# SECOND PERIODIC JI MONITORING REPORT

## Version 1.5 31 December 2009

## **CONTENTS**

- A. General project activity and monitoring information
- B. Key monitoring activities
- C. Quality assurance and quality control measures
- D. Calculation of GHG emission reductions

## **SECTION A. General Project activity information**

#### A.1 Title of the project activity:

"Improvement of the Energy efficiency at Energomashspetsstal (EMSS), Kramatorsk, Ukraine".

#### A.2. JI registration number:

JI 0104

## A.3. Short description of the project activity:

The project activity consists of the energy efficiency measures at the premises of EMSS by the implementation of four subprojects:

**Subproject 1. Reconstruction of thermal and heating furnaces** – there are 35 thermal and heating furnaces in operation in different shops at the premises of EMSS. The main goal of this subproject is the reduction of the natural gas (NG) consumption on 26 of these furnaces by commissioning of new automated NG burners (this enables to maintain the required temperature inside of the furnace) and by implementation of new thermal insulation for the walls, front doors and roofs of the furnaces.

**Subproject 2. Installation of a new vacuum system** – Installation of a new vacuum system for the vacuumed steel production. The old vacuum system used heat and electricity. The reconstructed vacuum system uses only electricity.

**Subproject 3. Installation of an arc ladle furnace** – New arc ladle furnace is installed for the steel production. This means that the part of the process of the steel preparation doing in the ladle from which the steel will be cast into the forms. As a result there is reduction of the electricity consumption.

**Subproject 4. Modernization of press equipment** – Replacing the old pump system, serving the 15,000 ton press, with a new one, more effective pump system. The number of old pumps is 24 (with 500 kW installed capacity each), and the number of new pumps will be 11 (with 800 kW installed capacity each).

#### A.4. Monitoring period:

- Monitoring period starting date: 01.01.2009 at 00:00;
- Monitoring period closing date: 30.09.2009 at 24:00.

## A.5. Methodology applied to the project activity (incl. version number):

**A.5.1. Baseline methodology:** The "Guidance on criteria for baseline setting and monitoring", issued by the Joint Implementation Supervisory Committee allows using approved methodologies of the CDM. The PDD, determined by an AIE, used a JI project specific approach to establish baseline scenario.

**A.5.2. Monitoring methodology:** A JI-specific monitoring approach was developed for this project in line with the "Guidance on criteria for baseline setting and monitoring". The resulting Monitoring Plan was determined as part of the determination process.

## A.6. Status of implementation including time table for major project parts:

The delays in the SP1 implementation in compare with the schedule caused by lack of financing.

|                                                              | Date of start up according to PDD |      |
|--------------------------------------------------------------|-----------------------------------|------|
| Subproject 1. Reconstruction of thermal and heating furnaces |                                   |      |
| Thermal #1, Thermal workshop                                 | 2006                              | 2006 |
| Thermal #2, Thermal workshop                                 | 2006                              | 2006 |

| Activity                                           | Date of start up according to PDD | Date of start up actual |
|----------------------------------------------------|-----------------------------------|-------------------------|
| Thermal #9, Thermal workshop                       | 2006                              | 2006                    |
| Thermal #10, Thermal workshop                      | 2006                              | 2006                    |
| Thermal #30, Forge Press workshop                  | April 2008                        | May 2008                |
| Thermal #18, Forge Press workshop                  | July 2008                         | December 2008           |
| Heating #7, Forge Press Workshop                   | July 2008                         | October 2008            |
| Heating #8, Forge Press Workshop                   | 2007                              | 2007                    |
| Heating #9, Forge Press Workshop                   | 2007                              | 2007                    |
| Heating #10, Forge Press Workshop                  | 2007                              | February 2008           |
| Thermal #19, Forge Press workshop                  | September 2008                    | February 2009           |
| Thermal #20, Forge Press workshop                  | October 2008                      | March 2009              |
| Thermal #21, Forge Press workshop                  | October 2008                      | August 2009             |
| Thermal #32, Forge Press workshop                  | October 2008                      | July 2009               |
| Thermal #33, Forge Press workshop                  | October 2008                      | September 2009          |
| Thermal #37, Forge Press workshop                  | August 2009                       | September 2009          |
| Subproject 2. Installation of a new vacuum system  | May 2007                          | February 2008           |
| Subproject 3. Installation of an arc ladle furnace | April 2007                        | April 2007              |
| Subproject 4. Modernization of press equipment     | December 2007                     | August 2008             |

Table 1: Status of implementation (according to PDD)

#### A.7. Intended deviations or revisions to the determined PDD:

There are few deviations to the monitoring plan that is the part of the determined PDD. Detailed description of the deviations is given in the section A.8. Revised monitoring plan submitted to the AIE during verification.

