which started on 19/11/2010 and went through 25/08/2011 with secondary catalyst installed and commissioned on 04/07/2008, is  $2.76 \text{ kgN}_2\text{O/tHNO}_3$ .

3

During the project campaign 83 058 tonnes of nitric acid was produced.



# 2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide ( $N_2O$ ) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary  $N_2O$  reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 3 emission reductions including information on baseline emission factor setting for the Line 3.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.



# 3. BASELINE SETTING

Baseline emission factor for line 3 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 3 has been carried out using overlapping approach from 01/02/2008 to 04/07/2008 and from 01/09/2007 through 03/11/2007.

N<sub>2</sub>O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N<sub>2</sub>O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of  $N_2O$  concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N<sub>2</sub>O concentration of stack gas (NCSG))

The average mass of  $N_2O$  emissions per hour is estimated as product of the NCSG and VSG. The  $N_2O$  emissions per campaign are estimates product of  $N_2O$  emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average  $N_2O$  emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of  $N_2O$  emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The  $N_2O$  emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:



| Variable           | Definition                                                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $EF_BL$            | Baseline N <sub>2</sub> O emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                                             |
| $BE_{BC}$          | Total N <sub>2</sub> O emissions during the baseline campaign (tN <sub>2</sub> O)                                             |
| NCSG <sub>BC</sub> | Mean concentration of $N_2O$ in the stack gas during the baseline campaign $(mgN_2O/m^3)$                                     |
| $OH_{BC}$          | Operating hours of the baseline campaign (h)                                                                                  |
| VSG <sub>BC</sub>  | Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)                                              |
| $NAP_{BC}$         | Nitric acid production during the baseline campaign (tHNO <sub>3</sub> )                                                      |
| UNC                | Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment. |

# 3.1 Measurement procedure for N<sub>2</sub>O concentration and tail gas volume flow

# 3.1.1 Tail gas N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 3 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4 $^{\circ}$ C), so N<sub>2</sub>O concentration is measured on a dry basis.

 $N_2O$  concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis.

N<sub>2</sub>O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# 3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# 3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline  $N_2O$  emission factor may be outside the permitted range or limit corresponding to normal operating conditions.  $N_2O$  baseline data measured during hours



where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

# 3.3 Historic Campaign Length

The average historic campaign length (CL<sub>normal</sub>) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.



# 4. PROJECT EMISSIONS

During the first project campaign on line 3 the tail gas volume flow in the stack of the nitric acid plant as well as  $N_2O$  concentration have been measured on the continuous basis.

# 4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for  $N_2O$  concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

PEn = VSG \* NCSG \* 
$$10^{-9}$$
 \* OH ( $tN_2O$ )

#### where:

| variable | Definition                                                                                   |
|----------|----------------------------------------------------------------------------------------------|
| VSG      | Mean stack gas volume flow rate for the project campaign (m <sup>3</sup> /h)                 |
| NCSG     | Mean concentration of $N_2O$ in the stack gas for the project campaign $(mgN_2O/m^3)$        |
| $PE_n$   | Total N <sub>2</sub> O emissions of the n <sup>th</sup> project campaign (tN <sub>2</sub> O) |
| OH       | Is the number of hours of operation in the specific monitoring period (h)                    |

# 4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# 4.2 Minimum project emission factor

Because this campaign was fourth project campaign on Line 3 there has been no minimum average emission factor established yet for this campaign. This factor will be established after 10th project campaign.

8

# 4.3 Project Campaign Length



Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

# 4.4 Leakage

No leakage calculation is required.

# 4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of  $N_2O$ :

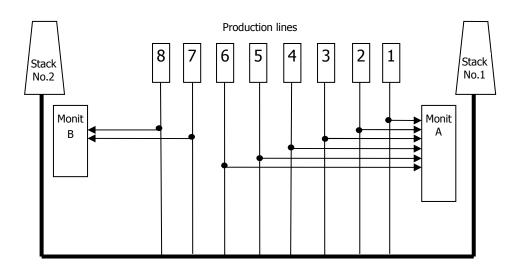
$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

#### Where:

| Variable | Definition                                                                        |
|----------|-----------------------------------------------------------------------------------|
| ER       | Emission reductions of the project for the specific campaign (tCO <sub>2</sub> e) |
| NAP      | Nitric acid production for the project campaign (tHNO <sub>3</sub> ). The maximum |
|          | value of NAP shall not exceed the design capacity.                                |
| EFBL     | Baseline emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                  |
| EFP      | Emissions factor used to calculate the emissions from this particular             |
|          | campaign (i.e. the higher of EF <sub>ma,n</sub> and EF <sub>n</sub> )             |

9




# 5. MONITORING PLAN

#### Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of  $N_2O$  from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

#### Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.



Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions.  $N_2O$  concentration in the tail gas is measured by 3 switched concentration meters.

#### **Monitoring System architecture**

Methodology AM0034/Version 02 requires installation of an  $N_2O$  monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of  $N_2O$ .



But tail gas  $N_2O$  concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of  $N_2O$  in t  $CO_2e$  per 1 tonne of  $HNO_3$  (100%), it is necessary to include also  $HNO_3$  measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only  $N_2O$  emissions and tail gas mass volume part of the MS.

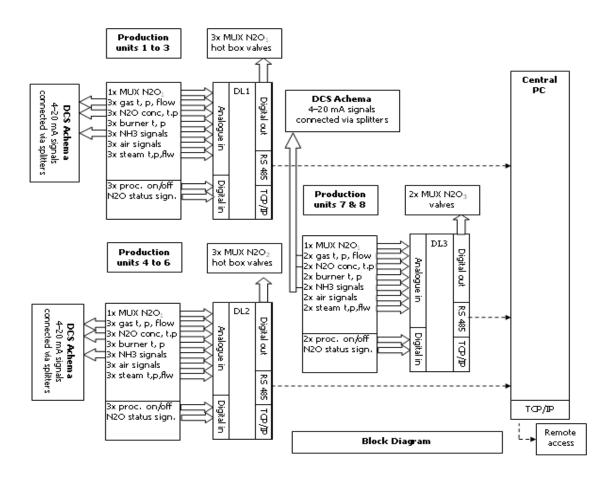
Monitoring System (MS) for purpose of this monitoring plan means:

# monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

#### nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature


and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N<sub>2</sub>O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

11





#### N<sub>2</sub>O automated measurement system

Main purpose of the  $N_2O$  automated measurement system (AMS) is to measure total mass of  $N_2O$  emitted during particular campaigns (both baseline and project). In order of calculation of total mass of  $N_2O$  emitted during particular campaign it is necessary to measure on an extractive basis the  $N_2O$  concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

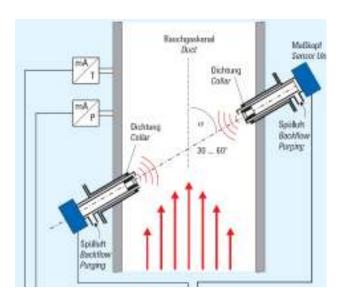
#### N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so  $N_2O$  concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail



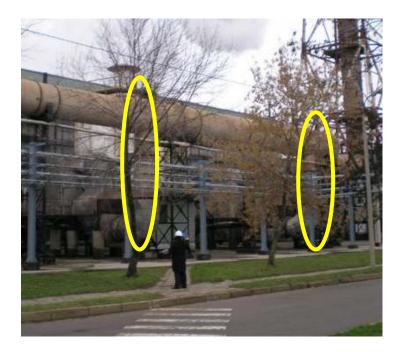
gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N<sub>2</sub>O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

N<sub>2</sub>O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.



The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

13





Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

#### Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF=Flow\_N2O\*(273.15/(273.15+Temp))\*(Press/101.325)\*((100-Humi)/100)

where Humi (water content)=

(Flow steam\*1.2436)/(Flow N2O\*(273.15/(273.15+Temp))\*(Press/101.325))\*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow\_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula Q=C\*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.



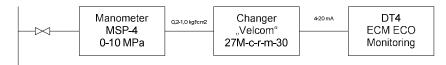
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

# EN14181 compliance

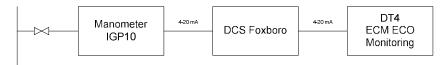
As required by the AM0034/Version 02 methodology the  $N_2O$  automated measurement system (AMS) complies with requirements of the technical norm EN14181.  $N_2O$  AMS consists from the  $N_2O$  concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the  $N_2O$  measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

# **Operating conditions**

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


15

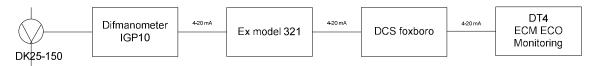
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



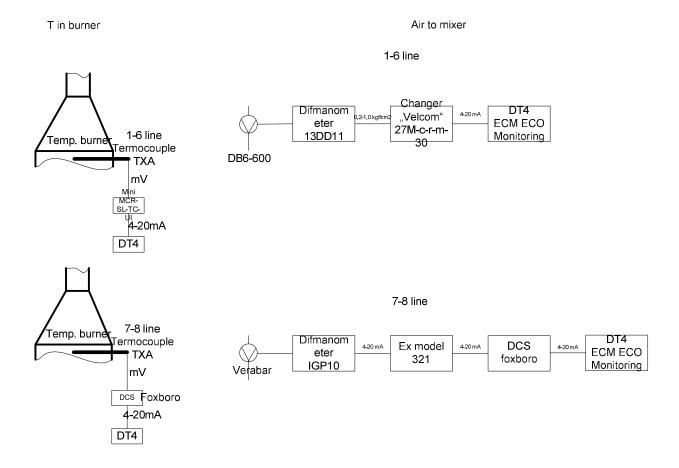

All these parameters are measured by the plant monitoring system as presented on diagrams below:

#### P in mixer 1-6 line




#### P in mixer 7-8 line




#### NH3 to mixer 1-6 line



#### NH3 to mixer 7-8 line







Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

# Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.







The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

#### PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

18



After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 09/11/2007 and ending on 30/07/2008 project uses HNO3 concentration data provided by the laboratory measurements.

© 2008, Vertis Finance

19



### 6. QAL 2 CALIBRATION ADJUSTMENTS

### 6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA
Y is the value of the parameter being objective of the measurement
a is a constant of the regression Line
b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old



This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions ( $0^{\circ}$  C, 1 atm.).

### 6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM\_0034.

### 6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in  $mgN_2O/m_3$ . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

### 6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

### 6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

21



### 7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 59 680  $tHNO_3$  and time duration was on average 316 days. Table contains also information on suppliers of primary catalysts for the line 3. As shown in the table, it is usual practice in Achema to use primary catalysts from various suppliers.

| Line               | ACHEMA UKL-3 | Production | Start       | End         | Days | Production per<br>day | Primary Catalyst          | Composition               |
|--------------------|--------------|------------|-------------|-------------|------|-----------------------|---------------------------|---------------------------|
| Historic Campaigns | 1 t HNO3     | 64 017     | 05 Feb 2004 | 09 Oct 2005 | 612  | 105                   | Heraeus                   | N/A *                     |
|                    | 2 t HNO3     | 63 115     | 10 Oct 2005 | 28 Jun 2006 | 261  | 242                   | Heraeus                   | N/A *                     |
|                    | 3 t HNO3     | 59 912     | 01 Jul 2005 | 24 Jan 2006 | 207  | 289                   | Heraeus                   | N/A *                     |
|                    | 4 t HNO3     | 56 702     | 25 Jan 2006 | 23 Nov 2006 | 302  | 188                   | Heraeus                   | N/A *                     |
|                    | 5 t HNO3     | 54 654     | 24 Dec 2006 | 09 Jul 2007 | 197  | 277                   | Heraeus                   | N/A *                     |
| Average HNO3       |              |            |             |             |      |                       |                           |                           |
| production         | t HNO3       | 59 680     |             |             | 316  | 189                   | * Confidential but availa | able for the verification |
| Project Campaigns  | BL t HNO3    | 59 042     | 01 Sep 2007 | 04 Jul 2008 | 308  | 192                   | Heraeus                   | N/A *                     |
|                    | PL t HNO3    | 83 058     | 19 Nov 2010 | 25 Aug 2011 | 280  | 297                   | Heraeus                   | N/A *                     |

T 2 Historic campaigns

The project campaign production value of 83 058 tHNO3 was higher than historic nitric acid production set at level of 59 680 tHNO3.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started using overlapping approach from 01/02/2008 to 04/07/2008 then from 01/09/2007 through 03/11/2007 when the 59 042 tHNO $_3$  nitric acid production was reached. The baseline measurement for N2O concentration (NCSG) was carried out until the production of 59 042 tHNO $_3$  was reached.

We have two campaigns available that we can use for the baseline. AMS was installed in the middle of the first campaign, whereas the secondary catalyst was installed in the middle of the consecutive second one. We use these two campaigns to construct the baseline campaign using the overlapping approach as set out by the PDD. To get a clear start, that is, the baseline series has to start with a primary catalyst change, we use the beginning of the second campaign as the basis, until the secondary catalyst installation is reached. If this baseline turns out to be shorter than the project line, we use data available from the first campaign from the AMS installation to overlap the two series, and get a comparable baseline. Since we use the earliest available data from the first campaign, where emissions are generally lower, this is a conservative approach and fully in line with the PDD.

22



| T 3 | Base | line | campaign | length |
|-----|------|------|----------|--------|
|-----|------|------|----------|--------|

| ACHEMA UKL-3                      | Historic<br>Campaings End | Start of Baseline<br>Measurement | End of Baseline<br>Measurement NCSG | End of Baseline<br>Measurement | End of Baseline<br>Campaign |
|-----------------------------------|---------------------------|----------------------------------|-------------------------------------|--------------------------------|-----------------------------|
| Dates                             | 2007 Jul 09               | 2007 Sep 01                      | 2008 Jul 04                         | 2008 Jul 04                    | 2008 Jul 05                 |
| Baseline Factor kgN2O/tHNO3       | _                         | · -                              | 5.46                                | 5.46                           | 5.46                        |
| Production tHNO3                  |                           | _                                | 59 042                              | 59 042                         | -                           |
| Per Day Production tHNO3          | 189.0                     |                                  |                                     |                                |                             |
| Baseline less Historic Production | (637.7)                   |                                  |                                     |                                |                             |
| Baseline less Historic Days       | (3.4)                     |                                  |                                     |                                |                             |
|                                   |                           |                                  |                                     | -                              |                             |

### C 1 Baseline campaign length

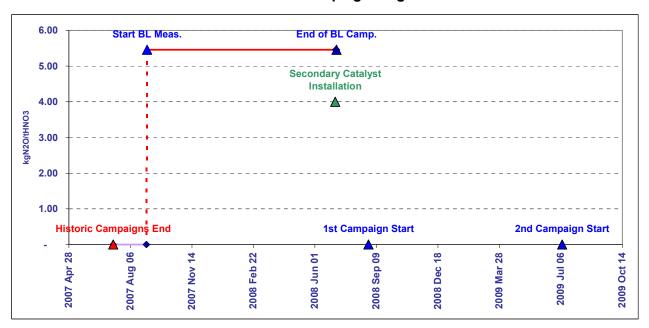



Table T 4 illustrates the calculation of the baseline emission factor on line 3 using the method as defined in the CDM methodology AM0034 and in the PDD.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of  $N_2O$  concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N<sub>2</sub>O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$



Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least  $600^{\circ}$ C occurred. Calculated baseline N2O emissions were 342 tN<sub>2</sub>O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 5.630%, which was further modified by an uncertainty of 0.090% due to under-sampling. As a result we have arrived to the baseline emission factor of  $5.46~kgN_2O/tHNO_3$ .

Table T 5 shows the calculation of the project emission factor on Line 3 during the project campaign. Project campaign started on 19/11/2010 and went through 25/08/2011.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N<sub>2</sub>O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of  $N_2O$  emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.76 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# T 4 Baseline emission factor

| BASELINE EMISS                                        |               | ON FACTOR       |                           |                      |                    |                      |                            |                          |                       |                     |                                   |
|-------------------------------------------------------|---------------|-----------------|---------------------------|----------------------|--------------------|----------------------|----------------------------|--------------------------|-----------------------|---------------------|-----------------------------------|
| Parameter                                             |               | Operating Hours | Nitric Acid<br>Production | N2O<br>Concentration | Gas Volume<br>Flow | Ammonia<br>Flow Rate | Ammonia<br>to Air<br>Ratio | Oxidation<br>Temperature | Oxidation<br>Pressure | AMS in<br>Operation | Nitric Acid<br>Production<br>NCSG |
| o)                                                    | Co de<br>Unit | ОН              | NAP<br>t/h                | NCSG<br>mg N2O/Nm3   | VSG<br>Nm3/h       | AFR<br>Nm3/h         | AIFR %                     | OT<br>°C                 | OP<br>KPa             | ч                   | NAP<br>t/h                        |
| Elimination of extreme values                         |               |                 |                           |                      |                    |                      |                            |                          |                       |                     |                                   |
| Lower limit<br>Upper Limit                            |               |                 | 0<br>20.00                | 3 000                | 0<br>120 000       | 0<br>10 000          | 0 -<br>20.00               | 50<br>1 200              | 0<br>1 000            |                     | 0 20                              |
| Raw Data Measured Range                               |               |                 |                           |                      |                    |                      |                            |                          |                       |                     |                                   |
| Count                                                 |               | 4 524           | 5 074                     | 4 743                | 4 623              | 5 148                | 4 843                      | 5 235                    | 5 232                 | 4 155               | 5 074                             |
| as % of Dataset<br>Minimum                            |               | %98             | %26                       | %06                  | 88%                | 98%<br>-             | 95%                        | 100%                     | 700%                  | %62                 | %26                               |
| Maximum                                               |               |                 | 16.63                     | 1 864                | 90 517             | 6 22 1               | 19.99                      | 906                      | 626                   |                     | 17                                |
| Mean<br>Standard Deviation<br>Total                   |               |                 | 11.64<br>5.03<br>59 042   | 1 104                | 67 849<br>11 542   | 4 974<br>1 802       | 10.52<br>1.62              | 794<br>258               | 545<br>118            |                     | 12<br>5<br>59 042                 |
|                                                       |               |                 |                           |                      |                    |                      |                            |                          |                       |                     |                                   |
| N2O Emissions ( VSG * NCSG * OH) Emission Factor      |               | 339<br>5.42     | t N2O<br>kgN2O / tHNO3    |                      |                    |                      |                            |                          |                       |                     |                                   |
| Permitted Range                                       |               |                 |                           |                      |                    |                      |                            |                          |                       |                     |                                   |
| Minimum<br>Maximum                                    |               |                 |                           |                      |                    | 4 500                | 11.70                      | 880                      | 0 800                 |                     |                                   |
| Data within the nermitted range                       |               |                 |                           |                      |                    |                      |                            |                          |                       |                     |                                   |
| Count                                                 |               | 4 087           |                           | 3 816                | 3 994              |                      |                            |                          |                       | 4 155               |                                   |
| as % of Operating Hours                               |               | %06             |                           | 84%                  | %88                |                      |                            |                          |                       | 95%                 |                                   |
| Minimum                                               |               |                 |                           | 381                  | 1                  |                      |                            |                          |                       |                     |                                   |
| Maximum<br>Mean                                       |               |                 |                           | 1 864                | 64 988             |                      |                            |                          |                       |                     |                                   |
| Standard Deviation                                    |               |                 |                           | 147                  | 14 287             |                      |                            |                          |                       |                     |                                   |
| N2O Emissions ( VSG * NCSG * OH)<br>Emission Factor   |               | 329<br>5.26     | t N2O<br>kgN2O / tHNO3    |                      |                    |                      |                            |                          |                       |                     |                                   |
| Data within the confidence interval                   |               |                 |                           |                      |                    |                      |                            |                          |                       |                     |                                   |
| 95% Confidence interval                               |               |                 |                           |                      |                    |                      |                            |                          |                       |                     |                                   |
| Lower bound<br>Upper bound                            |               |                 |                           | 829<br>1 407         | 36 985<br>92 991   |                      |                            |                          |                       |                     |                                   |
| Count                                                 |               |                 |                           | 3 659                | 3 816              |                      |                            |                          |                       |                     |                                   |
| as % of Operating Hours<br>Minimum                    |               |                 |                           | 81%                  | 84%<br>48 852      |                      |                            |                          |                       |                     |                                   |
| Maximum                                               |               |                 |                           | 1 407                | 77 232             |                      |                            |                          |                       |                     |                                   |
| Mean<br>Standard Deviation                            |               |                 |                           | 125                  | 2 721              |                      |                            |                          |                       |                     |                                   |
| VIO * OOM * OOM / cacionima CCN                       |               | 242             | 000                       |                      |                    |                      |                            |                          |                       |                     |                                   |
| NZO Emissions ( VSG NCSG On)  Emission Factor (EF_BL) |               |                 | kgN2O/tHNO3               |                      |                    |                      |                            |                          |                       |                     |                                   |
|                                                       |               |                 |                           |                      |                    |                      |                            |                          |                       |                     |                                   |