## A.8. Intended deviations or revisions to the determined monitoring plan:

According to the determined monitoring plan project and baseline emissions and emission reductions are calculating on the annual basis for every subproject. In order to make monitoring process for the nine months possible formulas for the calculations has been updated. Updates with compare to determined monitoring plan are presents in the following table.

| Formulas in determined monitoring plan                              | Updated formulas                                                                   |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------|
| $PE_{sp1} = NG_{tf,y} * LCV_{NG} * EF_{NG}$ , Where:                | $PE_{sp1} = \sum_{i=1}^{i=n} {26 \choose \Sigma} NG_{tf,i} * LCV_{NG,i} * EF_{NG}$ |
| $PE_{sp1}$ - is the project emissions of subproject                 | Where:                                                                             |
| 1 in year $y$ , [tCO <sub>2</sub> ];                                | $PE_{\mathit{sp1}}$ - is the sum of project emissions of subproject 1 from         |
| $NG_{tf,y}$ - is the annual quantity of NG, used                    | each month of the monitoring period, [tCO <sub>2</sub> ];                          |
| by the 26 reconstructed furnaces, [1000 nm3];                       | $NG_{ti}$ - is the volume of NG, used by the 26 reconstructed                      |
| $LCV_{\scriptscriptstyle NG}$ - is the lower calorific value of the | furnaces in the month i, [1000 nm3];                                               |
| NG, [MWh/1000nm3];                                                  | $LCV_{{\scriptscriptstyle NG},i}$ - is the lower calorific value of the NG for the |
| $EF_{\scriptscriptstyle NG}$ - is the emission factor of the NG     | month i, [MWh/1000nm3];                                                            |
| burning process, [tCO2/MWh].                                        | 7.6 37                                                                             |

|                                                                                                                                                                                                                                                                                                                                                                                                           | $EF_{NG}$ - is the emission factor of the NG burning process, [tCO2/MWh].                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $PE_{sp2} = EL_{VD} * EF_{el,y}$ Where: $PE_{sp2}$ - is the project emissions of subproject 2 in year $y$ , [tCO <sub>2</sub> ]; $EL_{VD}$ - is the annual electrical consumption of the new VD, [MWh]; $EF_{el,y}$ - is the calculated emission factor of the Ukrainian grid, [tCO2/MWh].                                                                                                                | $PE_{sp2} = \sum_{i=1}^{n} (EL_{VD,i} * EF_{el})$ Where: $PE_{sp2} - \text{is the sum of project emissions of subproject 2 from each month of the monitoring period, [tCO2];}$ $EL_{VD,i} - \text{is the electrical consumption of the new VD in the month i, [MWh];}$ $EF_{el} - \text{is the calculated emission factor of the Ukrainian grid, }$ [tCO2/MWh].                                                                                                                                                 |
| $PE_{sp3} = (EL_{LF} + EL_{EAF}) * EF_{el,y}$ Where:<br>$PE_{sp3}$ - is the project emissions of subproject 3 in year $y$ , [tCO <sub>2</sub> ];<br>$EL_{LF}$ - is the annual electrical consumption of the new ladle furnace, [MWh];<br>$EL_{EAF}$ - is the annual electrical consumption of the electric arc furnace, [MWh];                                                                            | $PE_{sp3} = \sum_{i=1}^{n} ((EL_{LF,i} + EL_{EAF,i}) * EF_{el})$ Where: $PE_{sp3}$ - is the sum of project emissions of subproject 3 from each month of the monitoring period, [tCO <sub>2</sub> ]; $EL_{LF,i}$ - is the electrical consumption of the new ladle furnace in the month i, [MWh]; $EL_{EAF,i}$ - is the electrical consumption of the electric arc furnace in the month i, [MWh];                                                                                                                 |
| $PE_{sp4} = EL_{PR} * EF_{el,y}$ Where: $PE_{sp4}$ - is the project emissions of subproject 4 in year $y$ , [tCO <sub>2</sub> ]; $EL_{PR}$ - is the annual electrical consumption of the new pumps of the 15,000 tonnes press, [MWh].                                                                                                                                                                     | $PE_{sp4} = \sum_{i=1}^{n} (EL_{PR,i} * EF_{el,y})$ Where: $PE_{sp4} - \text{is the sum of project emissions of subproject 4 from each month of the monitoring period, [tCO2];}$ $EL_{PR,i} - \text{is the electrical consumption of the new pumps of the}$ 15,000 tonnes press in the month i, [MWh].                                                                                                                                                                                                          |
| $BE_{sp1} = SPNG_{tf} * PRST_{tf} *$ $*LCV_{NG} * EF_{NG}$ Where: $BE_{sp1}$ - is the baseline emissions of subproject 1 in year $y$ , [tCO <sub>2</sub> ]; $SPNG_{tf}$ - is the baseline ex-ante specific NG consumption of the 26 reconstructed furnaces, [1000nm3/t steel]; $PRST_{tf}$ - is the annual production steel level of each of the 26 reconstructed thermal and heating furnaces, [tonnes]. | $BE_{sp1} = \sum_{1}^{26} \left( \sum_{i=1}^{n} \left( SPNG_{tf} *PRST_{tf} *LCV_{NG} *EF_{NG} \right) \right)$ Where: $BE_{sp1} - \text{is the sum of baseline emissions of subproject from each month of the monitoring period, [tCO2];}$ $SPNG_{tf} - \text{is the baseline ex-ante specific NG consumption of the 26 reconstructed furnaces, [1000nm3/t steel];}$ $PRST_{tf} - \text{is the production steel level of each of the 26 reconstructed thermal and heating furnaces in the month i, [tonnes].}$ |
| $BE_{sp2} = SPH_{VD} * PRVS_{VD} \div \\ \div EB_{DHC} * EF_{Coal} + SPEL_{VD} *$                                                                                                                                                                                                                                                                                                                         | $BE_{sp2} = \sum_{i=1}^{n} (SPH *PRVS_{VD,i} \div$                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# \* $PRVS_{VD}$ \* $EF_{el}$ ,

 $BE_{sp2}$  - is the baseline emissions of subproject 2 in year y, [tCO<sub>2</sub>];

 $SPH_{VD}$  - is a baseline ex ante specific heat consumption of the old VD, [MWh/t];

 $PRVS_{VD}$  - is the annual production volume of vacuumed steel, [t];

 $EB_{\mathrm{DHC}}$  - is the efficiency of the steam boilers at the DHC;

 $EF_{Coal}$  - is the emission factor for local (anthracite) coal burning, [tCO2/MWh];

 $SPEL_{VD}$  - is a baseline ex ante specific electrical consumption of the old VD, [MWh/t];

 $EF_{el,y}$  - is the calculated emission factor of the Ukrainian grid, [tCO2/MWh].

$$BE_{sp3} = SPEL_{ES} * PRES * EF_{el,y}$$
  
Where:

 $BE_{sp3}$  - is the baseline emissions of subproject 3 in year y, [tCO<sub>2</sub>];

 $SPEL_{ES}$  - is the baseline ex ante specific consumption of electricity per tone of electro steel, [MWh/t steel];

*PRES* – is the annual production volume of electro steel, [t].

$$BE_{sp4} = T_{pp} * EL_{MOT} * EF_{el,y}$$

 $BE_{sp4}$  - is the baseline emissions of subproject 4 in year y, [tCO<sub>2</sub>];

 $T_{\it pp}$  - is a working hours of the press, [h];

 $EL_{MOT}$  - is the press' serving motors before reconstruction, [MW].