# T 5 Project emission factor

|                                                                                              |           |                      | PROJECT EN                  | PROJECT EMISSION FACTOR                  |                                            |                      |                    |                          |                       |
|----------------------------------------------------------------------------------------------|-----------|----------------------|-----------------------------|------------------------------------------|--------------------------------------------|----------------------|--------------------|--------------------------|-----------------------|
| 4                                                                                            | Parameter | Operating Hours      | Nitric Acid<br>Production   | N2O<br>Concentration                     | Gas Volume<br>Flow                         | Ammonia<br>Flow Rate | Ammonia<br>to Air  | Oxidation<br>Temperature | Oxidation<br>Pressure |
|                                                                                              | Code      | OH<br>h              | NAP<br>t/h                  | NCSG<br>mg N2O/Nm3                       | VSG<br>Nm3/h                               | AFR<br>Nm3/h         | Ratio<br>AIFR<br>% | от<br>°c                 | OP<br>KPa             |
| Elimination of extreme values                                                                |           |                      |                             |                                          |                                            |                      |                    |                          |                       |
| Lower limit<br>Upper Limit                                                                   |           |                      | 0<br>20.00                  | 3 000                                    | 0<br>120 000                               | 0<br>10 000          | 0 -<br>20.00       | 50<br>1 200              | 0<br>1 000            |
| Raw Data Measured Range                                                                      |           |                      |                             |                                          |                                            |                      |                    |                          |                       |
| Count as % of Dataset                                                                        |           | <b>6 245</b><br>93%  | 6 256<br>93%                | 6 147 92%                                | 6 172<br>92%                               | 6 681<br>100%        | 6 250<br>93%       | 6 681<br>100%            | 6681                  |
| Minimum<br>Maximum                                                                           |           |                      | 1.30                        | 200                                      | 317                                        | 141<br>7 356         |                    | 1 992                    | 5                     |
| Mean<br>Standard Deviation<br>Total                                                          |           |                      | 13.28<br>1.46<br>83.058     | 478                                      | 70 997<br>3 796                            | 5 633<br>861         | 10.33              | 848                      | 600                   |
| N2O Emissions ( VSG * NCSG * OH)<br>Emission Factor                                          |           | 212                  | t N2O<br>kgN2O / tHNO3      |                                          |                                            |                      |                    |                          |                       |
| Data within the confidence interval                                                          |           |                      |                             |                                          |                                            |                      |                    |                          |                       |
| 95% Confidence interval<br>Lower bound<br>Upper bound                                        |           |                      |                             | 197<br>758                               | 63 557<br>78 437                           |                      |                    |                          |                       |
| Count as % of Operating Hours Minimum Maximum Mean Standard Deviation                        |           |                      |                             | 6 029<br>97%<br>200<br>758<br>758<br>477 | 5 940<br>95%<br>63 568<br>78 420<br>70 691 |                      |                    |                          |                       |
|                                                                                              |           |                      |                             |                                          | 0                                          |                      |                    |                          |                       |
| N2O Emissions ( VSG * NCSG * OH) Actual Project Emission Factor (EF_PActual) Abatement Ratio |           | 210<br>2.53<br>53.6% | t N2O<br>kgN2O / tHNO3      |                                          |                                            |                      |                    |                          |                       |
| Moving Average Emission Factor Correction                                                    |           | Actual Factors       | Moving Average Rule         | nle                                      |                                            |                      |                    |                          |                       |
|                                                                                              |           | 1.92                 | 1.92                        |                                          |                                            |                      |                    |                          |                       |
|                                                                                              | დ 4 ი     | 3.57                 | 3.57<br>2.76                |                                          |                                            |                      |                    |                          |                       |
|                                                                                              |           |                      |                             |                                          |                                            |                      |                    |                          |                       |
| Project Emission Factor (EF_P) Abatement Ratio                                               |           | 2.76                 | 2.76 kgN2O / tHNO3<br>19.5% |                                          |                                            |                      |                    |                          |                       |
|                                                                                              |           |                      |                             |                                          |                                            |                      |                    |                          |                       |

# **MONITORING REPORT**

**PROJECT:** ACHEMA UKL nitric acid plant N<sub>2</sub>O abatement project

LINE: Line 4

**MONITORING PERIOD:** 

FROM: 16/03/2011

TO: 05/10/2011

## Prepared by:



**VERTIS FINANCE** 

www.vertisfinance.com



# **Table of Contents**

| 1. |            | EXECUTIVE SUMMARY                                                             | 3             |
|----|------------|-------------------------------------------------------------------------------|---------------|
| 2. |            | DESCRIPTION OF THE PROJECT ACTIVITY                                           | 4             |
| 3. |            | BASELINE SETTING                                                              | 5             |
|    | 3.1<br>3.1 |                                                                               | <b>6</b><br>6 |
|    | 3.2        | PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT              | 6             |
|    | 3.3        | HISTORIC CAMPAIGN LENGTH                                                      | 7             |
| 4. | 4.1        | PROJECT EMISSIONS  1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR | <b>8</b>      |
|    | 4.1        | 2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR                              | 8             |
|    | 4.2        | MINIMUM PROJECT EMISSION FACTOR                                               | 8             |
|    | 4.3        | PROJECT CAMPAIGN LENGTH                                                       | 8             |
|    | 4.4        | LEAKAGE                                                                       | 9             |
|    | 4.5        | EMISSION REDUCTIONS                                                           | 9             |
| 5. |            | MONITORING PLAN                                                               | 10            |
| 6. |            | QAL 2 CALIBRATION ADJUSTMENTS                                                 | 20            |
|    | 6.1        | APPLIED PRINCIPLE                                                             | 20            |
|    | 6.2        | STACK GAS VOLUME FLOW                                                         | 21            |
|    | 6.3        | NITRIC ACID CONCENTRATION IN STACK GAS                                        | 21            |
|    | 6.4        | STACK GAS TEMPERATURE                                                         | 21            |
|    | 6.5        | STACK GAS PRESSURE                                                            | 21            |
| 7  |            | EMISSION REDUCTION CALCUL ATIONS                                              | 22            |



### 1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 4 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the fourth project campaign on Line 4.

The first project campaign on Line 4 started on 01/08/2008. Secondary catalyst was installed on 06/10/2008. Total quantity of emission reductions generated during the fourth project period from 16/03/2011 through 05/10/2011 on Line 4 is **105 340 ERUs**.

### T 1 Emission reduction calculations

| EMISSIO                                            | ON REDUCTION |         |             |
|----------------------------------------------------|--------------|---------|-------------|
| Baseline Emission Factor                           | EF_BL        | 7.73    | kgN2O/tHNO3 |
| Project Campaign Emission Factor                   | EF_P         | 2.19    | kgN2O/tHNO3 |
| Nitric Acid Produced in the Baseline Campaign      | NAP_BL       | 58 683  | tHNO3       |
| Nitric Acid Produced in the NCSG Baseline Campaign | NAP_BL_NCSG  | 58 683  | tHNO3       |
| Nitric Acid Produced in the Project Campaign       | NAP_P        | 61 337  | tHNO3       |
| GWP                                                | GWP          | 310     | tCO2e/tN2O  |
| Emission Reduction                                 | ER           | 105 340 | tCOe        |
| ER=(EF_BL-EF_P)*NAP_P*GWP/1000                     |              |         |             |
| Abatement Ratio                                    |              | 77.4%   | )           |

| EMISSION REDUC                | TION PER YE | AR   |             |
|-------------------------------|-------------|------|-------------|
| Year                          | 2009        | 2010 | 2011        |
| Date From                     |             |      | 16 Mar 2011 |
| Date To                       |             |      | 05 Oct 2011 |
| Nitric Acid Production        |             |      | 61 337      |
| Emission Reduction            |             |      | 105 340     |
| ER_YR = ER * NAP_P_YR / NAP_P |             |      |             |

Baseline emission factor established for the Line 4 during baseline measurement carried from 28/12/2007 through 31/07/2008 is 7.73 kgN<sub>2</sub>O/tHNO<sub>3</sub>.

Project emission factor during the fourth project campaign after installation of secondary catalysts on Line 4, which started on 16/03/2011 and went through 05/10/2011 with secondary catalyst installed and commissioned on 06/10/2008, is 2.19 kgN<sub>2</sub>O/tHNO<sub>3</sub>.

3

During the project campaign 61 337 tonnes of nitric acid was produced.



### 2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide ( $N_2O$ ) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary  $N_2O$  reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 4 emission reductions including information on baseline emission factor setting for the Line 4.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.



### 3. BASELINE SETTING

Baseline emission factor for line 4 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 4 has been carried out from 28/12/2007 through 31/07/2008.

N<sub>2</sub>O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N<sub>2</sub>O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of  $N_2O$  concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N<sub>2</sub>O concentration of stack gas (NCSG))

The average mass of  $N_2O$  emissions per hour is estimated as product of the NCSG and VSG. The  $N_2O$  emissions per campaign are estimates product of  $N_2O$  emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average  $N_2O$  emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of  $N_2O$  emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The  $N_2O$  emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:



| Variable           | Definition                                                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $EF_BL$            | Baseline N <sub>2</sub> O emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                                             |
| $BE_{BC}$          | Total N <sub>2</sub> O emissions during the baseline campaign (tN <sub>2</sub> O)                                             |
| NCSG <sub>BC</sub> | Mean concentration of $N_2O$ in the stack gas during the baseline campaign $(mgN_2O/m^3)$                                     |
| $OH_{BC}$          | Operating hours of the baseline campaign (h)                                                                                  |
| VSG <sub>BC</sub>  | Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)                                              |
| $NAP_{BC}$         | Nitric acid production during the baseline campaign (tHNO <sub>3</sub> )                                                      |
| UNC                | Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment. |

# 3.1 Measurement procedure for N<sub>2</sub>O concentration and tail gas volume flow

### 3.1.1 Tail gas N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 4 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4 $^{\circ}$ C), so N<sub>2</sub>O concentration is measured on a dry basis.

 $N_2O$  concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis.

 $N_2O$  concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

### 3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

### 3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline  $N_2O$  emission factor may be outside the permitted range or limit corresponding to normal operating conditions.  $N_2O$  baseline data measured during hours



where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

### 3.3 Historic Campaign Length

The average historic campaign length ( $CL_{normal}$ ) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.



### 4. PROJECT EMISSIONS

During the first project campaign on line 4 the tail gas volume flow in the stack of the nitric acid plant as well as  $N_2O$  concentration have been measured on the continuous basis.

### 4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for  $N_2O$  concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

### where:

| variable | Definition                                                                                   |
|----------|----------------------------------------------------------------------------------------------|
| VSG      | Mean stack gas volume flow rate for the project campaign (m <sup>3</sup> /h)                 |
| NCSG     | Mean concentration of $N_2O$ in the stack gas for the project campaign $(mgN_2O/m^3)$        |
| $PE_n$   | Total N <sub>2</sub> O emissions of the n <sup>th</sup> project campaign (tN <sub>2</sub> O) |
| OH       | Is the number of hours of operation in the specific monitoring period (h)                    |

### 4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

## 4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

### 4.3 Project Campaign Length



Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

### 4.4 Leakage

No leakage calculation is required.

### 4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of  $N_2O$ :

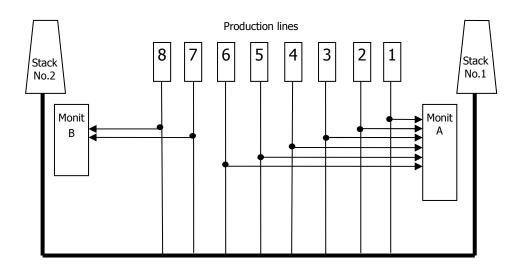
$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

### Where:

| Variable | Definition                                                                        |
|----------|-----------------------------------------------------------------------------------|
| ER       | Emission reductions of the project for the specific campaign (tCO <sub>2</sub> e) |
| NAP      | Nitric acid production for the project campaign (tHNO <sub>3</sub> ). The maximum |
|          | value of NAP shall not exceed the design capacity.                                |
| EFBL     | Baseline emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                  |
| EFP      | Emissions factor used to calculate the emissions from this particular             |
|          | campaign (i.e. the higher of EF <sub>ma,n</sub> and EF <sub>n</sub> )             |

9




### 5. MONITORING PLAN

### Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of  $N_2O$  from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

### Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.



Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions.  $N_2O$  concentration in the tail gas is measured by 3 switched concentration meters.

### **Monitoring System architecture**

Methodology AM0034/Version 02 requires installation of an  $N_2O$  monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of  $N_2O$ .



But tail gas  $N_2O$  concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of  $N_2O$  in t  $CO_2e$  per 1 tonne of  $HNO_3$  (100%), it is necessary to include also  $HNO_3$  measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only  $N_2O$  emissions and tail gas mass volume part of the MS.

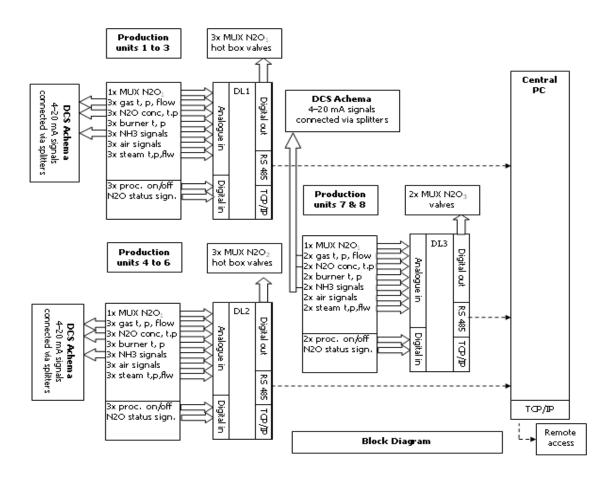
Monitoring System (MS) for purpose of this monitoring plan means:

### monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

### nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature


and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N<sub>2</sub>O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

11





### N<sub>2</sub>O automated measurement system

Main purpose of the  $N_2O$  automated measurement system (AMS) is to measure total mass of  $N_2O$  emitted during particular campaigns (both baseline and project). In order of calculation of total mass of  $N_2O$  emitted during particular campaign it is necessary to measure on an extractive basis the  $N_2O$  concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

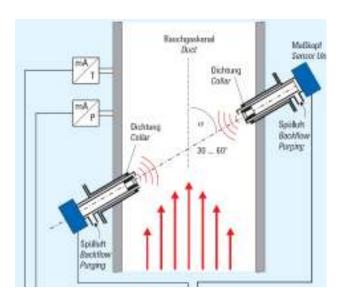
### N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so  $N_2O$  concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail



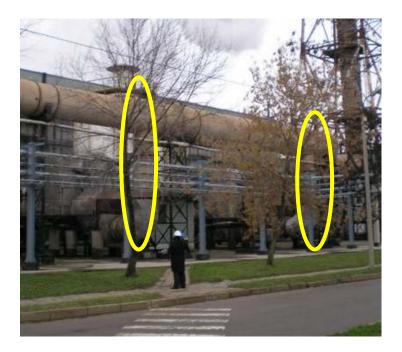
gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N<sub>2</sub>O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

N<sub>2</sub>O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

### Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.



The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

13





Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

### Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow N2O\*(273.15/(273.15+Temp))\*(Press/101.325)\*((100-Humi)/100)

where Humi (water content)=

(Flow\_steam\*1.2436)/(Flow\_N2O\*(273.15/(273.15+Temp))\*(Press/101.325))\*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow\_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.



Achema measures steam flow in kg/h using formula Q=C\*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

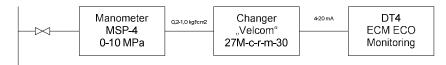
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

### EN14181 compliance

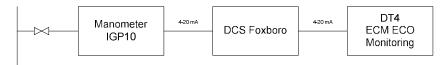
As required by the AM0034/Version 02 methodology the  $N_2O$  automated measurement system (AMS) complies with requirements of the technical norm EN14181.  $N_2O$  AMS consists from the  $N_2O$  concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the  $N_2O$  measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

### **Operating conditions**

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


15

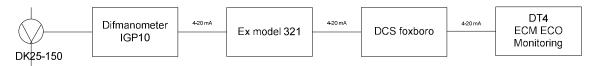
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



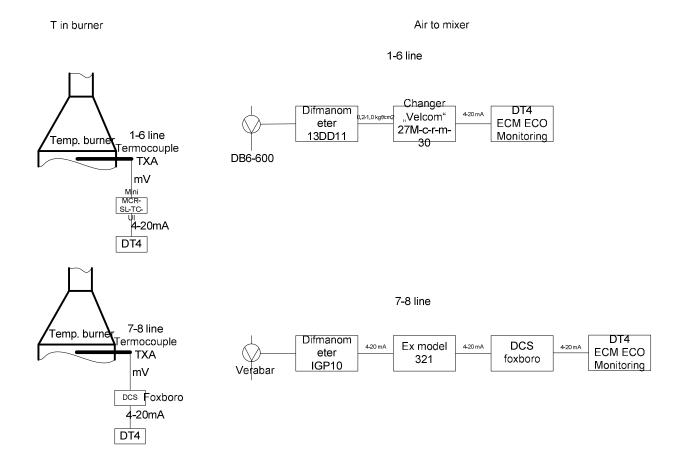

All these parameters are measured by the plant monitoring system as presented on diagrams below:

### P in mixer 1-6 line




### P in mixer 7-8 line




### NH3 to mixer 1-6 line



### NH3 to mixer 7-8 line







Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

### Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.







The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

### PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

18



After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 31/10/2007 and ending on 10/09/2008 project uses HNO $_3$  concentration data provided by the laboratory measurements.

© 2008, Vertis Finance

19



### 6. QAL 2 CALIBRATION ADJUSTMENTS

### 6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old



This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions ( $0^{\circ}$  C, 1 atm.).

### 6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM\_0034.

### 6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in  $mgN_2O/m_3$ . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

### 6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

### 6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

21



### 7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 65 thnO3 and time duration was on average 275 days. Table contains also information on suppliers of primary catalysts for the line 4.

Line ACHEMA UKL-4 Production Start End Days Production per Primary Catalyst Composition day Historic Campaigns 1 t HNO3 69 782 18 Apr 2003 11 Dec 2003 237 294 Johnson Matthey Johnson Matthey 2 t HNO3 65 420 11 Dec 2003 06 Dec 2004 361 181 N/A \* 3 t HNO3 66 129 07 Dec 2004 08 Nov 2005 336 197 Umicore N/A \* N/A \* 4 t HNO3 66 826 22 Mar 2006 23 Nov 2006 246 272 Johnson Matthey 60 959 23 Nov 2006 N/A 5 t HNO3 04 Jun 2007 193 316 Johnson Matther Average HNO3 production t HNO3 65 823 275 240 \* Confidential but available for the verification Project Campaigns BL t HNO3 58 683 28 Dec 2007 31 Jul 2008 216 272 Johnson Matthey 61 337 16 Mar 2011 05 Oct 2011 PL t HNO3 203

T 2 Historic campaigns

The project campaign production value of 61 337 tHNO3 was lower than historic nitric acid production set at level of 65 823 tHNO3.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 28/12/2007 and continued through 31/07/2008 when the 58 683 tHNO $_3$  nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO $_3$ .

### T 3 Baseline campaign length

22

| ACHEMA UKL-4                      | Historic<br>Campaings End | Start of Baseline<br>Measurement | End of Baseline<br>Measurement NCSG | End of Baseline<br>Measurement | End of Baseline<br>Campaign |
|-----------------------------------|---------------------------|----------------------------------|-------------------------------------|--------------------------------|-----------------------------|
| Dates                             | 2007 Jun 04               | 2007 Dec 28                      | 2008 Jul 31                         | 2008 Jul 31                    | 2008 Aug 01                 |
| Baseline Factor kgN2O/tHNO3       | _                         | _                                | 7.73                                | 7.73                           | 7.73                        |
| Production tHNO3                  |                           | -                                | 58 683                              | 58 683                         | -                           |
| Per Day Production tHNO3          | 239.7                     |                                  |                                     |                                |                             |
| Baseline less Historic Production | (7 140.4)                 |                                  |                                     |                                |                             |
| Baseline less Historic Days       | (29.8)                    |                                  |                                     |                                |                             |
|                                   |                           |                                  |                                     |                                |                             |



### 9.00 Start BL Meas. End of BL Camp. 8.00 7.00 6.00 kgN2O/tHN03 **Secondary Catalyst** 5.00 Installation 4.00 3.00 2 00 c Campaigns End 1st Campaign Start 2nd Campaign Start 28 22 Nov 14 Dec 18 28 90 2 Aug ( Jul Apr 2008 Feb 2008 Jun Sep 2009 Mar 2007 2008

### C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 4 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 28/12/2007 through 31/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of  $N_2O$  concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and  $N_2$ O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least  $600^{\circ}$ C occurred. Calculated baseline N2O emissions were 479 tN<sub>2</sub>O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 5.450%, which is further modified by an uncertainty of 0.104% due to under-sampling. As a result we have arrived to the baseline emission factor of  $7.73~kgN_2O/tHNO_3$ .