$$\div EB_{DHC} * EF_{Coal} + SPEL_{VD} * PRVS_{VD,i} * EF_{el,y})$$

 $BE_{sp2}$  - is the sum of baseline emissions of subproject 2 from each month of the monitoring period, [tCO<sub>2</sub>];

 $SPH_{VD}$  - is a baseline ex ante specific heat consumption of the old VD, [MWh/t];

 $PRVS_{VD,i}$  - is the monthly production volume of vacuumed steel, [t];

 $EB_{\rm DHC}$  - is the efficiency of the steam boilers at the DHC;

 $EF_{\it Coal}$  - is the emission factor for local (anthracite) coal burning, [tCO2/MWh];

 $SPEL_{VD}$  - is a baseline ex ante specific electrical consumption of the old VD, [MWh/t];

 $EF_{el,y}$  - is the calculated emission factor of the Ukrainian grid, [tCO2/MWh].

$$BE_{sp3} = \sum_{i=1}^{n} (SPEL_{ES} * PRES_{i} * EF_{el,y})$$

Where:

 $BE_{sp3}$  - is the sum of baseline emissions of subproject 3 from each month of the monitoring period, [tCO<sub>2</sub>];

 $SPEL_{ES}$  - is the baseline ex ante specific consumption of electricity per tone of electro steel, [MWh/t steel];

 $PRES_i$  — is the monthly production volume of electro steel, [t].

$$BE_{sp4} = \sum_{i=1}^{n} (T_{pp} * EL_{MOT} * EF_{el,y})$$

Where

 $BE_{sp4}$  - is the sum of baseline emissions of subproject 4 from each month of the monitoring period, [tCO<sub>2</sub>];

 $T_{pp}$  - is a working hours of the press in the month i, [h];

 $EL_{MOT}$  - is the press' serving motors before reconstruction, [MW].

Table 2: Deviations to the monitoring plan

Changes that have been implemented do not affect:

- 1. conservativeness of the approach to the emission reductions calculations;
- 2. procedures of the data collection and archiving.

Revised monitoring plan submitted to the AIE during verification process.

### A.9. Changes since last verification:

In the year 2009 newly reconstructed furnaces were put into operations as a part of the subproject 1 (see Table 1).

## JI MONITORING REPORT

"Improvement of the Energy efficiency at Energomashspetsstal (EMSS), Kramatorsk, Ukraine"

page 6

## A.10. Person(s) responsible for the preparation and submission of the monitoring report:

OJSC "Energomashspetsstal"

• Alexander Masyuk, Deputy Chief Engineer

Global Carbon B.V.

- Lennard de Klerk, Director
- Oleg Bulany, Senior JI Consultant

# SECTION B. Key monitoring activities according to the monitoring plan for the monitoring period stated in A.4.

Key monitoring activities for each subproject could be described as follows.

**Subproject 1. Reconstruction of thermal and heating furnaces.** Each reconstructed furnace has a natural gas flow meter with pressure and temperature sensors in order to calculate normal cubic meters of natural gas burned in the furnace. Information from flow meters, pressure and temperature sensors are transmitting to the control and monitoring computer system.

Recalculation of NG consumption from actual to normalized cubic meters was introduced on the furnaces during the year 2009 for the most of the reconstructed furnaces. The schedule of the computer system update presents in the following table.

| Furnace                           | Date of computer system |
|-----------------------------------|-------------------------|
|                                   | update                  |
| Thermal #1, Thermal workshop      | 01.03.2009              |
| Thermal #2, Thermal workshop      | 01.03.2009              |
| Thermal #9, Thermal workshop      | 01.02.2009              |
| Thermal #10, Thermal workshop     | 01.01.2009              |
| Thermal #30, Forge Press workshop | 01.07.2009              |
| Thermal #18, Forge Press workshop | 20.08.2009              |
| Heating #7, Forge Press Workshop  | 01.08.2009              |
| Heating #8, Forge Press Workshop  | 01.05.2009              |
| Heating #9, Forge Press Workshop  | 01.04.2009              |
| Heating #10, Forge Press Workshop | 01.04.2009              |
| Thermal #19, Forge Press workshop | 20.08.2009              |
| Thermal #20, Forge Press workshop | 20.08.2009              |
| Thermal #21, Forge Press workshop | 20.08.2009              |
| Thermal #32, Forge Press workshop | 20.08.2009              |
| Thermal #33, Forge Press workshop | 01.09.2009              |
| Thermal #37, Forge Press workshop | 01.09.2009              |

Table 3: Status of computer systems update

As it could be seen from the table 3, furnaces were updated not simultaneously but through the year. So, in order to keeps consistency of data flow, manual recalculating from actual to normal cubic meters was used.

All information about technological process is saved continuously. The archiving period for the log files is at least one year. Information that corresponds to the natural gas consumption in 2009 has been burned on CDs. These CDs are stored till the end of the crediting period plus two years.

Every half-finished product that processes through the furnaces has his own unique certificate. This certificate reflects all operations performed on the product and the weight on the exit of every workshop. So, the weight of half-finished products that proceed through each furnace could be easily monitored. Information from the certificates is saved in the log books in order to simplify the monitoring process.

A report including natural gas consumption and weight of half finished products is generating on a monthly basis. The report is signing by Head of Energy Saving Department, Head of corresponding workshop and approved by Chief Engineer.

Every furnace has specific natural gas consumption factor. This factor is using for the daily basis meter's checking procedure. In case specific natural gas consumption is deviate from the factor, furnace is shutting down for the checking procedures.

The flowcharts of the natural gas supplying system with the metering points are presented in the following figures.

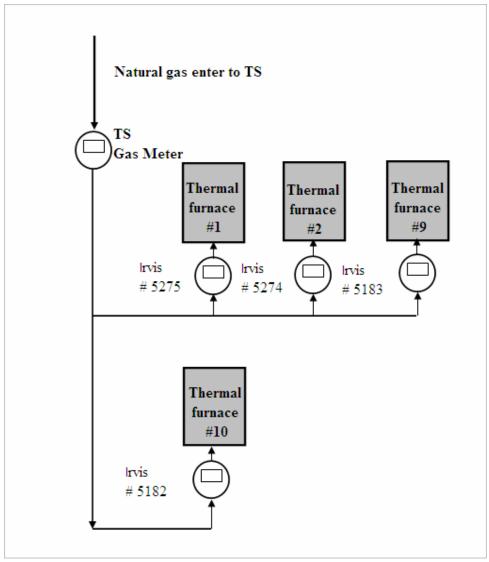



Figure 1. Natural gas metering system at the thermal workshop (TS)

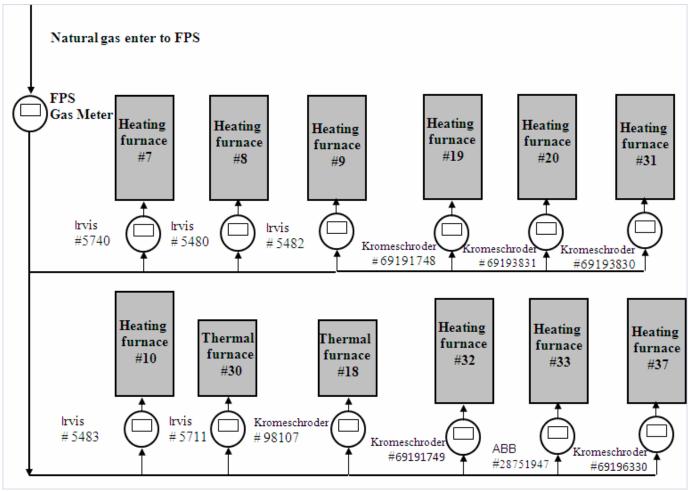



Figure 2. Natural gas metering system at Forge Press workshop (FPS)

## Subproject 2. Installation of a new vacuum system.

Electricity that is consumed during the vacuum process is metered by meters, dedicated especially for this system. Information from meters is coming to the control and monitoring computer system of the vacuumizator. A computer system records information about every vacuumization session, including melt passport, time and electricity consumption. The archiving period for the log files is at least one year. Information that corresponds to the electricity consumption in 2009 has been burned on CDs. These CDs are stored till the end of the crediting period plus two years.

The vacuumizator has a specific electricity consumption factor. In case the electricity consumption is deviating from the factor, the facility is shutting down to perform troubleshooting procedures.