Table T 5 shows the calculation of the project emission factor on Line 4 during the project campaign. Project campaign started on 16/03/2011 and went through 05/10/2011.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of  $N_2O$  emissions ( $PE_n$ ) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of  $N_2O$  emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.19 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# T 4 Baseline emission factor

| BASELL                                                      | BASELINEEMISSION | ION FACTOR         |                                 |                    |                |              |                 |             |           |           |             |
|-------------------------------------------------------------|------------------|--------------------|---------------------------------|--------------------|----------------|--------------|-----------------|-------------|-----------|-----------|-------------|
| Par                                                         | Parameter        |                    | Nitric Acid                     | NZO                | Gas Volume     | Ammonia      | Ammonia         | Oxidation   | Oxidation | AMS in    | Nitric Acid |
|                                                             |                  |                    | Production                      | Concentration      | Flow           | Flow Rate    | to Air<br>Ratio | Temperature | Pressure  | Operation | Production  |
|                                                             | Code<br>Unit     | ОН<br><sub>Р</sub> | NAP<br>t/h                      | NCSG<br>mg N2O/Nm3 | VSG<br>Nm3/h   | AFR<br>Nm3/h | AIFR<br>%       | от<br>°с    | OP<br>kPa | h         | NAP<br>t/h  |
| Elimination of extreme values                               |                  |                    |                                 |                    |                |              |                 |             |           |           |             |
| Lower limit<br>Upper Limit                                  |                  |                    | 0 20:00                         | 3 000              | 0<br>120 000   | 0<br>10 000  | 20.00           | 50<br>1 200 | 1 000     |           | 0 50        |
| Raw Data Measured Range                                     |                  |                    |                                 |                    |                |              |                 |             |           |           |             |
| Count                                                       |                  | 4 564              | 4 906                           | 4 891              | 4 467          | 4 733        | 5 086           | 5 161       | 4 755     | 4 0 2 8   | 4 906       |
| as % of Dataset                                             |                  | 88%                | %96                             | 94%                | %98            | 91%          | %86             | 100%        | 92%       | 78%       | %56         |
| Minimum<br>Maximim                                          |                  |                    | 15 12                           | 0 0 0              | - 2<br>5 5 4 4 | 266          | - 40.28         | 1           | 637       |           | , 4         |
| Mean                                                        |                  |                    | 11.96                           | 1 485              | 66 846         | 5718         | 9.71            | 791         | 572       |           | 5 2         |
| Standard Deviation<br>Total                                 |                  |                    | 4.35<br>58 683                  | 378                | 10 182         | 881          | 2.96            | 272         | 62        |           | 4<br>58 683 |
| VIO * COOM * COV / Secion M I COM                           |                  | 452                | CCA                             |                    |                |              |                 |             |           |           |             |
| NZO Emissions ( VOG NCOG On) Emission Factor                |                  | 453<br>7.30        | 455 ( NZO<br>7.30 kgN2O / tHNO3 |                    |                |              |                 |             |           |           |             |
| Permitted Range                                             |                  |                    |                                 |                    |                |              |                 |             |           |           |             |
| Minimum                                                     |                  |                    |                                 |                    |                | 4 500        | 0               | 880         | 0         |           |             |
| ואמאווומווו                                                 |                  |                    |                                 |                    |                | 006 /        | 0/:1-           | 0           | 000       |           |             |
| Data within the permitted range                             |                  |                    |                                 |                    |                |              |                 |             |           |           |             |
| Count                                                       |                  | 4 399              |                                 | 4 152              | 4 210          |              |                 |             |           | 4 028     |             |
| as % of Operating nours Minimum                             |                  | 90%                |                                 | 511                | 92%            |              |                 |             |           | %00       |             |
| Maximum                                                     |                  |                    |                                 | 2 208              | 75 876         |              |                 |             |           |           |             |
| Mean                                                        |                  |                    |                                 | 1 511              | 67 275         |              |                 |             |           |           |             |
| Standard Deviation                                          |                  |                    |                                 | 274                | 8 270          |              |                 |             |           |           |             |
| N2O Emissions (VSG * NCSG * OH) Emission Factor             |                  | 464                | 464 t N2O<br>7.47 kgN2O / tHNO3 |                    |                |              |                 |             |           |           |             |
| Data within the confidence interval                         |                  |                    |                                 |                    |                |              |                 |             |           |           |             |
| 95% Confidence interval                                     |                  |                    |                                 |                    |                |              |                 |             |           |           |             |
| Lower bound                                                 |                  |                    |                                 | 973                | 51 066         |              |                 |             |           |           |             |
| Upper bound                                                 |                  |                    |                                 | 2 048              | 83 484         |              |                 |             |           |           |             |
| Count                                                       |                  |                    |                                 | 3 735              | 4 149          |              |                 |             |           |           |             |
| as % of Operating Hours                                     |                  |                    |                                 | 85%                | %16            |              |                 |             |           |           |             |
| Minimum                                                     |                  |                    |                                 | 1 108              | 59 513         |              |                 |             |           |           |             |
| Maximum                                                     |                  |                    |                                 | 2 046              | 75876          |              |                 |             |           |           |             |
| Mean<br>Standard Deviation                                  |                  |                    |                                 | 203                | 2 154          |              |                 |             |           |           |             |
|                                                             |                  |                    |                                 |                    |                |              |                 |             |           |           |             |
| N2O Emissions ( VSG * NCSG * OH)<br>Emission Factor (EF_BL) |                  | 479<br>7.73        | t N2O<br>kgN2O / tHNO3          |                    |                |              |                 |             |           |           |             |
|                                                             |                  |                    |                                 |                    |                |              |                 |             |           |           |             |



# T 5 Project emission factor

|                                                                              |              |                 | PROJECT EN                | PROJECT EMISSION FACTOR |                    |                      |                            |                          |                       |
|------------------------------------------------------------------------------|--------------|-----------------|---------------------------|-------------------------|--------------------|----------------------|----------------------------|--------------------------|-----------------------|
|                                                                              | Parameter    | Operating Hours | Nitric Acid<br>Production | N2O<br>Concentration    | Gas Volume<br>Flow | Ammonia<br>Flow Rate | Ammonia<br>to Air<br>Ratio | Oxidation<br>Temperature | Oxidation<br>Pressure |
|                                                                              | Code<br>Unit | OH<br>h         | NAP<br>t/h                | NCSG<br>mg N2O/Nm3      | VSG<br>Nm3/h       | AFR<br>Nm3/h         | AIFR<br>%                  | от<br>°c                 | OP<br>KPa             |
| Elimination of extreme values                                                |              |                 |                           |                         |                    |                      |                            |                          |                       |
| Lower limit                                                                  |              |                 | 0 20 00                   | 0 8                     | 120,000            | 10 000               | - 0                        | 1 200                    | 1 000                 |
|                                                                              |              |                 |                           |                         |                    |                      | 200                        | 0                        | 2                     |
| Raw Data Measured Range                                                      |              |                 |                           |                         |                    | 1                    |                            |                          |                       |
| Count                                                                        |              | <b>4 47 8</b>   | 4 460                     | 4 442                   | 4 4 28             | 4 606                | 4 585                      | 4 847                    | 4 737                 |
| Minimim                                                                      |              | 9776            | 9776                      | 192                     | 97.0               | 327                  | % c                        | (18)                     | % /6<br>/             |
| Maximum                                                                      |              |                 | 17.28                     | 748                     | 111 049            | 6 357                | 19.82                      | 911                      | 671                   |
| Mean                                                                         |              |                 | 13.75                     | 399                     | 29 990             | 5 734                | 10.42                      | 839                      | 619                   |
| Standard Deviation<br>Total                                                  |              |                 | 3.49<br>61 337            | 103                     | 8 985              | 611                  | 0.79                       | 202                      | 29                    |
|                                                                              |              |                 |                           |                         |                    |                      |                            |                          |                       |
| N2O Emissions ( VSG * NCSG * OH)                                             |              | 107             | t N2O                     |                         |                    |                      |                            |                          |                       |
| Emission Factor                                                              |              | G/.I.           | KginzO / ITHNO3           |                         |                    |                      |                            |                          |                       |
| Data within the confidence interval                                          |              |                 |                           |                         |                    |                      |                            |                          |                       |
| 95% Confidence interval                                                      |              |                 |                           |                         |                    |                      |                            |                          |                       |
| Lower bound                                                                  |              |                 |                           | 197                     | 42 380             |                      |                            |                          |                       |
| Upper bound                                                                  |              |                 |                           | 601                     | 77 600             |                      |                            |                          |                       |
| Count                                                                        |              |                 |                           | 3 836                   | 4 062              |                      |                            |                          |                       |
| as % of Operating Hours                                                      |              |                 |                           | %98                     | 91%                |                      |                            |                          |                       |
| Minimum                                                                      |              |                 |                           | 202                     | 45 703             |                      |                            |                          |                       |
| Maximum                                                                      |              |                 |                           | 009                     | 77 588             |                      |                            |                          |                       |
| Mean<br>Standard Deviation                                                   |              |                 |                           | 980<br>980              | 8 696              |                      |                            |                          |                       |
|                                                                              |              |                 |                           |                         |                    |                      |                            |                          |                       |
| N2O Emissions ( VSG * NCSG * OH) Actual Project Emission Factor (FF PActual) |              | 107             | t N2O<br>kgN2O / tHNO3    |                         |                    |                      |                            |                          |                       |
| Abatement Ratio                                                              |              | 77.4%           |                           |                         |                    |                      |                            |                          |                       |
| Moving Average Emission Factor Correction                                    |              | Actual Factors  | Moving Average Rule       | all                     |                    |                      |                            |                          |                       |
|                                                                              |              | 2.77            | 2.77                      |                         |                    |                      |                            |                          |                       |
|                                                                              | 7            | 2.37            | 2.57                      |                         |                    |                      |                            |                          |                       |
|                                                                              | က            | 1.87            | 2.34                      |                         |                    |                      |                            |                          |                       |
|                                                                              | 4 u          | 1.74            | 2.19                      |                         |                    |                      |                            |                          |                       |
|                                                                              | ,            |                 |                           |                         | _                  |                      |                            |                          |                       |
| Project Emission Factor (EF P)                                               |              | 2.19            | kaN2O / tHNO3             |                         |                    |                      |                            |                          |                       |
| Abatement Ratio                                                              |              | 71.7%           | 71.7%                     |                         |                    |                      |                            |                          |                       |
|                                                                              |              |                 |                           |                         |                    |                      |                            |                          |                       |
|                                                                              |              |                 |                           |                         |                    |                      |                            |                          |                       |

# **MONITORING REPORT**

**PROJECT:** ACHEMA UKL nitric acid plant N<sub>2</sub>O abatement project

LINE: Line 5

**MONITORING PERIOD:** 

FROM: 17/03/2011

TO: 09/11/2011

## Prepared by:



**VERTIS FINANCE** 

www.vertisfinance.com



# **Table of Contents**

| 1. |     | EXECUTIVE SUMMARY                                                    | 3        |
|----|-----|----------------------------------------------------------------------|----------|
| 2. |     | DESCRIPTION OF THE PROJECT ACTIVITY                                  | 4        |
| 3. |     | BASELINE SETTING                                                     | 5        |
|    | 3.1 | MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS VOLUME FLOW | 6        |
|    | 3.1 |                                                                      | <b>6</b> |
|    | 3.1 | .2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE                      | 6        |
|    | 3.2 | PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT     | 6        |
|    | 3.3 | HISTORIC CAMPAIGN LENGTH                                             | 7        |
| 4. |     | PROJECT EMISSIONS                                                    | 8        |
|    | 4.1 |                                                                      | 8        |
|    | 4.1 | .2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR                    | 8        |
|    | 4.2 | MINIMUM PROJECT EMISSION FACTOR                                      | 8        |
|    | 4.3 | PROJECT CAMPAIGN LENGTH                                              | 8        |
|    | 4.4 | LEAKAGE                                                              | 9        |
|    | 4.5 | EMISSION REDUCTIONS                                                  | 9        |
| 5. |     | MONITORING PLAN                                                      | 10       |
| 6. |     | QAL 2 CALIBRATION ADJUSTMENTS                                        | 20       |
|    | 6.1 | APPLIED PRINCIPLE                                                    | 20       |
|    | 6.2 | STACK GAS VOLUME FLOW                                                | 21       |
|    | 6.3 | NITRIC ACID CONCENTRATION IN STACK GAS                               | 21       |
|    | 6.4 | STACK GAS TEMPERATURE                                                | 21       |
|    | 6.5 | STACK GAS PRESSURE                                                   | 21       |
| 7. |     | EMISSION REDUCTION CALCULATIONS                                      | 22       |



# 1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 5 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the fourth project campaign on Line 5.

The first project campaign on Line 5 started on 02/07/2008. Secondary catalyst was installed on 02/07/2008. Total quantity of emission reductions generated during the fourth project period from 17/03/2011 through 09/11/2011 on Line 5 is **82 177 ERUs**.

#### T 1 Emission reduction calculations

| EMISSIC                                            | ON REDUCTION |        |             |
|----------------------------------------------------|--------------|--------|-------------|
| Baseline Emission Factor                           | EF_BL        | 6.61   | kgN2O/tHNO3 |
| Project Campaign Emission Factor                   | EF_P         | 2.09   | kgN2O/tHNO3 |
| Nitric Acid Produced in the Baseline Campaign      | NAP_BL       | 55 079 | tHNO3       |
| Nitric Acid Produced in the NCSG Baseline Campaign | NAP_BL_NCSG  | 55 079 | tHNO3       |
| Nitric Acid Produced in the Project Campaign       | NAP_P        | 58 648 | tHNO3       |
| GWP                                                | GWP          | 310    | tCO2e/tN2O  |
| Emission Reduction                                 | ER           | 82 177 | tCOe        |
| ER=(EF_BL-EF_P)*NAP_P*GWP/1000                     |              |        |             |
| Abatement Ratio                                    |              | 74.1%  | )           |

| EMISSION REDUCT               | ION PER YE | AR   |             |
|-------------------------------|------------|------|-------------|
| Year                          | 2009       | 2010 | 2011        |
| Date From                     |            |      | 17 Mar 2011 |
| Date To                       |            |      | 09 Nov 2011 |
| Nitric Acid Production        |            |      | 58 648      |
| Emission Reduction            |            |      | 82 177      |
| ER_YR = ER * NAP_P_YR / NAP_P |            |      |             |

Baseline emission factor established for the Line 5 during baseline measurement carried from 29/11/2007 through 17/06/2008 is  $6.61 \text{ kgN}_2\text{O/tHNO}_3$ .

Project emission factor during the fourth project campaign after installation of secondary catalysts on Line 5, which started on 17/03/2011 and went through 09/11/2011 with secondary catalyst installed and commissioned on 02/07/2008, is 2.09 kgN<sub>2</sub>O/tHNO<sub>3</sub>.

3

During the project campaign 58 648 tonnes of nitric acid was produced.



# 2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide ( $N_2O$ ) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary  $N_2O$  reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 5 emission reductions including information on baseline emission factor setting for the Line 5.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.



# 3. BASELINE SETTING

Baseline emission factor for line 5 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 5 has been carried out from 29/11/2007 through 17/06/2008.

N<sub>2</sub>O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N<sub>2</sub>O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of  $N_2O$  concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N<sub>2</sub>O concentration of stack gas (NCSG))

The average mass of  $N_2O$  emissions per hour is estimated as product of the NCSG and VSG. The  $N_2O$  emissions per campaign are estimates product of  $N_2O$  emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average  $N_2O$  emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of  $N_2O$  emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The  $N_2O$  emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:



| Variable           | Definition                                                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $EF_BL$            | Baseline N <sub>2</sub> O emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                                             |
| $BE_{BC}$          | Total N <sub>2</sub> O emissions during the baseline campaign (tN <sub>2</sub> O)                                             |
| NCSG <sub>BC</sub> | Mean concentration of $N_2O$ in the stack gas during the baseline campaign $(mgN_2O/m^3)$                                     |
| $OH_{BC}$          | Operating hours of the baseline campaign (h)                                                                                  |
| VSG <sub>BC</sub>  | Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)                                              |
| $NAP_{BC}$         | Nitric acid production during the baseline campaign (tHNO <sub>3</sub> )                                                      |
| UNC                | Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment. |

# 3.1 Measurement procedure for N<sub>2</sub>O concentration and tail gas volume flow

#### 3.1.1 Tail gas N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 5 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4 $^{\circ}$ C), so N<sub>2</sub>O concentration is measured on a dry basis.

 $N_2O$  concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis.

N<sub>2</sub>O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# 3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# 3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline  $N_2O$  emission factor may be outside the permitted range or limit corresponding to normal operating conditions.  $N_2O$  baseline data measured during hours



where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

# 3.3 Historic Campaign Length

The average historic campaign length ( $CL_{normal}$ ) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.



# 4. PROJECT EMISSIONS

During the first project campaign on line 5 the tail gas volume flow in the stack of the nitric acid plant as well as  $N_2O$  concentration have been measured on the continuous basis.

# 4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for  $N_2O$  concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

Definition

#### where:

Variable

| variable | Definition                                                                                   |
|----------|----------------------------------------------------------------------------------------------|
| VSG      | Mean stack gas volume flow rate for the project campaign (m <sup>3</sup> /h)                 |
| NCSG     | Mean concentration of $N_2O$ in the stack gas for the project campaign $(mgN_2O/m^3)$        |
| $PE_n$   | Total N <sub>2</sub> O emissions of the n <sup>th</sup> project campaign (tN <sub>2</sub> O) |
| OH       | Is the number of hours of operation in the specific monitoring period (h)                    |

# 4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# 4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

8

# 4.3 Project Campaign Length



Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

# 4.4 Leakage

No leakage calculation is required.

#### 4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of  $N_2O$ :

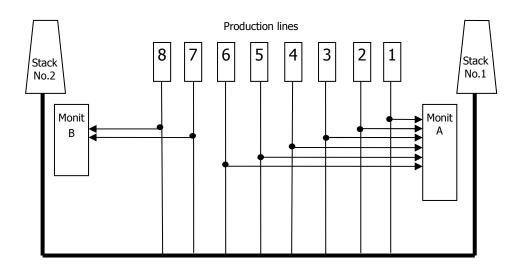
$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

#### Where:

| Variable | Definition                                                                        |
|----------|-----------------------------------------------------------------------------------|
| ER       | Emission reductions of the project for the specific campaign (tCO <sub>2</sub> e) |
| NAP      | Nitric acid production for the project campaign (tHNO <sub>3</sub> ). The maximum |
|          | value of NAP shall not exceed the design capacity.                                |
| EFBL     | Baseline emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                  |
| EFP      | Emissions factor used to calculate the emissions from this particular             |
|          | campaign (i.e. the higher of EF <sub>ma,n</sub> and EF <sub>n</sub> )             |

9




# 5. MONITORING PLAN

#### Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of  $N_2O$  from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

#### Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.



Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions.  $N_2O$  concentration in the tail gas is measured by 3 switched concentration meters.

#### **Monitoring System architecture**

Methodology AM0034/Version 02 requires installation of an  $N_2O$  monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of  $N_2O$ .



But tail gas  $N_2O$  concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of  $N_2O$  in t  $CO_2e$  per 1 tonne of  $HNO_3$  (100%), it is necessary to include also  $HNO_3$  measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only  $N_2O$  emissions and tail gas mass volume part of the MS.

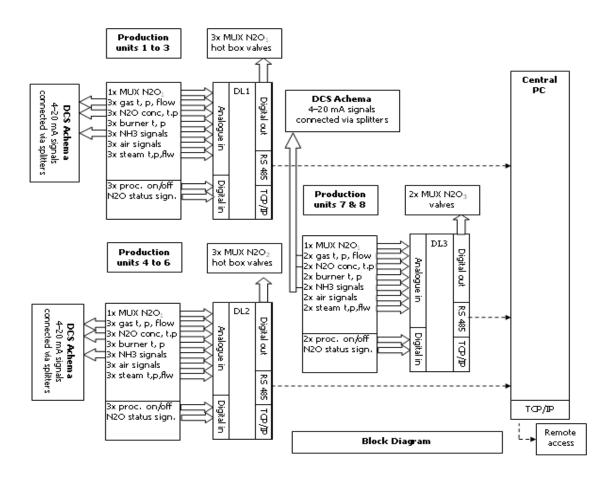
Monitoring System (MS) for purpose of this monitoring plan means:

#### monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

#### nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature


and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N<sub>2</sub>O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

11





#### N<sub>2</sub>O automated measurement system

Main purpose of the  $N_2O$  automated measurement system (AMS) is to measure total mass of  $N_2O$  emitted during particular campaigns (both baseline and project). In order of calculation of total mass of  $N_2O$  emitted during particular campaign it is necessary to measure on an extractive basis the  $N_2O$  concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

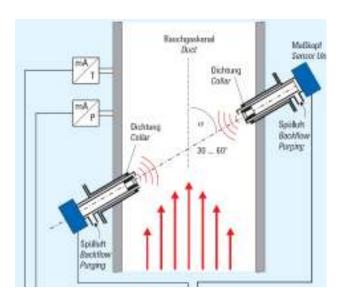
#### N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so  $N_2O$  concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail



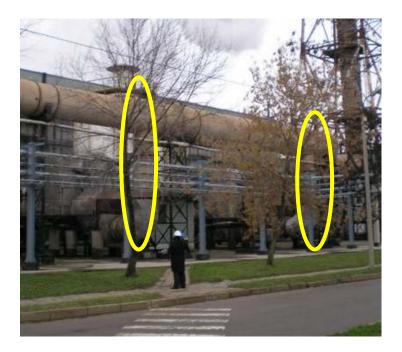
gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N<sub>2</sub>O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

N<sub>2</sub>O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

#### Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.



The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

13





Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

#### Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow N2O\*(273.15/(273.15+Temp))\*(Press/101.325)\*((100-Humi)/100)

where Humi (water content)=

(Flow\_steam\*1.2436)/(Flow\_N2O\*(273.15/(273.15+Temp))\*(Press/101.325))\*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow\_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.



Achema measures steam flow in kg/h using formula Q=C\*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

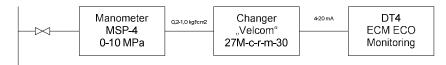
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

#### EN14181 compliance

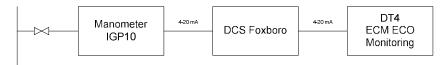
As required by the AM0034/Version 02 methodology the  $N_2O$  automated measurement system (AMS) complies with requirements of the technical norm EN14181.  $N_2O$  AMS consists from the  $N_2O$  concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the  $N_2O$  measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

#### **Operating conditions**

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


15

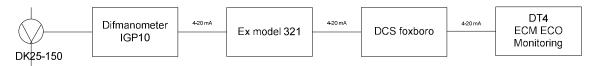
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



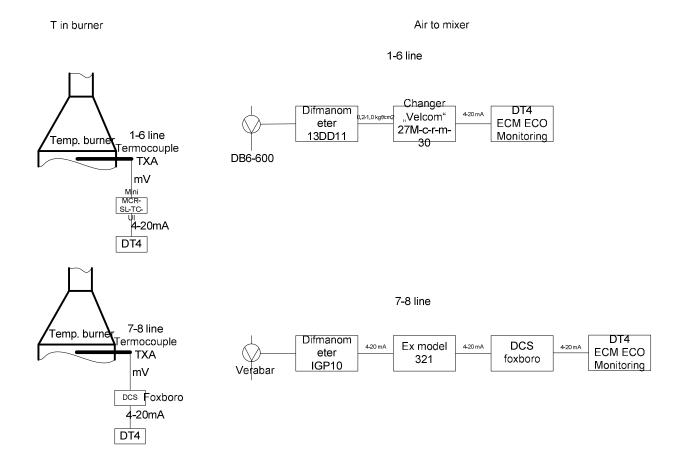

All these parameters are measured by the plant monitoring system as presented on diagrams below:

#### P in mixer 1-6 line




#### P in mixer 7-8 line




#### NH3 to mixer 1-6 line



#### NH3 to mixer 7-8 line







Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

#### Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.







The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

#### PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

18



After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 15/09/2008 project uses HNO<sub>3</sub> concentration data provided by the laboratory measurements.