The steel to the vacuum degasser (VD) coming either from ladle furnace (LF) or from the electric arc furnace (EAF) in special ladle. Each ladle with liquid steel has unique certificate of melt. The following figure presents the electricity supplying system to the VD with metering points.

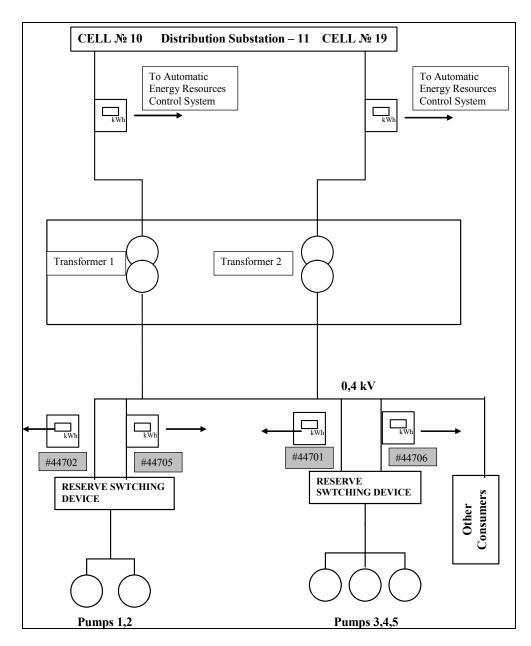



Figure 3. Electricity metering system at VD

## Subproject 3. Installation of an arc ladle furnace.

LF is a comprehensive solution for high quality steel melting has been installed in the Steel Making Workshop (SMW). The main electricity consumers of the SMW are powered by the following scheme.

Close Distribution Unit (CDU) #1, 2 are electricity powering points for the EAFs (EAF50 #1, EAF100 #3, EAF100 #5 and EAF12) and LF. CDUs are powering from Transformers (T1, and T2) and Autotransformers (AT1 and AT2). EAFs and LF could be powered from any of the Transformers or Autotransformers. Commercial electricity meters are installed on each of the Transformers and Autotransformer. Cross-checking of the meters is performed by the following formulae:

 $\sum$ (AT1+ AT2 +T1 + T2) -  $\sum$ (EAF50 #1 + EAF100 #3 + EAF100 #5+ EAF12+LF) $\leq$  1.5%

In case difference is more than 1.5%, verification of meters is performed. The defective meter is substituted within one day.

The data from electricity meters concerning electricity consumption is transmitted to the control and monitoring computer system continuously. The computer system records information about each melt process, including melt certificate. This certificate includes information about the number of EAF where steel was melted, steel content, amount of electricity consumed during melting and weight of steel. The archiving period for the log files is at least one year. All melt certificates for the year 2009 has been burned to CDs. These CDs are stored till the end of the crediting period plus two years.

The following figure presents electricity supplying system with metering points.

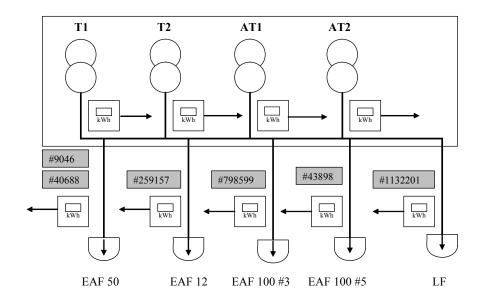



Figure 4. Electricity metering system at EAFs and LF

#### Subproject 4. Modernization of press equipment.

Serving motors of the press pump station are powered from the 6kV line. Substation 110/6 kV has two transformers. Each transformer has a commercial electricity meter. There are some addition consumers on the 6kV line. The check of meters is performed using the following formulae:

 $\sum (Tp1+Tp2) - \sum (Consumers+Pump Station) \le 1.5\%$ 

In case difference is more than 1.5%, verification of meters is performing. Defective meter is substituted within one day.

All data concerning electricity consumption is transmitted to the control and monitoring computer system. The press has a special registry log book, where working time of press is logged, among other data. The following figure presents electricity supplying system of the press with metering points.