© 2008, Vertis Finance

19



# 6. QAL 2 CALIBRATION ADJUSTMENTS

# 6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA
Y is the value of the parameter being objective of the measurement
a is a constant of the regression Line
b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old



This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions ( $0^{\circ}$  C, 1 atm.).

# 6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM\_0034.

# 6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in  $mgN_2O/m_3$ . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

# 6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

# 6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

21



# 7. EMISSION REDUCTION CALCULATIONS

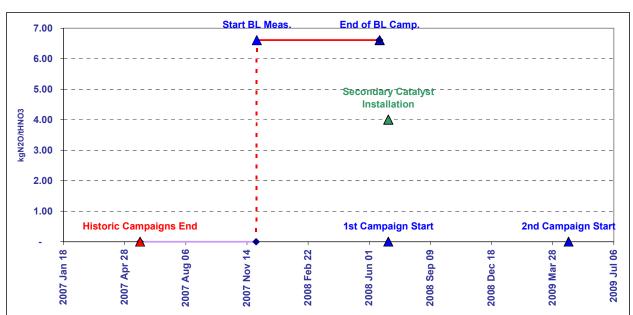
Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was  $64 \text{ tHNO}_3$  and time duration was on average 238 days. Table contains also information on suppliers of primary catalysts for the line 5.

Line ACHEMA UKL-5 Production Start End Days Production per Primary Catalyst Composition day Historic Campaigns 1 t HNO3 65 664 06 Jun 2003 23 Dec 2003 200 328 Heraeus 2 t HNO3 63 844 23 Dec 2003 24 Aug 2004 245 261 Heraeus N/A \* 3 t HNO3 58 961 01 Sep 2004 10 May 2005 251 235 Johnson Matthey N/A \* N/A \* 4 t HNO3 66 432 12 May 2005 06 Mar 2006 298 223 Johnson Matthey 69 189 06 Nov 2006 N/A 5 t HNO3 23 May 2007 198 349 Heraeus Average HNO3 production t HNO3 64 818 238 272 \* Confidential but available for the verification Project Campaigns BL t HNO3 55 079 29 Nov 2007 17 Jun 2008 201 274 Umicore N/A \* 58 648 PL t HNO3 17 Mar 2011 09 Nov 2011 Umicore 237

T 2 Historic campaigns

The project campaign production value of 58 648 tHNO3 was lower than historic nitric acid production set at level of 64 818 tHNO3.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.


T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 29/11/2007 and continued through 17/06/2008 when the 55 079 thno $_3$  nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - thno $_3$ .

#### T 3 Baseline campaign length

22

| ACHEMA UKL-5                      | Historic<br>Campaings End | Start of Baseline<br>Measurement | End of Baseline<br>Measurement NCSG | End of Baseline<br>Measurement | End of Baseline<br>Campaign |
|-----------------------------------|---------------------------|----------------------------------|-------------------------------------|--------------------------------|-----------------------------|
| Dates                             | 2007 May 23               | 2007 Nov 29                      | 2008 Jun 17                         | 2008 Jun 17                    | 2008 Jun 18                 |
| Baseline Factor kgN2O/tHNO3       | -                         | -                                | 6.61                                | 6.61                           | 6.61                        |
| Production tHNO3                  |                           | -                                | 55 079                              | 55 079                         | -                           |
| Per Day Production tHNO3          | 271.9                     |                                  |                                     |                                |                             |
| Baseline less Historic Production | (9 739.2)                 |                                  |                                     |                                |                             |
| Baseline less Historic Days       | (35.8)                    |                                  |                                     |                                |                             |





# C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 5 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 29/11/2007 through 17/06/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N<sub>2</sub>O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and  $N_2$ O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least  $600^{\circ}$ C occurred. Calculated baseline N2O emissions were 385 tN<sub>2</sub>O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 5.450%, which is further modified by an uncertainty of 0.126% due to under-sampling. As a result we have arrived to the baseline emission factor of  $6.61~kgN_2O/tHNO_3$ .



Table T 5 shows the calculation of the project emission factor on Line 5 during the project campaign. Project campaign started on 17/03/2011 and went through 09/11/2011.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of  $N_2O$  emissions ( $PE_n$ ) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of  $N_2O$  emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.09 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# T 4 Baseline emission factor

| BASELINEEM                                               | EEMISS | ION FACTOR  |                           |                      |                    |                      |                    |                          |                       |                     |                           |
|----------------------------------------------------------|--------|-------------|---------------------------|----------------------|--------------------|----------------------|--------------------|--------------------------|-----------------------|---------------------|---------------------------|
| Paran                                                    | _      | 1 ii        | Nitric Acid<br>Production | N2O<br>Concentration | Gas Volume<br>Flow | Ammonia<br>Flow Rate | Ammonia<br>to Air  | Oxidation<br>Temperature | Oxidation<br>Pressure | AMS in<br>Operation | Nitric Acid<br>Production |
| y                                                        | Code   | ОН          | NAP<br>t/h                | NCSG<br>mg N2O/Nm3   | VSG<br>Nm3/h       | AFR<br>Nm3/h         | Katio<br>AIFR<br>% | oT<br>°C                 | OP<br>kPa             | h                   | NCSG<br>NAP               |
| Elimination of extreme values                            |        |             |                           |                      |                    |                      |                    |                          |                       |                     |                           |
| Lower limit<br>Upper Limit                               |        |             | 0 20.00                   | 3 000                | 0<br>120 000       | 0<br>10 000          | 0 -<br>20.00       | 50<br>1 200              | 0<br>1 000            |                     | 0 50                      |
| Raw Data Measured Range                                  |        |             |                           |                      |                    |                      |                    |                          |                       |                     |                           |
| Count                                                    |        | 4 519       | 4 571                     | 4 660                | 4 558              | 4 701                | 4 4 1 4            | 4 797                    | 4 698                 | 4064                | 4 571                     |
| as % of Dataset                                          |        | 94%         | %96                       | %26                  | 94%                | %26                  | %26                | %66                      | 6                     | 84%                 | 95%                       |
| Minimum                                                  |        |             | . !                       | 0                    | •                  | 315                  | •                  | (0)                      |                       |                     | 1                         |
| Maximum                                                  |        |             | 15.02                     | 2 289                | 82 389             | 6482                 | 19.73              | 908                      | 673                   |                     | 15                        |
| Standard Deviation<br>Total                              |        |             | 3.12<br>3.12<br>55 079    | 268                  | 15 041             | 2825<br>066          | 0.81               | 195                      |                       |                     | 3<br>55 079               |
|                                                          |        |             |                           |                      |                    |                      |                    |                          |                       |                     |                           |
| N2O Emissions ( VSG * NCSG * OH) Emission Factor         |        | 365<br>6.27 | t N2O<br>kgN2O / tHNO3    |                      |                    |                      |                    |                          |                       |                     |                           |
| Permitted Range                                          |        |             |                           |                      |                    |                      |                    |                          |                       |                     |                           |
| Minimum                                                  |        |             |                           |                      |                    | 4 500                | 0                  | 880                      | 008                   |                     |                           |
| Data within the nermitted range                          |        |             |                           |                      |                    |                      |                    |                          |                       |                     |                           |
|                                                          |        | 0767        |                           | 1 244                | 1 044              |                      |                    |                          |                       | 4064                |                           |
| as % of Operating Hours                                  |        | 94%         |                           | 4 2 1 1              | 93%                |                      |                    |                          |                       | 4004<br>90%         |                           |
| Minimum                                                  |        |             |                           | 717                  | 6 7 2 8            |                      |                    |                          |                       |                     |                           |
| Maximum                                                  |        |             |                           | 2 289                | 78 602             |                      |                    |                          |                       |                     |                           |
| Mean<br>Standard Deviation                               |        |             |                           | 1 234<br>225         | 68 731<br>2 256    |                      |                    |                          |                       |                     |                           |
|                                                          |        |             |                           |                      |                    |                      |                    |                          |                       |                     |                           |
| N2O Emissions (VSG * NCSG * OH) Emission Factor          |        | 383<br>6.58 | t N2O<br>kgN2O / tHNO3    |                      |                    |                      |                    |                          |                       |                     |                           |
| Data within the confidence interval                      |        |             |                           |                      |                    |                      |                    |                          |                       |                     |                           |
| 95% Confidence interval                                  |        |             |                           |                      |                    |                      |                    |                          |                       |                     |                           |
| Lower bound<br>Upper bound                               |        |             |                           | 793<br>1 675         | 64 309<br>73 153   |                      |                    |                          |                       |                     |                           |
| trie C                                                   |        |             |                           | 800                  | 4.063              |                      |                    |                          |                       |                     |                           |
| as % of Operating Hours                                  |        |             |                           | %68                  | %06                |                      |                    |                          |                       |                     |                           |
| Minimum                                                  |        |             |                           | 962                  | 64 317             |                      |                    |                          |                       |                     |                           |
| Maximum                                                  |        |             |                           | 1 674                | 73 152             |                      |                    |                          |                       |                     |                           |
| Mean<br>Standard Deviation                               |        |             |                           | 1 240                | 68 /11<br>1 796    |                      |                    |                          |                       |                     |                           |
|                                                          |        |             |                           |                      |                    |                      |                    |                          |                       |                     |                           |
| N2O Emissions ( VSG * NCSG * OH) Emission Factor (EF_BL) |        | 385<br>6.61 | t N2O<br>kgN2O / tHNO3    |                      |                    |                      |                    |                          |                       |                     |                           |
|                                                          |        |             |                           |                      |                    |                      |                    |                          |                       |                     |                           |



# T 5 Project emission factor

|                                             |           |                 | PROJECT E                 | PROJECT EMISSION FACTOR |                    |                      |                   |                          |                       |
|---------------------------------------------|-----------|-----------------|---------------------------|-------------------------|--------------------|----------------------|-------------------|--------------------------|-----------------------|
| 4                                           | Parameter | Operating Hours | Nitric Acid<br>Production | N2O<br>Concentration    | Gas Volume<br>Flow | Ammonia<br>Flow Rate | Ammonia<br>to Air | Oxidation<br>Temperature | Oxidation<br>Pressure |
|                                             | Code      | OH<br>h         | NAP<br>t/h                | NCSG<br>mg N2O/Nm3      | VSG<br>Nm3/h       | AFR<br>Nm3/h         | AIFR              | OT<br>°C                 | OP<br>KPa             |
| Elimination of extreme values               |           |                 |                           |                         |                    |                      |                   |                          |                       |
| Lower limit<br>Upper Limit                  |           |                 | 0 20.00                   | 3 000                   | 0<br>120 000       | 10 000               | - 0<br>20.00      | 50<br>1 200              | 1 000                 |
| Raw Data Measured Range                     |           |                 |                           |                         |                    |                      |                   |                          |                       |
| Count                                       |           | 3 919           | 4 559                     | 3 838                   | 3 872              | 5 275                | 4 729             | 5 661                    | 5 620                 |
| as % of Dataset<br>Minimum                  |           | %60<br>60       | 0.59                      | 167                     | 63 479             | 93%<br>291           | 93<br>2 %         | %001<br>0                | %<br>66               |
| Maximum                                     |           |                 | 16.88                     | 1 306                   | 108 774            | 6 539                | 19.69             | 606                      | 720                   |
| Mean<br>Standard Deviation<br>Total         |           |                 | 12.86<br>4.56<br>58 648   | 380                     | 68 825<br>2 180    | 4 842<br>2 280       | 10.44<br>1.38     | 635<br>390               | 538<br>233            |
| N2O Emissions (VSG * NCSG * OH)             |           | 103             | t N20                     |                         |                    |                      |                   |                          |                       |
| ETHISSION FACTOR                            |           | 67:1            | KginzO / ITINOS           |                         |                    |                      |                   |                          |                       |
| Data within the confidence interval         |           |                 |                           |                         |                    |                      |                   |                          |                       |
| 95% Confidence interval                     |           |                 |                           | 040                     | 64 553             |                      |                   |                          |                       |
| Upper bound                                 |           |                 |                           | 519                     | 73 097             |                      |                   |                          |                       |
| ţ                                           |           |                 |                           | 6                       | 3 752              |                      |                   |                          |                       |
| Sount as % of Operating Hours               |           |                 |                           | 92%                     | %96<br>36/3        |                      |                   |                          |                       |
| Minimum                                     |           |                 |                           | 242                     | 64 622             |                      |                   |                          |                       |
| Maximum<br>Mean                             |           |                 |                           | 519                     | 73 080             |                      |                   |                          |                       |
| Standard Deviation                          |           |                 |                           | 57                      | 1879               |                      |                   |                          |                       |
| N2O Emissions ( VSG * NCSG * OH)            |           | 100             | t N2O                     |                         |                    |                      |                   |                          |                       |
| Actual Project Emission Factor (EF_PActual) |           | 1.71            | kgN2O / tHNO3             |                         |                    |                      |                   |                          |                       |
| Abatement Ratio                             |           | 74.1%           |                           |                         |                    |                      |                   |                          |                       |
| Moving Average Emission Factor Correction   | 1         | Actual Factors  | Moving Average Rule       | ule                     |                    |                      |                   |                          |                       |
|                                             | -         | 1.68            | 1.68                      |                         |                    |                      |                   |                          |                       |
|                                             |           | 2.90            | 2.90                      |                         |                    |                      |                   |                          |                       |
|                                             | <b>4</b>  | 1.7.1           | 2.22                      |                         |                    |                      |                   |                          |                       |
|                                             | ĸ         | 1               |                           |                         |                    |                      |                   |                          |                       |
| D.:                                         |           |                 |                           |                         |                    |                      |                   |                          |                       |
| Project Emission Factor (EF_P)              |           | 2.09            | 2.09 kgNZO / tHNO3        |                         |                    |                      |                   |                          |                       |
| Abatement natio                             |           | 00.4.00         |                           |                         |                    |                      |                   |                          |                       |
|                                             |           |                 |                           |                         |                    |                      |                   |                          |                       |

# **MONITORING REPORT**

**PROJECT:** ACHEMA UKL nitric acid plant N<sub>2</sub>O abatement project

LINE: Line 6

**MONITORING PERIOD:** 

FROM: 01/10/2010

TO: 10/08/2011

# Prepared by:



**VERTIS FINANCE** 

www.vertisfinance.com



# **Table of Contents**

| 1. |                   | EXECUTIVE SUMMARY                                                             | 3             |
|----|-------------------|-------------------------------------------------------------------------------|---------------|
| 2. |                   | DESCRIPTION OF THE PROJECT ACTIVITY                                           | 4             |
| 3. |                   | BASELINE SETTING                                                              | 5             |
|    | 3.1<br>3.1<br>3.1 |                                                                               | <b>6</b><br>6 |
|    | 3.2               | PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT              | 6             |
|    | 3.3               | HISTORIC CAMPAIGN LENGTH                                                      | 7             |
| 4. | 4.1               | PROJECT EMISSIONS  1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR | <b>8</b>      |
|    | 4.1               | 2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR                              | 8             |
|    | 4.2               | MINIMUM PROJECT EMISSION FACTOR                                               | 8             |
|    | 4.3               | PROJECT CAMPAIGN LENGTH                                                       | 8             |
|    | 4.4               | LEAKAGE                                                                       | 9             |
|    | 4.5               | EMISSION REDUCTIONS                                                           | 9             |
| 5. |                   | MONITORING PLAN                                                               | 10            |
| 6. |                   | QAL 2 CALIBRATION ADJUSTMENTS                                                 | 20            |
|    | 6.1               | APPLIED PRINCIPLE                                                             | 20            |
|    | 6.2               | STACK GAS VOLUME FLOW                                                         | 21            |
|    | 6.3               | NITRIC ACID CONCENTRATION IN STACK GAS                                        | 21            |
|    | 6.4               | STACK GAS TEMPERATURE                                                         | 21            |
|    | 6.5               | STACK GAS PRESSURE                                                            | 21            |
| 7  |                   | EMISSION REDUCTION CALCUL ATIONS                                              | 22            |



# 1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 6 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the third project campaign on Line 6.

The first project campaign on Line 6 started on 21/07/2008. Secondary catalyst was installed on 25/07/2008. Total quantity of emission reductions generated during the third project period from 01/10/2010 through 10/08/2011 on Line 6 is **214 833 ERUs**.

#### T 1 Emission reduction calculations

| EMISSIC                                            | ON REDUCTION |         |             |
|----------------------------------------------------|--------------|---------|-------------|
| Baseline Emission Factor                           | EF_BL        | 10.34   | kgN2O/tHNO3 |
| Project Campaign Emission Factor                   | EF_P         | 4.03    | kgN2O/tHNO3 |
| Nitric Acid Produced in the Baseline Campaign      | NAP_BL       | 60 850  | tHNO3       |
| Nitric Acid Produced in the NCSG Baseline Campaign | NAP_BL_NCSG  | 60 850  | tHNO3       |
| Nitric Acid Produced in the Project Campaign       | NAP_P        | 109 827 | tHNO3       |
| GWP                                                | GWP          | 310     | tCO2e/tN2O  |
| Emission Reduction                                 | ER           | 214 833 | tCOe        |
| ER=(EF_BL-EF_P)*NAP_P*GWP/1000                     |              |         |             |
| Abatement Ratio                                    |              | 76.1%   | )           |

| EMISSION REDUCT               | ION PER YI | EAR         |             |
|-------------------------------|------------|-------------|-------------|
| Year                          | 2009       | 2010        | 2011        |
| Date From                     |            | 01 Oct 2010 | 01 Jan 2011 |
| Date To                       |            | 31 Dec 2010 | 10 Aug 2011 |
| Nitric Acid Production        |            | 31 515      | 78 822      |
| Emission Reduction            |            | 61 361      | 153 471     |
| ER_YR = ER * NAP_P_YR / NAP_P |            |             |             |

Baseline emission factor established for the Line 6 during baseline measurement carried from 11/01/2008 through 21/07/2008 is 10.34 kgN<sub>2</sub>O/tHNO<sub>3</sub>.

Project emission factor during the third project campaign after installation of secondary catalysts on Line 6, which started on 01/10/2010 and went through 10/08/2011 with secondary catalyst installed and commissioned on 25/07/2008, is 4.03 kgN<sub>2</sub>O/tHNO<sub>3</sub>.

3

During the project campaign 109 827 tonnes of nitric acid was produced.



# 2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide ( $N_2O$ ) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary  $N_2O$  reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 6 emission reductions including information on baseline emission factor setting for the Line 6.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.



# 3. BASELINE SETTING

Baseline emission factor for line 6 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 6 has been carried out from 11/01/2008 through 21/07/2008.

N<sub>2</sub>O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N<sub>2</sub>O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of  $N_2O$  concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N<sub>2</sub>O concentration of stack gas (NCSG))

The average mass of  $N_2O$  emissions per hour is estimated as product of the NCSG and VSG. The  $N_2O$  emissions per campaign are estimates product of  $N_2O$  emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average  $N_2O$  emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of  $N_2O$  emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The  $N_2O$  emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:



| Variable           | Definition                                                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $EF_BL$            | Baseline N <sub>2</sub> O emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                                             |
| $BE_{BC}$          | Total N <sub>2</sub> O emissions during the baseline campaign (tN <sub>2</sub> O)                                             |
| NCSG <sub>BC</sub> | Mean concentration of $N_2O$ in the stack gas during the baseline campaign $(mgN_2O/m^3)$                                     |
| $OH_{BC}$          | Operating hours of the baseline campaign (h)                                                                                  |
| VSG <sub>BC</sub>  | Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)                                              |
| $NAP_{BC}$         | Nitric acid production during the baseline campaign (tHNO <sub>3</sub> )                                                      |
| UNC                | Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment. |

# 3.1 Measurement procedure for N<sub>2</sub>O concentration and tail gas volume flow

#### 3.1.1 Tail gas N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 6 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4 $^{\circ}$ C), so N<sub>2</sub>O concentration is measured on a dry basis.

 $N_2O$  concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis.

 $N_2O$  concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# 3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# 3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline  $N_2O$  emission factor may be outside the permitted range or limit corresponding to normal operating conditions.  $N_2O$  baseline data measured during hours



where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

# 3.3 Historic Campaign Length

The average historic campaign length ( $CL_{normal}$ ) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.



# 4. PROJECT EMISSIONS

During the first project campaign on line 6 the tail gas volume flow in the stack of the nitric acid plant as well as  $N_2O$  concentration have been measured on the continuous basis.

# 4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for  $N_2O$  concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

#### where:

| variable | Definition                                                                                   |
|----------|----------------------------------------------------------------------------------------------|
| VSG      | Mean stack gas volume flow rate for the project campaign (m <sup>3</sup> /h)                 |
| NCSG     | Mean concentration of $N_2O$ in the stack gas for the project campaign $(mgN_2O/m^3)$        |
| $PE_n$   | Total N <sub>2</sub> O emissions of the n <sup>th</sup> project campaign (tN <sub>2</sub> O) |
| OH       | Is the number of hours of operation in the specific monitoring period (h)                    |

# 4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# 4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

8

# 4.3 Project Campaign Length



Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

# 4.4 Leakage

No leakage calculation is required.

#### 4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of  $N_2O$ :

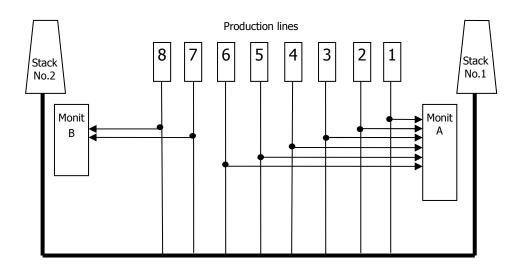
$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

#### Where:

| Variable | Definition                                                                        |
|----------|-----------------------------------------------------------------------------------|
| ER       | Emission reductions of the project for the specific campaign (tCO <sub>2</sub> e) |
| NAP      | Nitric acid production for the project campaign (tHNO <sub>3</sub> ). The maximum |
|          | value of NAP shall not exceed the design capacity.                                |
| EFBL     | Baseline emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                  |
| EFP      | Emissions factor used to calculate the emissions from this particular             |
|          | campaign (i.e. the higher of EF <sub>ma,n</sub> and EF <sub>n</sub> )             |

9




# 5. MONITORING PLAN

#### Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of  $N_2O$  from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

#### Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.



Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions.  $N_2O$  concentration in the tail gas is measured by 3 switched concentration meters.

#### **Monitoring System architecture**

Methodology AM0034/Version 02 requires installation of an  $N_2O$  monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of  $N_2O$ .



But tail gas  $N_2O$  concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of  $N_2O$  in t  $CO_2e$  per 1 tonne of  $HNO_3$  (100%), it is necessary to include also  $HNO_3$  measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only  $N_2O$  emissions and tail gas mass volume part of the MS.

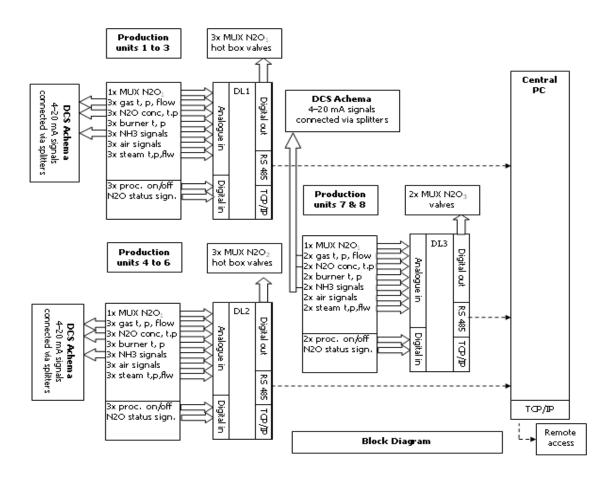
Monitoring System (MS) for purpose of this monitoring plan means:

#### monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

#### nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature


and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N<sub>2</sub>O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

11





#### N<sub>2</sub>O automated measurement system

Main purpose of the  $N_2O$  automated measurement system (AMS) is to measure total mass of  $N_2O$  emitted during particular campaigns (both baseline and project). In order of calculation of total mass of  $N_2O$  emitted during particular campaign it is necessary to measure on an extractive basis the  $N_2O$  concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

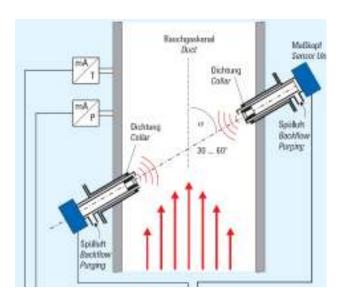
#### N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so  $N_2O$  concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail



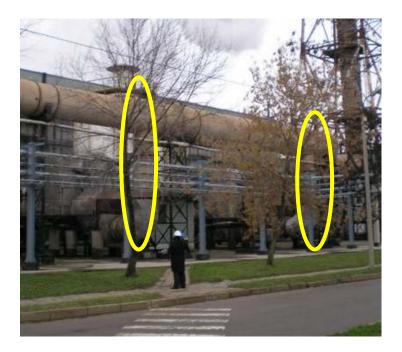
gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N<sub>2</sub>O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

N<sub>2</sub>O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.



The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

13





Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow N2O\*(273.15/(273.15+Temp))\*(Press/101.325)\*((100-Humi)/100)

where Humi (water content)=

(Flow\_steam\*1.2436)/(Flow\_N2O\*(273.15/(273.15+Temp))\*(Press/101.325))\*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow\_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.



Achema measures steam flow in kg/h using formula Q=C\*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

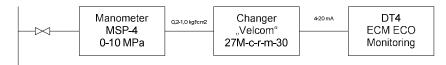
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

# EN14181 compliance

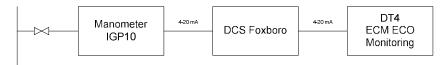
As required by the AM0034/Version 02 methodology the  $N_2O$  automated measurement system (AMS) complies with requirements of the technical norm EN14181.  $N_2O$  AMS consists from the  $N_2O$  concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the  $N_2O$  measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

# **Operating conditions**

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


15

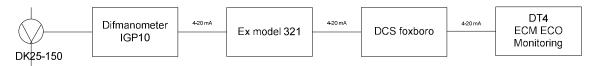
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



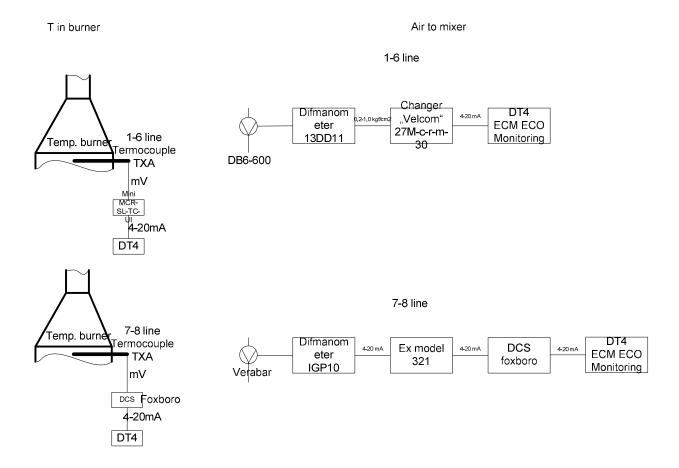

All these parameters are measured by the plant monitoring system as presented on diagrams below:

# P in mixer 1-6 line




# P in mixer 7-8 line




# NH3 to mixer 1-6 line



# NH3 to mixer 7-8 line







Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

# Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.







The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

# PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

18



After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 08/09/2008 project uses HNO<sub>3</sub> concentration data provided by the laboratory measurements.

© 2008, Vertis Finance

19



# 6. QAL 2 CALIBRATION ADJUSTMENTS

# 6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old



This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions ( $0^{\circ}$  C, 1 atm.).

# 6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM\_0034.

# 6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in  $mgN_2O/m_3$ . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

# 6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

# 6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

21



# 7. EMISSION REDUCTION CALCULATIONS

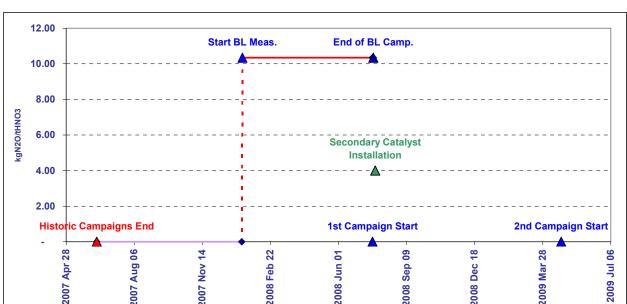
Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 61 through through through through the duration was on average 241 days. Table contains also information on suppliers of primary catalysts for the line 6.

Line ACHEMA UKL-6 Production Start End Days Production per Primary Catalyst Composition day Historic Campaigns 1 t HNO3 62 918 28 Aug 2003 25 Mar 2004 210 300 Heraeus 2 t HNO3 61 366 01 Apr 2004 02 Feb 2005 307 200 Johnson Matthey N/A \* 3 t HNO3 64 872 26 Jul 2005 10 Mar 2006 227 286 Johnson Matthey N/A \* N/A \* 4 t HNO3 55 693 10 Mar 2006 29 Nov 2006 264 211 Umicore 29 Nov 2006 N/A 5 t HNO3 63 148 12 Jun 2007 195 324 Heraeus Average HNO3 production t HNO3 61 599 241 256 \* Confidential but available for the verification Project Campaigns BL t HNO3 60 850 11 Jan 2008 21 Jul 2008 192 317 Heraeus N/A \* 109 827 10 Aug 2011 01 Oct 2010 PL t HNO3 314 Heraeus

T 2 Historic campaigns

The project campaign production value of 110 337 tHNO3 was higher than historic nitric acid production set at level of 61 599 tHNO3.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.


T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 11/01/2008 and continued through 21/07/2008 when the  $60~850~tHNO_3$  nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached -  $tHNO_3$ .

# T 3 Baseline campaign length

22

| ACHEMA UKL-6                      | Historic<br>Campaings End | Start of Baseline<br>Measurement | End of Baseline<br>Measurement NCSG | End of Baseline<br>Measurement | End of Baseline<br>Campaign |
|-----------------------------------|---------------------------|----------------------------------|-------------------------------------|--------------------------------|-----------------------------|
| Dates                             | 2007 Jun 12               | 2008 Jan 11                      | 2008 Jul 21                         | 2008 Jul 21                    | 2008 Jul 22                 |
| Baseline Factor kgN2O/tHNO3       | _                         | _                                | 10.34                               | 10.34                          | 10.34                       |
| Production tHNO3                  |                           | -                                | 60 850                              | 60 850                         | -                           |
| Per Day Production tHNO3          | 256.0                     |                                  |                                     |                                |                             |
| Baseline less Historic Production | (749.3)                   |                                  |                                     |                                |                             |
| Baseline less Historic Days       | (2.9)                     |                                  |                                     |                                |                             |





# C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 6 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 11/01/2008 through 21/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of  $N_2O$  concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and  $N_2$ O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least  $600^{\circ}$ C occurred. Calculated baseline N2O emissions were 667 tN<sub>2</sub>O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 5.620%, which is further modified by an uncertainty of 0.105% due to under-sampling. As a result we have arrived to the baseline emission factor of  $10.34~kgN_2O/tHNO_3$ .



Table T 5 shows the calculation of the project emission factor on Line 6 during the project campaign. Project campaign started on 01/10/2010 and went through 10/08/2011.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of  $N_2O$  emissions ( $PE_n$ ) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of  $N_2O$  emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 4.03 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# T 4 Baseline emission factor

| BASELINE                                                  | SSIME        | ION FACTOR               |                                 |                      | ı                  | ı                    | ı                  | I                        | ı                     | ı                   |                           |
|-----------------------------------------------------------|--------------|--------------------------|---------------------------------|----------------------|--------------------|----------------------|--------------------|--------------------------|-----------------------|---------------------|---------------------------|
|                                                           |              |                          | Nitric Acid<br>Production       | N2O<br>Concentration | Gas Volume<br>Flow | Ammonia<br>Flow Rate | Ammonia<br>to Air  | Oxidation<br>Temperature | Oxidation<br>Pressure | AMS in<br>Operation | Nitric Acid<br>Production |
| ກ<br>ນ                                                    | Code<br>Unit | ОН                       | NAP<br>t/h                      | NCSG<br>mg N2O/Nm3   | VSG<br>Nm3/h       | AFR<br>Nm3/h         | Katio<br>AIFR<br>% | OT<br>°C                 | OP<br>kPa             | h                   | NCSG<br>NAP<br>t/h        |
| Elimination of extreme values                             |              |                          |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Lower limit<br>Upper Limit                                |              |                          | 0<br>20.00                      | 3 000                | 0<br>120 000       | 0<br>10 000          | 0 -<br>20.00       | 50<br>1 200              | 0<br>1 000            |                     | 0 50                      |
| Raw Data Measured Range                                   |              |                          |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Count                                                     |              | 4 233                    | 4 363                           | 4 494                | 4 290              | 4324                 | 4 361              | 4 585                    | 4 564                 | 3                   | 4 363                     |
| as % of Dataset                                           |              | %76                      | %96                             | %86                  | 93%                | 94%                  | %26                | 100%                     | %66                   | %98                 | %56                       |
| Minmum<br>Maximum                                         |              |                          | 16.37                           | 2.303                | 117 970            | 568                  | - 17<br>87 72      | (1)<br>905               | 0 634                 |                     | , 4                       |
| Mean                                                      |              |                          | 13.95                           | 1 422                | 096 66             | 6 050                | 10.50              | 833                      | 283                   |                     | 5 4                       |
| Standard Deviation<br>Total                               |              |                          | 3.18<br>60 850                  | 416                  | 17 673             | 456                  | 1.70               | 201                      | 44                    |                     | 3<br>60 850               |
| 110 10001111 00111                                        |              |                          |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| N2O Emissions ( VSG * NCSG * OH) Emission Factor          |              | 602<br>9.33              | 602 t N2O<br>9.33 kgN2O / tHNO3 |                      |                    |                      |                    |                          |                       |                     |                           |
| Permitted Range                                           |              |                          |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Minimum                                                   |              |                          |                                 |                      |                    | 4 500                | 0                  | 880                      | 0                     |                     |                           |
| Maximum                                                   |              |                          |                                 |                      |                    | 006 /                | 11./0              | 910                      | 800                   |                     |                           |
| Data within the permitted range                           |              |                          |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Count                                                     |              | 4 116                    |                                 | 4 015                | 4 015              |                      |                    |                          |                       | 3944                |                           |
| as % of Operating Hours                                   |              | %/6                      |                                 | %26<br>2             | 95%                |                      |                    |                          |                       | 93%                 |                           |
| Maximum                                                   |              |                          |                                 | 2 074                | 110 925            |                      |                    |                          |                       |                     |                           |
| Mean                                                      |              |                          |                                 | 1 456                | 103 058            |                      |                    |                          |                       |                     |                           |
| Standard Deviation                                        |              |                          |                                 | 312                  | 2 541              |                      |                    |                          |                       |                     |                           |
| N2O Emissions (VSG * NCSG * OH)<br>Emission Factor        |              | 635 t N2O<br>9.85 kgN2O  | t N2O<br>kgN2O / tHNO3          |                      |                    |                      |                    |                          |                       |                     |                           |
| Data within the confidence interval                       |              |                          |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| 95% Confidence interval                                   |              |                          |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Lower bound<br>  Upper bound                              |              |                          |                                 | 844<br>2 068         | 98 078             |                      |                    |                          |                       |                     |                           |
| : :                                                       |              |                          |                                 | C                    | 0                  |                      |                    |                          |                       |                     |                           |
| Count as % of Operating Hours                             |              |                          |                                 | 3 695                | 3 991              |                      |                    |                          |                       |                     |                           |
| Minimum                                                   |              |                          |                                 | 266                  | 98 180             |                      |                    |                          |                       |                     |                           |
| Maximum                                                   |              |                          |                                 | 2 062                | 108 018            |                      |                    |                          |                       |                     |                           |
| Mean<br>Standard Deviation                                |              |                          |                                 | 1 528                | 103 105<br>1 728   |                      |                    |                          |                       |                     |                           |
|                                                           |              |                          |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| N2O Emissions(VSG * NCSG * OH)<br>Emission Factor (EF_BL) |              | 667 t N2O<br>10.34 kgN2C | 667 t N2O<br>10.34 kgN2O/tHNO3  |                      |                    |                      |                    |                          |                       |                     |                           |
|                                                           |              |                          |                                 |                      |                    |                      |                    |                          |                       |                     |                           |



# T 5 Project emission factor

|                                                     |              |                 | PROJECT EI                  | PROJECT EMISSION FACTOR |                    |                      |                   |                          |                       |
|-----------------------------------------------------|--------------|-----------------|-----------------------------|-------------------------|--------------------|----------------------|-------------------|--------------------------|-----------------------|
| *                                                   | Parameter    | Operating Hours | Nitric Acid<br>Production   | N2O<br>Concentration    | Gas Volume<br>Flow | Ammonia<br>Flow Rate | Ammonia<br>to Air | Oxidation<br>Temperature | Oxidation<br>Pressure |
|                                                     | Code<br>Unit | OH<br>h         | NAP<br>t/h                  | NCSG<br>mg N2O/Nm3      | VSG<br>Nm3/h       | AFR<br>Nm3/h         | AIFR              | OT<br>°C                 | OP<br>KPa             |
| Elimination of extreme values                       |              |                 |                             |                         |                    |                      |                   |                          |                       |
| Lower limit<br>Upper Limit                          |              |                 | 0 20.00                     | 3 000                   | 0<br>120 000       | 0<br>10 000          | - 0 20.00         | 50<br>1 200              | 1 000                 |
| Raw Data Measured Range                             |              |                 |                             |                         |                    |                      |                   |                          |                       |
| Count<br>as % of Dataset                            |              | 7 103<br>94%    | 7 478                       | %£6<br>696 9            | 7 070<br>94%       | 7 528<br>100%        | 7 110<br>94%      | 7 528<br>100%            | 7 501<br>100%         |
| Minimum<br>Maximum                                  |              |                 | 17.82                       | 90                      | 101 511            | 142                  | 0                 | 20                       | 0 203                 |
| Mean<br>Nean<br>Standard Deviation<br>Total         |              |                 | 14.75<br>2.56<br>110.337    | 422<br>422<br>53        | 90 039             | 6 174<br>857         | 10.34             | 847                      | 609<br>309            |
| 10.00                                               |              |                 | П                           |                         |                    |                      |                   |                          |                       |
| N2O Emissions ( VSG * NCSG * OH)<br>Emission Factor |              | 270<br>2.44     | t N2O<br>kgN2O / tHNO3      |                         |                    |                      |                   |                          |                       |
| Data within the confidence interval                 |              |                 |                             |                         |                    |                      |                   |                          |                       |
| 95% Confidence interval                             |              |                 |                             |                         | 1                  |                      |                   |                          |                       |
| Lower bound Upper bound                             |              |                 |                             | 319<br>525              | 78 706<br>101 373  |                      |                   |                          |                       |
| 1000                                                |              |                 |                             | 0                       | 0                  |                      |                   |                          |                       |
| Count<br>as % of Operating Hours                    |              |                 |                             | 6 686<br>94%            | 7.07/<br>99%       |                      |                   |                          |                       |
| Minimum                                             |              |                 |                             | 319                     | 78 814             |                      |                   |                          |                       |
| Maximum<br>Mean                                     |              |                 |                             | 524<br>425              | 100 878            |                      |                   |                          |                       |
| Standard Deviation                                  |              |                 |                             | 48                      | 2 951              |                      |                   |                          |                       |
| N2O Emissions ( VSG * NCSG * OH)                    |              | 273             | + N2O                       |                         |                    |                      |                   |                          |                       |
| Actual Project Emission Factor (EF_PActual)         |              | 2.48            | kgN2O / tHNO3               |                         |                    |                      |                   |                          |                       |
| Abatement Ratio                                     |              | 76.1%           |                             |                         |                    |                      |                   |                          |                       |
| Moving Average Emission Factor Correction           |              | Actual Factors  | Moving Average Rule         | ule                     |                    |                      |                   |                          |                       |
|                                                     | ← 0          | 4.94            | 4.94                        |                         |                    |                      |                   |                          |                       |
|                                                     | <b>4</b> 60  | 4.39            | 4.67                        |                         |                    |                      |                   |                          |                       |
|                                                     | 4            | 2.48            | 4.03                        |                         |                    |                      |                   |                          |                       |
|                                                     | S            |                 |                             |                         |                    |                      |                   |                          |                       |
|                                                     |              |                 |                             |                         |                    |                      |                   |                          |                       |
| Project Emission Factor (EF_P) Abatement Ratio      |              | 4.03<br>61.1%   | 4.03 kgN2O / tHNO3<br>61.1% |                         |                    |                      |                   |                          |                       |
|                                                     |              |                 |                             |                         |                    |                      |                   |                          |                       |

# **MONITORING REPORT**

PROJECT: ACHEMA UKL nitric acid plant N<sub>2</sub>O abatement project

LINE: Line 7

**MONITORING PERIOD:** 

FROM: 10/12/2010

TO: 30/08/2011

# Prepared by:



**VERTIS FINANCE** 

www.vertisfinance.com



# **Table of Contents**

| 1. |            | EXECUTIVE SUMMARY                                                             | 3             |
|----|------------|-------------------------------------------------------------------------------|---------------|
| 2. |            | DESCRIPTION OF THE PROJECT ACTIVITY                                           | 4             |
| 3. |            | BASELINE SETTING                                                              | 5             |
|    | 3.1<br>3.1 |                                                                               | <b>6</b><br>6 |
|    | 3.2        | PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT              | 6             |
|    | 3.3        | HISTORIC CAMPAIGN LENGTH                                                      | 7             |
| 4. | 4.1        | PROJECT EMISSIONS  1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR | <b>8</b>      |
|    | 4.1        | 2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR                              | 8             |
|    | 4.2        | MINIMUM PROJECT EMISSION FACTOR                                               | 8             |
|    | 4.3        | PROJECT CAMPAIGN LENGTH                                                       | 8             |
|    | 4.4        | LEAKAGE                                                                       | 9             |
|    | 4.5        | EMISSION REDUCTIONS                                                           | 9             |
| 5. |            | MONITORING PLAN                                                               | 10            |
| 6. |            | QAL 2 CALIBRATION ADJUSTMENTS                                                 | 20            |
|    | 6.1        | APPLIED PRINCIPLE                                                             | 20            |
|    | 6.2        | STACK GAS VOLUME FLOW                                                         | 21            |
|    | 6.3        | NITRIC ACID CONCENTRATION IN STACK GAS                                        | 21            |
|    | 6.4        | STACK GAS TEMPERATURE                                                         | 21            |
|    | 6.5        | STACK GAS PRESSURE                                                            | 21            |
| 7  |            | EMISSION REDUCTION CALCULATIONS                                               | 22            |



# 1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 7 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the fourth project campaign on Line 7.

The first project campaign on Line 7 started on 28/03/2008. Secondary catalyst was installed on 03/07/2008. Total quantity of emission reductions generated during the fourth project period from 10/12/2010 through 30/08/2011 on Line 7 is **163 985 ERUs**.

# T 1 Emission reduction calculations

| EMISSIC                                            | ON REDUCTION |         |             |
|----------------------------------------------------|--------------|---------|-------------|
| Baseline Emission Factor                           | EF_BL        | 9.09    | kgN2O/tHNO3 |
| Project Campaign Emission Factor                   | EF_P         | 2.01    | kgN2O/tHNO3 |
| Nitric Acid Produced in the Baseline Campaign      | NAP_BL       | 55 626  | tHNO3       |
| Nitric Acid Produced in the NCSG Baseline Campaign | NAP_BL_NCSG  | 55 626  | tHNO3       |
| Nitric Acid Produced in the Project Campaign       | NAP_P        | 74 715  | tHNO3       |
| GWP                                                | GWP          | 310     | tCO2e/tN2O  |
| Emission Reduction                                 | ER           | 163 985 | tCOe        |
| ER=(EF_BL-EF_P)*NAP_P*GWP/1000                     |              |         |             |
| Abatement Ratio                                    |              | 87.7%   | 1           |

| EMISSION REDUCT               | ION PER YI | EAR         |             |
|-------------------------------|------------|-------------|-------------|
| Year                          | 2009       | 2010        | 2011        |
| Date From                     |            | 10 Dec 2010 | 01 Jan 2011 |
| Date To                       |            | 31 Dec 2010 | 30 Aug 2011 |
| Nitric Acid Production        |            | 6 843       | 67 872      |
| Emission Reduction            |            | 15 019      | 148 966     |
| ER_YR = ER * NAP_P_YR / NAP_P |            |             |             |

Baseline emission factor established for the Line 7 during baseline measurement carried from 12/09/2007 through 27/03/2008 is  $9.09~kgN_2O/tHNO_3$ .

Project emission factor during the fourth project campaign after installation of secondary catalysts on Line 7, which started on 10/12/2010 and went through 30/08/2011 with secondary catalyst installed and commissioned on 03/07/2008, is 2.01 kgN<sub>2</sub>O/tHNO<sub>3</sub>.

3

During the project campaign 74 715 tonnes of nitric acid was produced.



# 2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide ( $N_2O$ ) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary  $N_2O$  reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 7 emission reductions including information on baseline emission factor setting for the Line 7.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.



# 3. BASELINE SETTING

Baseline emission factor for line 7 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 7 has been carried out from 12/09/2007 through 27/03/2008.

N<sub>2</sub>O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N<sub>2</sub>O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of  $N_2O$  concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N<sub>2</sub>O concentration of stack gas (NCSG))

The average mass of  $N_2O$  emissions per hour is estimated as product of the NCSG and VSG. The  $N_2O$  emissions per campaign are estimates product of  $N_2O$  emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average  $N_2O$  emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of  $N_2O$  emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The  $N_2O$  emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:



| Variable           | Definition                                                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $EF_BL$            | Baseline N <sub>2</sub> O emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                                             |
| $BE_{BC}$          | Total N <sub>2</sub> O emissions during the baseline campaign (tN <sub>2</sub> O)                                             |
| NCSG <sub>BC</sub> | Mean concentration of $N_2O$ in the stack gas during the baseline campaign $(mgN_2O/m^3)$                                     |
| $OH_{BC}$          | Operating hours of the baseline campaign (h)                                                                                  |
| VSG <sub>BC</sub>  | Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)                                              |
| $NAP_{BC}$         | Nitric acid production during the baseline campaign (tHNO <sub>3</sub> )                                                      |
| UNC                | Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment. |

# 3.1 Measurement procedure for N<sub>2</sub>O concentration and tail gas volume flow

# 3.1.1 Tail gas N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 7 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4 $^{\circ}$ C), so N<sub>2</sub>O concentration is measured on a dry basis.

 $N_2O$  concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis.

 $N_2O$  concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# 3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# 3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline  $N_2O$  emission factor may be outside the permitted range or limit corresponding to normal operating conditions.  $N_2O$  baseline data measured during hours



where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

# 3.3 Historic Campaign Length

The average historic campaign length ( $CL_{normal}$ ) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.



# 4. PROJECT EMISSIONS

During the first project campaign on line 7 the tail gas volume flow in the stack of the nitric acid plant as well as  $N_2O$  concentration have been measured on the continuous basis.

# 4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for  $N_2O$  concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

# where:

| variable | Definition                                                                                   |
|----------|----------------------------------------------------------------------------------------------|
| VSG      | Mean stack gas volume flow rate for the project campaign (m <sup>3</sup> /h)                 |
| NCSG     | Mean concentration of $N_2O$ in the stack gas for the project campaign $(mgN_2O/m^3)$        |
| $PE_n$   | Total N <sub>2</sub> O emissions of the n <sup>th</sup> project campaign (tN <sub>2</sub> O) |
| OH       | Is the number of hours of operation in the specific monitoring period (h)                    |

# 4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# 4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

8

# 4.3 Project Campaign Length



Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

# 4.4 Leakage

No leakage calculation is required.

# 4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of  $N_2O$ :

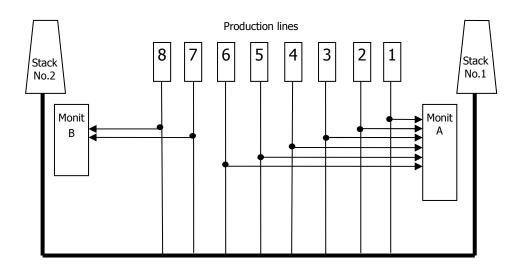
$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

# Where:

| Variable | Definition                                                                        |
|----------|-----------------------------------------------------------------------------------|
| ER       | Emission reductions of the project for the specific campaign (tCO <sub>2</sub> e) |
| NAP      | Nitric acid production for the project campaign (tHNO <sub>3</sub> ). The maximum |
|          | value of NAP shall not exceed the design capacity.                                |
| EFBL     | Baseline emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                  |
| EFP      | Emissions factor used to calculate the emissions from this particular             |
|          | campaign (i.e. the higher of EF <sub>ma,n</sub> and EF <sub>n</sub> )             |

9




# 5. MONITORING PLAN

# Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of  $N_2O$  from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

# Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.



Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions.  $N_2O$  concentration in the tail gas is measured by 3 switched concentration meters.

# **Monitoring System architecture**

Methodology AM0034/Version 02 requires installation of an  $N_2O$  monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of  $N_2O$ .



But tail gas  $N_2O$  concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of  $N_2O$  in t  $CO_2e$  per 1 tonne of  $HNO_3$  (100%), it is necessary to include also  $HNO_3$  measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only  $N_2O$  emissions and tail gas mass volume part of the MS.

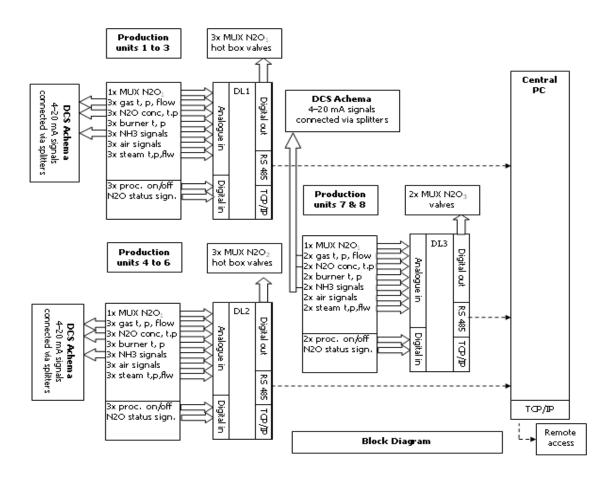
Monitoring System (MS) for purpose of this monitoring plan means:

# monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

# nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature


and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N<sub>2</sub>O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

11





# N<sub>2</sub>O automated measurement system

Main purpose of the  $N_2O$  automated measurement system (AMS) is to measure total mass of  $N_2O$  emitted during particular campaigns (both baseline and project). In order of calculation of total mass of  $N_2O$  emitted during particular campaign it is necessary to measure on an extractive basis the  $N_2O$  concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

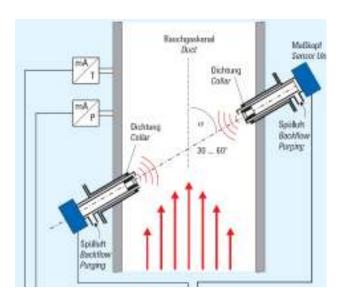
# N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so  $N_2O$  concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail



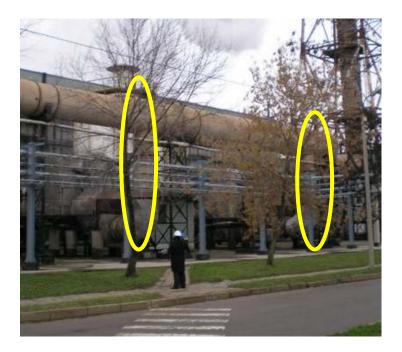
gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N<sub>2</sub>O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

N<sub>2</sub>O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.



The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

13





Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow N2O\*(273.15/(273.15+Temp))\*(Press/101.325)\*((100-Humi)/100)

where Humi (water content)=

(Flow\_steam\*1.2436)/(Flow\_N2O\*(273.15/(273.15+Temp))\*(Press/101.325))\*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow\_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.



Achema measures steam flow in kg/h using formula Q=C\*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

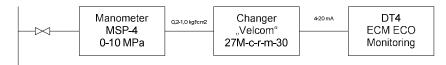
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

# EN14181 compliance

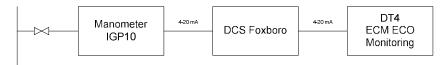
As required by the AM0034/Version 02 methodology the  $N_2O$  automated measurement system (AMS) complies with requirements of the technical norm EN14181.  $N_2O$  AMS consists from the  $N_2O$  concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the  $N_2O$  measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

# **Operating conditions**

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


15

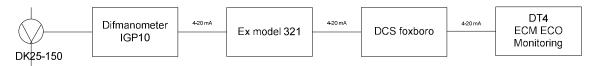
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



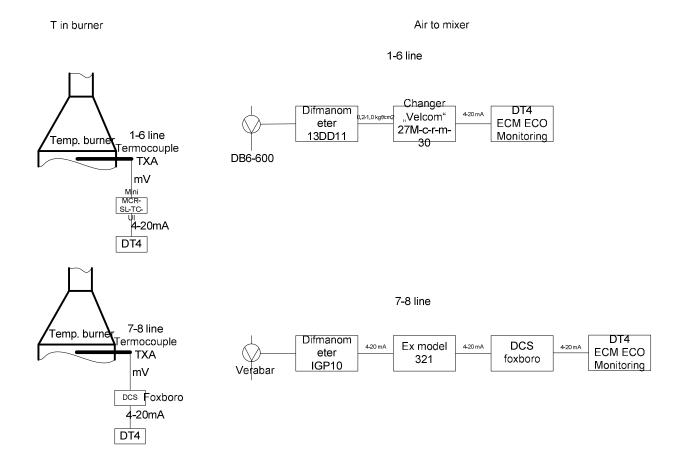

All these parameters are measured by the plant monitoring system as presented on diagrams below:

# P in mixer 1-6 line




# P in mixer 7-8 line




# NH3 to mixer 1-6 line



# NH3 to mixer 7-8 line







Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

# Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.







The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

# PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

18



After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 04/05/2008 and ending on 18/08/2008 project uses HNO<sub>3</sub> concentration data provided by the laboratory measurements.

© 2008, Vertis Finance

19



# 6. QAL 2 CALIBRATION ADJUSTMENTS

# 6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA
Y is the value of the parameter being objective of the measurement
a is a constant of the regression Line
b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old



This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions ( $0^{\circ}$  C, 1 atm.).

# 6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM\_0034.

# 6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in  $mgN_2O/m_3$ . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

# 6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

# 6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

21



# 7. EMISSION REDUCTION CALCULATIONS

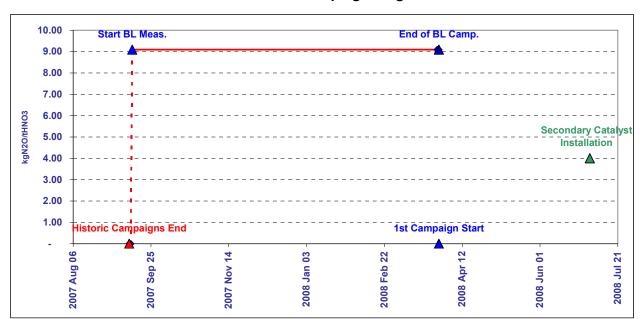
Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 64 thnO $_3$  and time duration was on average 218 days. Table contains also information on suppliers of primary catalysts for the line 7.

Line **ACHEMA UKL-7** Production Start End Days Production per Primary Catalyst Composition day Historic Campaigns 1 t HNO3 57 671 10 Sep 2004 16 Mar 2005 187 308 Heraeus Johnson Matthey 2 t HNO3 70 015 16 Mar 2005 07 Nov 2005 236 297 N/A \* 3 t HNO3 55 426 08 Nov 2005 20 May 2006 193 287 Heraeus N/A \* N/A \* 4 t HNO3 67 588 24 May 2006 04 Jan 2007 225 300 Johnson Matthey 04 Jan 2007 N/A 5 t HNO3 70 670 11 Sep 2007 250 283 Umicore Average HNO3 production t HNO3 64 274 218 295 \* Confidential but available for the verification Project Campaigns BL t HNO3 55 626 12 Sep 2007 27 Mar 2008 197 282 Heraeus N/A \* 74 715 30 Aug 2011 10 Dec 2010 PL t HNO3 263 Heraeus

T 2 Historic campaigns

The project campaign production value of 74 715 tHNO3 was higher than historic nitric acid production set at level of 64 274 tHNO3.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.


T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 12/09/2007 and continued through 27/03/2008 when the 55 626 tHNO $_3$  nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO $_3$ .

# T 3 Baseline campaign length

22

| ACHEMA UKL-7                                                                                                  | Historic<br>Campaings End              | Start of Baseline<br>Measurement | End of Baseline<br>Measurement NCSG | End of Baseline<br>Measurement | End of Baseline<br>Campaign |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|-------------------------------------|--------------------------------|-----------------------------|
| Dates Baseline Factor kgN2O/tHNO3 Production tHNO3 Per Day Production tHNO3 Baseline less Historic Production | 2007 Sep 11<br>-<br>294.6<br>(8 647.4) | 2007 Sep 12<br>-<br>-            | 2008 Mar 27<br>9.09<br>55 626       | 2008 Mar 27<br>9.09<br>55 626  | 2008 Mar 28<br>9.09<br>-    |
| Baseline less Historic Days                                                                                   | (29.4)                                 |                                  |                                     |                                |                             |





#### C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 7 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 12/09/2007 through 27/03/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N<sub>2</sub>O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and  $N_2$ O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least  $600^{\circ}$ C occurred. Calculated baseline N2O emissions were 536 tN<sub>2</sub>O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 5.640%, which is further modified by an uncertainty of 0.124% due to under-sampling. As a result we have arrived to the baseline emission factor of  $9.09~kgN_2O/tHNO_3$ .



Table T 5 shows the calculation of the project emission factor on Line 7 during the project campaign. Project campaign started on 10/12/2010 and went through 30/08/2011.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of  $N_2O$  emissions ( $PE_n$ ) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of  $N_2O$  emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.01 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# T 4 Baseline emission factor

| 8                                                        | SASELINE EMISS | SION FACTOR |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
|----------------------------------------------------------|----------------|-------------|---------------------------------|----------------------|--------------------|----------------------|--------------------|--------------------------|-----------------------|---------------------|---------------------------|
|                                                          | Parameter      |             | Nitric Acid<br>Production       | N2O<br>Concentration | Gas Volume<br>Flow | Ammonia<br>Flow Rate | Ammonia<br>to Air  | Oxidation<br>Temperature | Oxidation<br>Pressure | AMS in<br>Operation | Nitric Acid<br>Production |
|                                                          | Code           | OH<br>h     | NAP<br>t/h                      | NCSG<br>mg N2O/Nm3   | VSG<br>Nm3/h       | AFR<br>Nm3/h         | Katio<br>AIFR<br>% | OT<br>°C                 | OP<br>kPa             | h                   | NCSG<br>NAP               |
| Elimination of extreme values                            |                |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Lower limit<br>Upper Limit                               |                |             | 0 20.00                         | 3 000                | 0<br>150 000       | 0<br>10 000          | - 0<br>20.00       | 50<br>1 200              | 0<br>1 000            |                     | 0                         |
| Raw Data Measured Range                                  |                |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Count                                                    |                | 4 0 9 7     | 4 238                           | 4 385                | 4 238              | 4 708                | 4 485              | 4 708                    |                       | 3 890               | 4 238                     |
| as % of Dataset                                          |                | %28         | %06                             |                      | %06                | 100%                 | %56                | 100%                     | 100%                  | 82%                 | %06                       |
| Minimum                                                  |                |             | 0.00                            |                      | 1 728              | 0                    | 0                  | 33                       |                       |                     | 0                         |
| Maximum                                                  |                |             | 16.41                           | 1 933                | 112 864            | 6476                 | 18.83              | 915                      |                       |                     | 9 6                       |
| weari<br>Standard Deviation<br>Total                     |                |             | 13.13<br>4.69<br>55 626         | 448                  | 24 945             | 1806                 | 1.37               | 228                      | 112                   |                     | 13<br>5<br>55 626         |
|                                                          |                |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| N2O Emissions ( VSG * NCSG * OH)<br>Emission Factor      |                | 417<br>7.07 | 417 t N2O<br>7.07 kgN2O / tHNO3 |                      |                    |                      |                    |                          |                       |                     |                           |
| Permitted Range                                          |                |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Minimum                                                  |                |             |                                 |                      |                    |                      | 0                  | 880                      | 550                   |                     |                           |
| Maximum                                                  |                |             |                                 |                      |                    | 7 500                | 11.20              | 910                      | 800                   |                     |                           |
| Data within the permitted range                          |                |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Count                                                    |                | 3 145       |                                 | 2 856                | 2 856              |                      |                    |                          |                       | 3 890               |                           |
| as % of Operating Hours                                  |                | 71%         |                                 | %02                  |                    |                      |                    |                          |                       | 95%                 |                           |
| Minimum                                                  |                |             |                                 | 722                  | 57 328             |                      |                    |                          |                       |                     |                           |
| Maximum                                                  |                |             |                                 | 1 933                | 99 189             |                      |                    |                          |                       |                     |                           |
| Mean<br>Standard Deviation                               |                |             |                                 | 281                  | 89 644<br>5 811    |                      |                    |                          |                       |                     |                           |
|                                                          |                |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| N2O Emissions ( VSG * NCSG * OH) Emission Factor         |                | 526<br>8.93 | t N2O<br>kgN2O / tHNO3          |                      |                    |                      |                    |                          |                       |                     |                           |
| Data within the confidence interval                      |                |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| 95% Confidence interval                                  |                |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Lower bound                                              |                |             |                                 | 882                  | 78 254             |                      |                    |                          |                       |                     |                           |
|                                                          |                |             |                                 | - 1                  | •                  |                      |                    |                          |                       |                     |                           |
| Count                                                    |                |             |                                 | 2 753                | . 4                |                      |                    |                          |                       |                     |                           |
| as % of Operating Hours                                  |                |             |                                 | 67%                  |                    |                      |                    |                          |                       |                     |                           |
| Maximum                                                  |                |             |                                 | 913                  | 99 189             |                      |                    |                          |                       |                     |                           |
| Mean                                                     |                |             |                                 | 1 457                |                    |                      |                    |                          |                       |                     |                           |
| Standard Deviation                                       |                |             |                                 | 257                  |                    |                      |                    |                          |                       |                     |                           |
| 110 + 00014 + 00014 - 11014 COM                          |                |             | 0014                            |                      |                    |                      |                    |                          |                       |                     |                           |
| N2O Emissions ( VSG * NCSG * OH) Emission Factor (EF_BL) |                | 536<br>9.09 | t N2O<br>kgN2O / tHNO3          |                      |                    |                      |                    |                          |                       |                     |                           |
|                                                          |                |             |                                 |                      |                    |                      |                    |                          |                       |                     |                           |



# T 5 Project emission factor

|                                                                                              |              |                     | PROJECT E                    | PROJECT EMISSION FACTOR |                                     |                      |                     |                          |                       |
|----------------------------------------------------------------------------------------------|--------------|---------------------|------------------------------|-------------------------|-------------------------------------|----------------------|---------------------|--------------------------|-----------------------|
|                                                                                              | Parameter    | Operating Hours     | Nitric Acid<br>Production    | N2O<br>Concentration    | Gas Volume<br>Flow                  | Ammonia<br>Flow Rate | Ammonia<br>to Air   | Oxidation<br>Temperature | Oxidation<br>Pressure |
|                                                                                              | Code<br>Unit | OH<br>h             | NAP<br>t/h                   | NCSG<br>mg N2O/Nm3      | VSG<br>Nm3/h                        | AFR<br>Nm3/h         | AIFR                | OT<br>°C                 | OP<br>KPa             |
| Elimination of extreme values                                                                |              |                     |                              |                         |                                     |                      |                     |                          |                       |
| Lower limit<br>Upper Limit                                                                   |              |                     | 0<br>50.00                   | 3 000                   | 0<br>150 000                        | 10 000               | - 0<br>20.00        | 50<br>1 200              | 0<br>1 000            |
| Raw Data Measured Range                                                                      |              |                     |                              |                         |                                     |                      |                     |                          |                       |
| Count<br>as % of Dataset                                                                     |              | 5 272<br>84%        | 5 973<br>95%                 | 5 238<br>83%            | 5 231<br>83%                        | 6 285<br>100%        | 5372<br>85%         | 6 285                    | 6 285                 |
| Minimum<br>Maximum<br>Mean                                                                   |              |                     | 0.02<br>18.90<br>12.51       | 76<br>559<br>231        | 64 105<br>81 511<br>70 207          | 8 000<br>4 877       | 0<br>19.31<br>10.37 | 42<br>902<br>773         | 1<br>676<br>555       |
| Standard Deviation<br>Total                                                                  |              |                     | 4.69<br>74 715               | 36                      | 2 311                               | 1 773                | 0.26                | 263                      | 162                   |
| N2O Emissions ( VSG * NCSG * OH) Emission Factor                                             |              | 86<br>1.15          | t N2O<br>kgN2O / tHNO3       |                         |                                     |                      |                     |                          |                       |
| Data within the confidence interval                                                          |              |                     |                              |                         |                                     |                      |                     |                          |                       |
| 95% Confidence interval<br>Lower bound<br>Upper bound                                        |              |                     |                              | 161                     | 65 676<br>74 737                    |                      |                     |                          |                       |
| Count<br>as % of Operating Hours                                                             |              |                     |                              | 4 881<br>93%            | 94%                                 |                      |                     |                          |                       |
| Minimum<br>Maximum<br>Mean<br>Standard Deviation                                             |              |                     |                              | 162<br>301<br>225<br>26 | 05 084<br>74 731<br>70 088<br>2 028 |                      |                     |                          |                       |
| N2O Emissions ( VSG * NCSG * OH) Actual Project Emission Factor (EF_PActual) Abatement Ratio |              | 83<br>1.11<br>87.7% | t N2O<br>kgN2O / tHNO3       |                         |                                     |                      |                     |                          |                       |
| Moving Average Emission Factor Correction                                                    |              | Actual Factors      | Moving Average Rule          | ule                     |                                     |                      |                     |                          |                       |
|                                                                                              | - 0 W 4 I    | დ ღ ღ ←             | 2.18<br>2.93<br>2.31<br>2.01 |                         |                                     |                      |                     |                          |                       |
|                                                                                              | n            | •                   |                              |                         |                                     |                      |                     |                          |                       |
| Project Emission Factor (EF_P) Abatement Ratio                                               |              | 2.01<br>77.9%       | 2.01 kgN2O / tHNO3 77.9%     |                         |                                     |                      |                     |                          |                       |
|                                                                                              |              |                     |                              |                         |                                     |                      |                     |                          |                       |

# **MONITORING REPORT**

**PROJECT:** ACHEMA UKL nitric acid plant N<sub>2</sub>O abatement project

LINE: Line 8

**MONITORING PERIOD:** 

FROM: 09/11/2010

TO: 01/09/2011

# Prepared by:



**VERTIS FINANCE** 

www.vertisfinance.com



# **Table of Contents**

| 1. |                   | EXECUTIVE SUMMARY                                                             | 3             |
|----|-------------------|-------------------------------------------------------------------------------|---------------|
| 2. |                   | DESCRIPTION OF THE PROJECT ACTIVITY                                           | 4             |
| 3. |                   | BASELINE SETTING                                                              | 5             |
|    | 3.1<br>3.1<br>3.1 |                                                                               | <b>6</b><br>6 |
|    | 3.2               | PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT              | 6             |
|    | 3.3               | HISTORIC CAMPAIGN LENGTH                                                      | 7             |
| 4. | 4.1               | PROJECT EMISSIONS  1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR | <b>8</b>      |
|    | 4.1               | 2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR                              | 8             |
|    | 4.2               | MINIMUM PROJECT EMISSION FACTOR                                               | 8             |
|    | 4.3               | PROJECT CAMPAIGN LENGTH                                                       | 8             |
|    | 4.4               | LEAKAGE                                                                       | 9             |
|    | 4.5               | EMISSION REDUCTIONS                                                           | 9             |
| 5. |                   | MONITORING PLAN                                                               | 10            |
| 6. |                   | QAL 2 CALIBRATION ADJUSTMENTS                                                 | 20            |
|    | 6.1               | APPLIED PRINCIPLE                                                             | 20            |
|    | 6.2               | STACK GAS VOLUME FLOW                                                         | 21            |
|    | 6.3               | NITRIC ACID CONCENTRATION IN STACK GAS                                        | 21            |
|    | 6.4               | STACK GAS TEMPERATURE                                                         | 21            |
|    | 6.5               | STACK GAS PRESSURE                                                            | 21            |
| 7  |                   | EMISSION REDUCTION CALCUL ATIONS                                              | 22            |



#### 1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 8 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the fourth project campaign on Line 8.

The first project campaign on Line 8 started on 17/04/2008. Secondary catalyst was installed on 11/06/2008. Total quantity of emission reductions generated during the fourth project period from 09/11/2010 through 01/09/2011 on Line 8 is **111 857 ERUs**.

#### T 1 Emission reduction calculations

| EMISSIO                                            | ON REDUCTION |         |             |
|----------------------------------------------------|--------------|---------|-------------|
| Baseline Emission Factor                           | EF_BL        | 7.23    | kgN2O/tHNO3 |
| Project Campaign Emission Factor                   | EF_P         | 3.03    | kgN2O/tHNO3 |
| Nitric Acid Produced in the Baseline Campaign      | NAP_BL       | 63 577  | tHNO3       |
| Nitric Acid Produced in the NCSG Baseline Campaign | NAP_BL_NCSG  | 63 577  | tHNO3       |
| Nitric Acid Produced in the Project Campaign       | NAP_P        | 85 912  | tHNO3       |
| GWP                                                | GWP          | 310     | tCO2e/tN2O  |
| Emission Reduction                                 | ER           | 111 857 | tCOe        |
| ER=(EF_BL-EF_P)*NAP_P*GWP/1000                     |              |         |             |
| Abatement Ratio                                    |              | 80.2%   | 1           |

| EMISSION REDUCT               | ION PER YI | EAR         |             |
|-------------------------------|------------|-------------|-------------|
| Year                          | 2009       | 2010        | 2011        |
| Date From                     |            | 09 Nov 2010 | 01 Jan 2011 |
| Date To                       |            | 31 Dec 2010 | 01 Sep 2011 |
| Nitric Acid Production        |            | 18 323      | 67 589      |
| Emission Reduction            |            | 23 856      | 88 001      |
| ER_YR = ER * NAP_P_YR / NAP_P |            |             |             |

Baseline emission factor established for the Line 8 during baseline measurement carried from 01/09/2007 through 15/04/2008 is 7.23 kgN<sub>2</sub>O/tHNO<sub>3</sub>.

Project emission factor during the fourth project campaign after installation of secondary catalysts on Line 8, which started on 09/11/2010 and went through 01/09/2011 with secondary catalyst installed and commissioned on 11/06/2008, is 3.03 kgN<sub>2</sub>O/tHNO<sub>3</sub>.

3

During the project campaign 85 912 tonnes of nitric acid was produced.



#### 2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide ( $N_2O$ ) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary  $N_2O$  reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 8 emission reductions including information on baseline emission factor setting for the Line 8.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.



#### 3. BASELINE SETTING

Baseline emission factor for line 8 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 8 has been carried out from 01/09/2007 through 15/04/2008.

 $N_2O$  concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N<sub>2</sub>O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of  $N_2O$  concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N<sub>2</sub>O concentration of stack gas (NCSG))

The average mass of  $N_2O$  emissions per hour is estimated as product of the NCSG and VSG. The  $N_2O$  emissions per campaign are estimates product of  $N_2O$  emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average  $N_2O$  emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of  $N_2O$  emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The  $N_2O$  emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

where:



| Variable           | Definition                                                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $EF_BL$            | Baseline N <sub>2</sub> O emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                                             |
| $BE_{BC}$          | Total N₂O emissions during the baseline campaign (tN₂O)                                                                       |
| NCSG <sub>BC</sub> | Mean concentration of $N_2O$ in the stack gas during the baseline campaign $(mgN_2O/m^3)$                                     |
| $OH_{BC}$          | Operating hours of the baseline campaign (h)                                                                                  |
| VSG <sub>BC</sub>  | Mean gas volume flow rate at the stack in the baseline measurement period (m³/h)                                              |
| $NAP_{BC}$         | Nitric acid production during the baseline campaign (tHNO <sub>3</sub> )                                                      |
| UNC                | Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment. |

# 3.1 Measurement procedure for N<sub>2</sub>O concentration and tail gas volume flow

#### 3.1.1 Tail gas N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 8 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4 $^{\circ}$ C), so N<sub>2</sub>O concentration is measured on a dry basis.

 $N_2O$  concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis.

N<sub>2</sub>O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

#### 3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

# 3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline  $N_2O$  emission factor may be outside the permitted range or limit corresponding to normal operating conditions.  $N_2O$  baseline data measured during hours



where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

# 3.3 Historic Campaign Length

The average historic campaign length ( $CL_{normal}$ ) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.



#### 4. PROJECT EMISSIONS

During the first project campaign on line 8 the tail gas volume flow in the stack of the nitric acid plant as well as  $N_2O$  concentration have been measured on the continuous basis.

### 4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for  $N_2O$  concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

#### where:

| variable | Definition                                                                                   |
|----------|----------------------------------------------------------------------------------------------|
| VSG      | Mean stack gas volume flow rate for the project campaign (m <sup>3</sup> /h)                 |
| NCSG     | Mean concentration of $N_2O$ in the stack gas for the project campaign $(mgN_2O/m^3)$        |
| $PE_n$   | Total N <sub>2</sub> O emissions of the n <sup>th</sup> project campaign (tN <sub>2</sub> O) |
| OH       | Is the number of hours of operation in the specific monitoring period (h)                    |

# 4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# 4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

8

#### 4.3 Project Campaign Length



Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

# 4.4 Leakage

No leakage calculation is required.

#### 4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of  $N_2O$ :

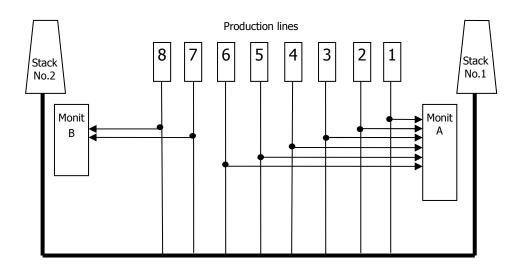
$$ER = (EFBL - EFP) * NAP *GWPN2O (tCO2e)$$

#### Where:

| Variable | Definition                                                                        |
|----------|-----------------------------------------------------------------------------------|
| ER       | Emission reductions of the project for the specific campaign (tCO <sub>2</sub> e) |
| NAP      | Nitric acid production for the project campaign (tHNO <sub>3</sub> ). The maximum |
|          | value of NAP shall not exceed the design capacity.                                |
| EFBL     | Baseline emissions factor (tN <sub>2</sub> O/tHNO <sub>3</sub> )                  |
| EFP      | Emissions factor used to calculate the emissions from this particular             |
|          | campaign (i.e. the higher of EF <sub>ma,n</sub> and EF <sub>n</sub> )             |

9




#### 5. MONITORING PLAN

#### Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of  $N_2O$  from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

#### Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.



Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions.  $N_2O$  concentration in the tail gas is measured by 3 switched concentration meters.

#### **Monitoring System architecture**

Methodology AM0034/Version 02 requires installation of an  $N_2O$  monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of  $N_2O$ .



But tail gas  $N_2O$  concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of  $N_2O$  in t  $CO_2e$  per 1 tonne of  $HNO_3$  (100%), it is necessary to include also  $HNO_3$  measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only  $N_2O$  emissions and tail gas mass volume part of the MS.

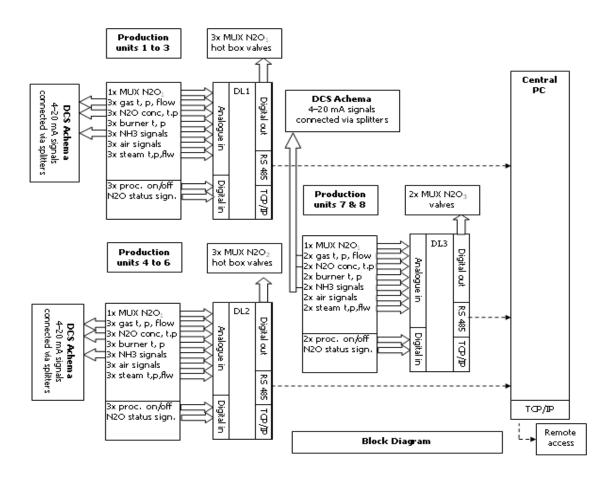
Monitoring System (MS) for purpose of this monitoring plan means:

#### monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

#### nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature


and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N<sub>2</sub>O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

11





#### N<sub>2</sub>O automated measurement system

Main purpose of the  $N_2O$  automated measurement system (AMS) is to measure total mass of  $N_2O$  emitted during particular campaigns (both baseline and project). In order of calculation of total mass of  $N_2O$  emitted during particular campaign it is necessary to measure on an extractive basis the  $N_2O$  concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

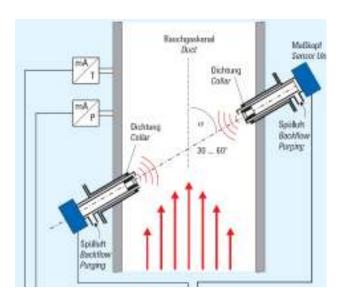
#### N<sub>2</sub>O concentration

 $N_2O$  concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so  $N_2O$  concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail



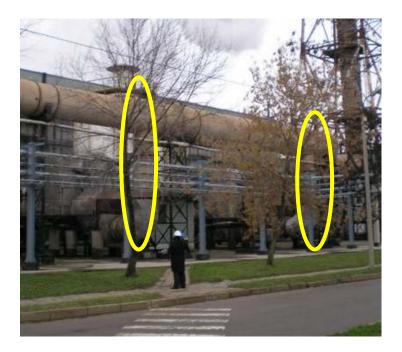
gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N<sub>2</sub>O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines.  $N_2O$  concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

N<sub>2</sub>O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

#### Tail gas flow, pressure and temperature


Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.



The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

13





Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

#### Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow N2O\*(273.15/(273.15+Temp))\*(Press/101.325)\*((100-Humi)/100)

where Humi (water content)=

(Flow\_steam\*1.2436)/(Flow\_N2O\*(273.15/(273.15+Temp))\*(Press/101.325))\*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow\_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.



Achema measures steam flow in kg/h using formula Q=C\*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

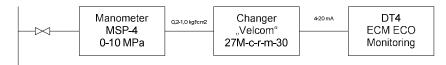
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

#### EN14181 compliance

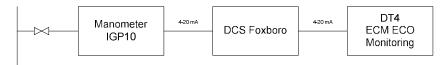
As required by the AM0034/Version 02 methodology the  $N_2O$  automated measurement system (AMS) complies with requirements of the technical norm EN14181.  $N_2O$  AMS consists from the  $N_2O$  concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the  $N_2O$  measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

#### **Operating conditions**

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


15

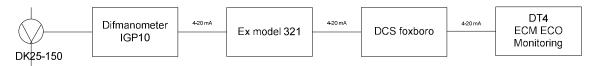
Ammonia flow
Ammonia temperature
Ammonia pressure
Primary air flow
Primary air temperature
Primary air pressure
Oxidation temperature
Oxidation pressure



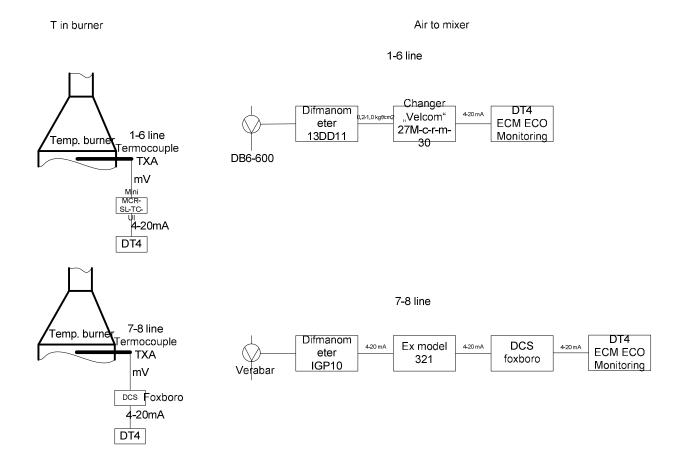

All these parameters are measured by the plant monitoring system as presented on diagrams below:

#### P in mixer 1-6 line




#### P in mixer 7-8 line




#### NH3 to mixer 1-6 line



#### NH3 to mixer 7-8 line







Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

#### Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.







The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

#### PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes.

Digital instrument – no calibration drift

As it is a robust instrument it is maintenance free

Dual connectivity if the installation positions allow.

On-Line data logging, through Ethernet, on whichever web browser.

No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

18



After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 20/10/2008 project uses HNO<sub>3</sub> concentration data provided by the laboratory measurements.

© 2008, Vertis Finance

19



### 6. QAL 2 CALIBRATION ADJUSTMENTS

# 6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

Y = a + bX

where:

X is the measured value of the instrument in mA
Y is the value of the parameter being objective of the measurement
a is a constant of the regression Line
b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old



This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

$$Yn=An + (Bn/Bo)*(Yo-Ao)$$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions ( $0^{\circ}$  C, 1 atm.).

# 6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM\_0034.

#### 6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in  $mgN_2O/m_3$ . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

#### 6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

# 6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

21



# 7. EMISSION REDUCTION CALCULATIONS

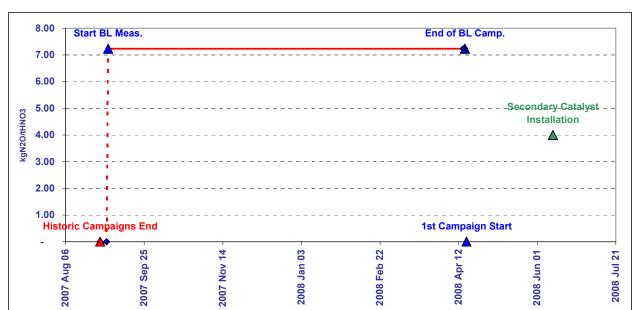
Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 63 thnO3 and time duration was on average 228 days. Table contains also information on suppliers of primary catalysts for the line 8.

Line **ACHEMA UKL-8** Production Start End Days Production per Primary Catalyst Composition Historic Campaigns 1 t HNO3 00 Jan 1900 00 Jan 1900 n/a 62 575 2 t HNO3 10 Dec 2004 17 Aug 2005 250 250 Heraeus N/A \* 3 t HNO3 63 418 02 Nov 2005 14 Jun 2006 224 283 Umicore N/A \* N/A \* 4 t HNO3 63 138 15 Jun 2006 01 Feb 2007 231 273 Johnson Matthey Johnson Matthe 02 Feb 2007 N/A 5 t HNO3 65 347 28 Aug 2007 207 316 Average HNO3 production t HNO3 63 620 228 279 \* Confidential but available for the verification Project Campaigns BL t HNO3 63 577 01 Sep 2007 15 Apr 2008 227 280 Umicore N/A \* 01 Sep 2011 PL t HNO3 85 912 09 Nov 2010 296

T 2 Historic campaigns

The project campaign production value of 85 912 tHNO3 was higher than historic nitric acid production set at level of 63 620 tHNO3.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.


T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 01/09/2007 and continued through 15/04/2008 when the 63 577 thno $_3$  nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - thno $_3$ .

#### T 3 Baseline campaign length

22

| ACHEMA UKL-8                      | Historic<br>Campaings End | Start of Baseline<br>Measurement | End of Baseline<br>Measurement NCSG | End of Baseline<br>Measurement | End of Baseline<br>Campaign |
|-----------------------------------|---------------------------|----------------------------------|-------------------------------------|--------------------------------|-----------------------------|
| Dates                             | 2007 Aug 28               | 2007 Sep 01                      | 2008 Apr 15                         | 2008 Apr 15                    | 2008 Apr 16                 |
| Baseline Factor kgN2O/tHNO3       | -                         | _                                | 7.23                                | 7.23                           | 7.23                        |
| Production tHNO3                  |                           | -                                | 63 577                              | 63 577                         | -                           |
| Per Day Production tHNO3          | 279.0                     |                                  |                                     |                                |                             |
| Baseline less Historic Production | (42.6)                    |                                  |                                     |                                |                             |
| Baseline less Historic Days       | (0.2)                     |                                  |                                     |                                |                             |





# C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 8 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 01/09/2007 through 15/04/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N<sub>2</sub>O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and  $N_2$ O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least  $600^{\circ}$ C occurred. Calculated baseline N2O emissions were 488 tN<sub>2</sub>O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN2O/tHNO3)$$

The UNC factor defined by the QAL2 report is 5.890%, which is further modified by an uncertainty of 0.087% due to under-sampling. As a result we have arrived to the baseline emission factor of  $7.23 \text{ kgN}_2\text{O/tHNO}_3$ .



Table T 5 shows the calculation of the project emission factor on Line 8 during the project campaign. Project campaign started on 09/11/2010 and went through 01/09/2011.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of  $N_2O$  emissions ( $PE_n$ ) as follows:

$$PE_n = VSG * NCSG * 10-9 * OH (tN2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of  $N_2O$  emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 3.03 kgN 2O/tH NO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

# T 4 Baseline emission factor

| ₹8                                                  | SSIMEENIES   | SSION FACTOR    |                                 |                      | ı                  | ı                    |                    | I                        | ı                     | ı                   |                           |
|-----------------------------------------------------|--------------|-----------------|---------------------------------|----------------------|--------------------|----------------------|--------------------|--------------------------|-----------------------|---------------------|---------------------------|
|                                                     |              | Operating Hours | Nitric Acid<br>Production       | N2O<br>Concentration | Gas Volume<br>Flow | Ammonia<br>Flow Rate | Ammonia<br>to Air  | Oxidation<br>Temperature | Oxidation<br>Pressure | AMS in<br>Operation | Nitric Acid<br>Production |
|                                                     | Code<br>Unit | OH<br>d         | NAP<br>t/h                      | NCSG<br>mg N2O/Nm3   | VSG<br>Nm3/h       | AFR<br>Nm3/h         | Katio<br>AIFR<br>% | от<br>°c                 | OP<br>kPa             | h                   | NCSG<br>NAP<br>t/h        |
| Elimination of extreme values                       |              |                 |                                 | •                    |                    |                      |                    |                          |                       |                     |                           |
| Lower limit<br>Upper Limit                          |              |                 | 0<br>50.00                      | 3 000                | 0<br>120 000       | 0<br>10 000          | - 0<br>20.00       | 50<br>1 200              | 0<br>1 000            |                     | 0 50                      |
| Raw Data Measured Range                             |              |                 |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Count                                               |              | 4 7 1 9         | 4 954                           | 4 801                | 4 598              | 4 987                | 4 663              | 5 425                    | 5 425                 | 4 129               | 4 954                     |
| as % of Dataset                                     |              | %28             | 81%                             | %88                  | 84%                | 95%                  | %98                | 100%                     | 100%                  | %92                 | 91%                       |
| Minimum                                             |              |                 | 0.00                            | 0 0                  | 4 .                | 0 0                  | 0 8                | 27                       | 5 2                   |                     | 0 8                       |
| Mean                                                |              |                 | 12.83                           | 1 968                | 78 981             | 5 591                | 10.07              | 912                      | 654<br>564            |                     | 3 52                      |
| Standard Deviation<br>Total                         |              |                 | 5.07                            | 440                  | 16 813             | 1 520                | 0.93               | 245                      | 116                   |                     | 5<br>5<br>63 577          |
|                                                     |              | 1 3 3           |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| N2O Emissions ( VSG * NCSG * OH)<br>Emission Factor |              | 417<br>6.18     | 417 t N2O<br>6.18 kgN2O/tHNO3   |                      |                    |                      |                    |                          |                       |                     |                           |
| Permitted Range                                     |              |                 |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Minimum<br>Maximum                                  |              |                 |                                 |                      |                    | 7 500                | 0                  | 880                      | 550                   |                     |                           |
| Data within the permitted range                     |              |                 |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Count                                               |              | 4 453           |                                 | 3 949                | 4 131              |                      |                    |                          |                       | 4 1 2 9             |                           |
| as % of Operating Hours                             |              | 94%             |                                 | 84%                  | %88                |                      |                    |                          |                       | 81%                 |                           |
| Minimum                                             |              |                 |                                 | 781                  | ' 0                |                      |                    |                          |                       |                     |                           |
| Mean                                                |              |                 |                                 | 1 264                | 96 663             |                      |                    |                          |                       |                     |                           |
| Standard Deviation                                  |              |                 |                                 | 201                  | 16 881             |                      |                    |                          |                       |                     |                           |
| N2O Emissions (VSG * NCSG * OH)<br>Emission Factor  |              | 463             | 463 t N2O<br>6.86 kgN2O / tHNO3 |                      |                    |                      |                    |                          |                       |                     |                           |
| Data within the confidence interval                 |              |                 |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| 95% Confidence interval                             |              |                 |                                 |                      |                    |                      |                    |                          |                       |                     |                           |
| Lower bound<br>Upper bound                          |              |                 |                                 | 871<br>1 658         | 44 549<br>110 722  |                      |                    |                          |                       |                     |                           |
| Count                                               |              |                 |                                 | 3 795                | 3 949              |                      |                    |                          |                       |                     |                           |
| as % of Operating Hours                             |              |                 |                                 | 80%                  | 84%                |                      |                    |                          |                       |                     |                           |
| Minimum                                             |              |                 |                                 | 878                  | 75 503             |                      |                    |                          |                       |                     |                           |
| Mean                                                |              |                 |                                 | 1 658                | 96 663             |                      |                    |                          |                       |                     |                           |
| Standard Deviation                                  |              |                 |                                 | 186                  | 2 729              |                      |                    |                          |                       |                     |                           |
| N2O Emissions ( VSG * NC SG * OH)                   |              | 488             | t N2O                           |                      |                    |                      |                    |                          |                       |                     |                           |
| Emission Factor (EF_BL)                             |              | 7.23            | 7.23 kgN2O / tHNO3              |                      |                    |                      |                    |                          |                       |                     |                           |
|                                                     |              |                 |                                 |                      |                    |                      |                    |                          |                       |                     |                           |



# T 5 Project emission factor

|                                                  |           |                     | PROJECT EN                  | PROJECT EMISSION FACTOR |                    |                      |                   |                          |                       |
|--------------------------------------------------|-----------|---------------------|-----------------------------|-------------------------|--------------------|----------------------|-------------------|--------------------------|-----------------------|
| 4                                                | Parameter | Operating Hours     | Nitric Acid<br>Production   | N2O<br>Concentration    | Gas Volume<br>Flow | Ammonia<br>Flow Rate | Ammonia<br>to Air | Oxidation<br>Temperature | Oxidation<br>Pressure |
|                                                  | Code      | OH<br>h             | NAP<br>t/h                  | NCSG<br>mg N2O/Nm3      | VSG<br>Nm3/h       | AFR<br>Nm3/h         | AIFR              | OT<br>°C                 | OP<br>KPa             |
| Elimination of extreme values                    |           |                     |                             |                         |                    |                      |                   |                          |                       |
| Lower limit<br>Upper Limit                       |           |                     | 0<br>50.00                  | 3 000                   | 0<br>120 000       | 0<br>10 000          | - 0<br>20.00      | 50<br>1 200              | 1 000                 |
| Raw Data Measured Range                          |           |                     |                             |                         |                    |                      |                   |                          |                       |
| Count<br>as % of Dataset                         |           | <b>5 832</b><br>82% | %26<br>926                  | 5 784<br>81%            | 5 7 7 5<br>8 1 %   | 7 083<br>100%        | 5 884<br>83%      | 7 083<br>100%            | 7 083                 |
| Minimum                                          |           |                     | 0.02                        | 131                     | 71 261             | 8                    | 0 !               | 19                       | 0                     |
| Maximum<br>Mean                                  |           |                     | 18.06                       | 2 004<br>271            | 89 366<br>79 167   | 6 902 5 009          | 19.43<br>10.22    | 912<br>752               | 704<br>624            |
| Standard Deviation<br>Total                      |           |                     | 5.53<br>85 912              | 09                      | 2 911              | 2 051                | 0.98              | 303                      | 88                    |
| N2O Emissions ( VSG * NCSG * OH) Emission Earlor |           | 125                 | t N2O                       |                         |                    |                      |                   |                          |                       |
| Date within the confidence internal              |           |                     |                             |                         |                    |                      |                   |                          |                       |
| Data within the confidence interval              |           |                     |                             |                         |                    |                      |                   |                          |                       |
| 52% Commence merval                              |           |                     |                             | 153                     | 73 461             |                      |                   |                          |                       |
| Upper bound                                      |           |                     |                             | 389                     | 84 872             |                      |                   |                          |                       |
| Count                                            |           |                     |                             | 5 602                   | 5 422              |                      |                   |                          |                       |
| as % of Operating Hours                          |           |                     |                             | %96                     | %86                |                      |                   |                          |                       |
| Minimum                                          |           |                     |                             | 154                     | 73 498             |                      |                   |                          |                       |
| Mean                                             |           |                     |                             | 267                     | 78 849             |                      |                   |                          |                       |
| Standard Deviation                               |           |                     |                             | 45                      | 2 4 5 4            |                      |                   |                          |                       |
| N2O Emissions ( VSG * NCSG * OH)                 |           | 123                 | t N2O                       |                         |                    |                      |                   |                          |                       |
| Actual Project Emission Factor (EF_PActual)      |           | 1.43                | kgN2O/tHNO3                 |                         |                    |                      |                   |                          |                       |
|                                                  |           | 0/4:00              |                             |                         |                    |                      |                   |                          |                       |
| Moving Average Emission Factor Correction        | 1         |                     | Moving Average Rule         | ule                     |                    |                      |                   |                          |                       |
|                                                  | - 2       | 4.35                | 4.35                        |                         |                    |                      |                   |                          |                       |
|                                                  | က         | 2.06                | 3.56                        |                         |                    |                      |                   |                          |                       |
|                                                  | 4 1       | 1.43                | 3.03                        |                         |                    |                      |                   |                          |                       |
|                                                  | o.        |                     |                             |                         |                    |                      |                   |                          |                       |
| Desired Fusioning (FF D)                         |           | c                   | COMITY COM-1                |                         |                    |                      |                   |                          |                       |
| Abatement Ratio                                  |           | 58.2%               | 5.03 KgNZO / LANO3<br>58.2% |                         |                    |                      |                   |                          |                       |
|                                                  |           |                     |                             |                         |                    |                      |                   |                          |                       |

# Comparison of the baseline emission factors against N<sub>2</sub>O mass limit in the IPPC permit

The N2O cap is defined in the IPPC permit on a yearly basis for the whole UKL-7 plant. The emission can be distributed among lines irregularly, as long as the total emission in each year stays under the yearly limit.

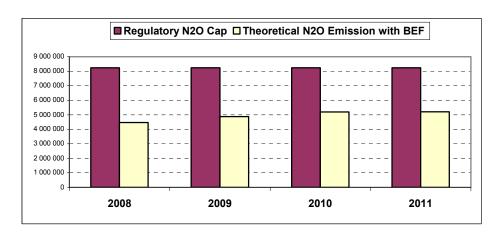
The regulatory emission factor EFReg is defined as the emission factor which would result in hitting the emission cap on a plant level.

We apply a method to attribute EFReg values to each campaign in a way that can be considered fair, and demonstrates a balanced scenario. The yearly N2O caps are allocated to campaigns proportionate to the amount of Nitric Acid they produced compared to other lines during the same year. The total cap of a campaign is the sum of such yearly limits. This way the total amount of plant level limit is always allocated. If each and every campaign would operate with those emission levels, the plant would just hit its yearly N2O caps in each year.

In incomplete years, the initial EFReg values will be high for the first campaigns, but will be lowered and balanced out as new campaigns are finished. These values serve informational purposes, and the real IPPC cap is checked on a plant level.

The main indicator of staying under the IPPC limit is the plant level yearly N2O emission calculated with baseline emission factors. Whenever an overflow of N2O emission would occur on plant level in a year, the sum of the product of baseline emission factors and yearly campaign NAP values would immediately indicate this and the projects would not be able to generate more ERU-s in that year.

```
Campaign_N2O_Cap =
        sum( Campaign_NAP[y] / Total_NAP[y] * Plant_N2O_Cap[y]
        for y in [2008,2009,2010,2011] )


Campaign_EFReg = Campaign_N2O_Cap / Campaign_NAP

Plant_N2O_Emission[y] =
        sum( Campaign BEF[c] * Campaign NAP[c,y] for c in campaigns )
```

- where Campaign\_NAP[y] is the Nitric Acid Produced on a given campaign in year "y"
- Total NAP is the total production on all lines in that year.
- the campaign EFReg is the campaigns emission cap divided by the campaign's actual production.
- Plant\_N2O\_Emission[y] is the theoretical level of N2O emitted in year "y" by using the Baseline Emission Factors of each campaign, and calculating the "sumproduct" of BEF-s and yearly Nitric Acid Production of the lines

| Regula             | tory values | 2008      | 2009      | 2010      | 2011      |  |
|--------------------|-------------|-----------|-----------|-----------|-----------|--|
| Regulatory N2O Cap | kgN2O       | 8 494 200 | 9 266 400 | 9 266 400 | 9 266 400 |  |
| Excluding Line 9   | kgN2O       | 8 236 800 | 8 236 800 | 8 236 800 | 8 236 800 |  |

| Plant emissions under baseline c          | 2008        | 2009      | 2010      | 2011      |           |  |
|-------------------------------------------|-------------|-----------|-----------|-----------|-----------|--|
| Total Nitric Acid Produced                | tHNO3       | 587 784   | 592 413   | 617 892   | 630 205   |  |
| Theoretical N2O Emission with BEF         | kgN2O       | 4 472 161 | 4 871 985 | 5 194 928 | 5 203 230 |  |
| Weighted average BEF                      | kgN2O/tHNO3 | 7.61      | 8.22      | 8.41      | 8.26      |  |
| Critical BEF to reach cap with actual NAP | kgN2O/tHNO3 | 14.01     | 13.90     | 13.33     | 13.07     |  |
| N2O emission overflow                     | kgN2O       | 0         | 0         | 0         | 0         |  |
|                                           | -           |           |           |           |           |  |



|        |          |       | ıring project cam |             | 2008   | 2009   | 2010   | 2011   |
|--------|----------|-------|-------------------|-------------|--------|--------|--------|--------|
| Line   | Campaign | BEF   | Start             | End         | NAP    |        |        |        |
| 1      | 0        | 9.63  | 14 Mar 2008       | 21 Oct 2008 | 60 691 |        |        |        |
| 2      | 0        | 7.92  | 09 Nov 2007       | 20 May 2008 | 28 951 |        |        |        |
| 3      | 0        | 4.42  | 01 Feb 2008       | 30 Jun 2008 | 42 999 |        |        |        |
| 4      | 0        | 7.20  | 28 Dec 2007       | 31 Jul 2008 | 57 815 |        |        |        |
| 5      | 0        | 6.61  | 29 Nov 2007       | 17 Jun 2008 | 47 192 |        |        |        |
| 6      | 0        | 10.34 | 11 Jan 2008       | 21 Jul 2008 | 60 850 |        |        |        |
| 7      | 0        | 7.85  | 12 Sep 2007       | 27 Mar 2008 | 26 856 |        |        |        |
| 8      | 0        | 6.61  | 02 Sep 2007       | 15 Apr 2008 | 34 716 |        |        |        |
| 1      | 1        | 9.63  | 04 Nov 2008       | 10 May 2010 | 1 913  | 55 103 | 37 831 |        |
| 2      | 1        | 7.92  | 07 Nov 2008       | 16 Jan 2009 | 12 151 | 241    |        |        |
| 3      | 1        | 4.42  | 04 Jul 2008       | 27 Aug 2008 | 13 520 |        |        |        |
| 4      | 1        | 7.20  | 06 Oct 2008       | 28 Apr 2009 | 11 753 | 27 403 |        |        |
| 5      | 1        | 6.61  | 02 Jul 2008       | 22 Apr 2009 | 39 871 | 20 358 |        |        |
| 6      | 1        | 10.34 | 25 Jul 2008       | 21 Apr 2009 | 41 416 | 26 902 |        |        |
| 7      | 1        | 7.85  | 03 Jul 2008       | 22 Oct 2008 | 31 445 |        |        |        |
| 8      | 1        | 6.61  | 11 Jun 2008       | 26 Nov 2008 | 45 181 |        |        |        |
| 1      | 2        | 9.63  | 13 Sep 2010       | 21 Aug 2011 |        |        | 36 738 | 72 938 |
| 2      | 2        | 9.51  | 16 Jan 2009       | 12 Oct 2009 |        | 61 628 |        |        |
| 3      | 2        | 5.45  | 27 Aug 2008       | 16 Jun 2009 | 24 950 | 31 372 |        |        |
| 4      | 2        | 7.73  | 07 May 2009       | 06 May 2010 |        | 42 744 | 22 505 |        |
| 5      | 2        | 6.61  | 23 Apr 2009       | 14 Jan 2010 |        | 66 630 | 4 642  |        |
| 6      | 2        | 10.34 | 27 Apr 2009       | 25 Nov 2009 |        | 66 297 |        |        |
| 7      | 2        | 9.09  | 29 Jan 2009       | 01 Nov 2009 |        | 58 897 |        |        |
| 8      | 2        | 6.96  | 09 Dec 2008       | 20 Nov 2009 | 5 513  | 53 779 |        |        |
| 1      | 3        | 0.00  | 00 200 2000       | 2011012000  | 0 0.0  | 00110  |        |        |
| 2      | 3        | 9.51  | 13 Oct 2009       | 21 Oct 2010 |        | 17 444 | 68 634 |        |
| 3      | 3        | 5.45  | 17 Jun 2009       | 16 Nov 2010 |        | 35 016 | 49 304 |        |
| 4      | 3        | 7.73  | 03 Aug 2010       | 09 Mar 2011 |        | 00 010 | 38 627 | 20 608 |
| 5      | 3        | 6.61  | 12 Aug 2010       | 17 Mar 2011 |        |        | 48 928 | 27 358 |
| 6      | 3        | 10.34 | 27 Nov 2009       | 20 Sep 2010 |        | 9 863  | 76 524 | 21 000 |
| 7      | 3        | 9.09  | 03 Nov 2009       | 08 Dec 2010 |        | 8 079  | 63 581 |        |
| 8      | 3        | 6.96  | 21 Nov 2009       | 25 Oct 2010 |        | 10 657 | 76 105 |        |
| 1      | 4        | 0.50  | 211107 2000       | 20 00(2010  |        | 10 001 | 70 100 |        |
| 2      | 4        | 9.51  | 22 Oct 2010       | 12 May 2011 |        |        | 25 426 | 41 966 |
| 3      | 4        | 5.46  | 19 Nov 2010       | 25 Aug 2011 |        |        | 12 366 | 70 693 |
| 4      | 4        | 7.73  | 16 Mar 2011       | 05 Oct 2011 |        |        |        | 61 337 |
| 5      | 4        | 6.61  | 17 Mar 2011       | 09 Nov 2011 |        |        |        | 58 648 |
| 6      | 4        | 10.34 | 01 Oct 2010       | 10 Aug 2011 |        |        | 31 515 | 78 822 |
| 7      | 4        | 9.09  | 10 Dec 2010       | 30 Aug 2011 |        |        | 6 843  | 67 872 |
| 8      | 4        | 7.23  | 09 Nov 2010       | 01 Sep 2011 |        |        | 18 323 | 67 589 |
| 1      | 5        |       |                   |             |        |        |        |        |
| 2      | 5        | 9.51  | 13 May 2011       | 08 Dec 2011 |        |        |        | 62 374 |
|        | 5        |       |                   |             |        |        |        |        |
| 4      | 5        |       |                   |             |        |        |        |        |
| 5      | 5        |       |                   |             |        |        |        |        |
| 6      | 5        |       |                   |             |        |        |        |        |
| 7<br>8 | 5<br>5   |       |                   |             |        |        |        |        |
| ō      | 5        |       |                   |             |        |        |        |        |
|        |          |       |                   |             |        |        |        |        |

| NAP Prop         | ortionate Reg        | ulatory Emi | ssion Factor |
|------------------|----------------------|-------------|--------------|
| NAP              | N2O Cap              | EFReg       | N2O with BEF |
| 60 691           | 850 482              | 14.01       | 584 454      |
| 28 951           | 405 704              | 14.01       | 229 295      |
| 42 999           | 602 557              | 14.01       | 190 055      |
| 57 815           | 810 180              | 14.01       | 416 268      |
| 47 192           | 661 323              | 14.01       | 311 942      |
| 60 850           | 852 711              | 14.01       | 629 190      |
| 26 856           | 376 347              | 14.01       | 210 822      |
| 34 716           | 486 487              | 14.01       | 229 473      |
| 94 846           | 1 297 246            | 13.68       | 913 370      |
| 12 392           | 173 627              | 14.01       | 98 145       |
| 13 520           | 189 455              | 14.01       | 59 757       |
| 39 157           | 545 713              | 13.94       | 281 927      |
| 60 229           | 841 780              | 13.98       | 398 114      |
| 68 318           | 954 414              | 13.97       | 706 407      |
| 31 445           | 440 647              | 14.01       | 246 842      |
| 45 181           | 633 132              | 14.01       | 298 644      |
| 109 676          | 1 443 042            | 13.16       | 1 056 183    |
| 61 628           | 856 864              | 13.90       | 586 082      |
| 56 322           | 785 819              | 13.95       | 306 953      |
| 65 249           | 894 308              | 13.71       | 504 375      |
| 71 273           | 988 299              | 13.87       | 471 111      |
| 66 297           | 921 776              | 13.90       | 685 507      |
| 58 897           | 818 894              | 13.90       | 535 374      |
| 59 291           | 824 982              | 13.91       | 412 669      |
| 0                |                      |             | į            |
| 86 079           | 1 157 471            | 13.45       | 818 607      |
| 84 321           | 1 144 113            | 13.57       | 459 548      |
| 59 235           | 784 262              | 13.24       | 457 886      |
| 76 285           | 1 009 796            | 13.24       | 504 247      |
| 86 387           | 1 157 237            | 13.40       | 893 243      |
| 71 660           | 959 892              | 13.40       | 651 388      |
| 86 762           | 1 162 695            | 13.40       | 603 866      |
| 0                |                      |             |              |
| 67 392           | 887 442              | 13.17       | 640 901      |
| 83 058           | 1 088 795            | 13.11       | 453 498      |
| 61 337           | 801 675              | 13.07       | 474 134      |
| 58 648           | 766 528              | 13.07       | 387 661      |
| 110 337          | 1 450 320            | 13.14       | 1 140 887    |
| 74 715<br>85 912 | 978 311<br>1 127 640 | 13.09       | 679 160      |
| 85 912           | 1 127 640            | 13.13       | 621 141      |
| 62 374           | 815 234              | 13.07       | 593 179      |
| 02 37 4          | 013 234              | 13.07       | 333 173      |
| 0                |                      |             |              |
| 0                |                      |             |              |
| 0                |                      |             |              |
| 0                |                      |             |              |
| 0                |                      |             |              |
|                  |                      |             |              |

All the EFReg values are green, which indicates that none of the campaigns resulted in excess emission relative to others given their production levels and the plant IPPC limit, and the regulatory emission factor is higher than the baseline emission factor of the campaigns.

The summary table "Plant emission under baseline conditions" contain yearly emission figures, and as all of the "Theoretical N2O Emission with BEF" stay under the yearly caps (made visible by the chart), none of the IPPC limits were ever violated. By taking the currently finished campaigns into account, all the ERU-s can be claimed so far.

# **Description of the undersampling UNC inclusion**

We want the quantify the additional uncertainty the undersampling causes. The undersampling has two sources: the time during which the measurement head is purged and switches between lines and the number of lines it monitors.

Each record in the excel is the average of a one hour observation. The sampling frequency required by the methodology is two seconds, so the number of samples we would have under ideal circumstances would be:

The AMS measures for 240 seconds then it is purged for 60 seconds during which time it also switches lines. So the number of samples with purging is reduced:

```
samples purged = samples ideal * 240/(60+240) = 1440
```

Furthermore lines (1,2,3), (4,5,6) and (7,8) are measured together, which brings the sample of a line down to 720 or 480 for 2 or 3 lines respectively.

```
samples per line = samples purged / line count
```

What we want to measure is the uncertainty of the ERU-s which is based on mean value of nitric acid concentration, so we need the uncertainty of the mean itself.

The deviation of the mean of a sample is given by the following formula sd(mean(x)) = sd(x)/sqrt(n), so for nitric acid concentration it is:

```
mean ncsg deviation = ncsg deviation / sqrt( ncsg observation count )
```

Where the deviation of that of the hourly NCSG samples and observation count is the number of records that survived statistical elimination.

Since uncertainty is expressed as a percentage, we use the percentage deviation:

```
mean ncsg deviation percent = mean ncsg deviation / mean ncsg
```

The above is the deviation of what we have with as many samples as there are with undersampling, the ideal deviation would be less than that proportional to the difference in sample count:

The additional uncertainty is the increment in the percent deviation compared to the ideal value:

# 

We combine this uncertainty with the AMS uncertainty determined in the QAL2 report using the square root sum formula:

combined\_uncertainty = sqrt( ams\_uncertainty^2 + additional\_uncertainty^2 )