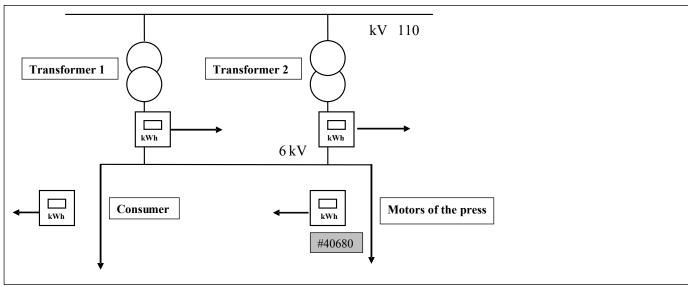



Figure 5. Electricity metering system at press

The control and monitoring system can be divided into an electrical part, a gas part and steel weight part.

#### **Electrical measurements**

For the purpose of monitoring the emission reductions the following parameters are measured:

- Electricity consumption at EAFs;
- Electricity consumption at LF;
- Electricity consumption at VD;
- Electricity consumption at press' pump station.

#### Natural gas measurements

For the purpose of monitoring the emission reductions the following parameters are measured:

Natural gas consumption, temperature and pressure at 16 reconstructed heating and thermal furnaces.

## Steel weight measurement

For the purpose of monitoring the emission reductions the following parameters are measured:

- Weight of steel proceeded through the LF;
- Weight of steel proceeded through the VD;
- Weight of half-finished products proceeded through reconstructed heating and thermal furnaces.

## **B.1.** Monitoring equipment types

- 1. Electricity meters "Energia -9"
- 2. Electricity meters "SA ZU-I670M"
- 3. Electricity meters "EuroAlfha"
- 4. Natural gas flow meters "IRVIS K 300"
- 5. Natural gas flow meter "Kromeschroder"
- 6. Natural gas flow meter "ABB"
- 7. Natural gas temperature meters "TSMU 274-05"
- 8. Natural gas temperature meters "TSPU 205"
- 9. Natural gas pressure meters "Metran 100 DI"
- 10. Natural gas pressure meter "Metran 55Ex Da"
- 11. Weighing machine "ErMack-Vk1rk-10"
- 12. Weighing machine "ErMack-Vk1rk-20"
- 13. Weighing machine "ErMack-Vk1rk-50"
- 14. Weighing machine "ErMack-Vk1rk-80"
- 15. Weighing machine "02VPT-200MC"

# B.1.2. Table providing information on the equipment used (incl. manufacturer, type, serial number, date of installation, date of last calibration, information to specific uncertainty, need for changes and replacements):

The control and monitoring system can be divided into an electrical part, a natural gas part and a steel weight part.

#### **Electrical measurements**

For the purpose of monitoring the emission reductions the following parameters are measured:

- Electricity consumption at EAFs;
- Electricity consumption at LF;
- Electricity consumption at VD;
- Electricity consumption at press' pump station.

| ID of the meter | Measuring<br>parameter               | Work parameter | Type        | Serial  | Level of accuracy | Date<br>of installation | Electricity consumed 1.01.2009-01.09.2009 | Date of<br>last calibration | Date of next calibration. | Remarks                          |
|-----------------|--------------------------------------|----------------|-------------|---------|-------------------|-------------------------|-------------------------------------------|-----------------------------|---------------------------|----------------------------------|
| EL1             | Electricity consumption at EAF50     | MWh            | Energia 9   | 9046    | 0.2%              | 2007                    | 12332.197                                 | 27.05.2009                  | 27.05.2015                |                                  |
| EL2             | Electricity consumption at EAF50     | MWh            | Energia 9   | 40688   | 0.2%              | 2009                    | 248.172                                   | 01.07.2007                  | 01.07.2013                | For more details see Section B.4 |
| EL3             | Electricity consumption at EAF100 #3 | kWh            | SA ZU-I670M | 798599  | 2%                | 2003                    | 290                                       | 14.01.2008                  | 14.01.2012                |                                  |
| EL4             | Electricity consumption at EAF100 #5 | kWh            | Energia 9   | 43898   | 0.2%              | 10.08.2008              | 453.159                                   | 31.01.2008                  | 30.01.2014                |                                  |
| EL5             | Electricity consumption at LF        | kWh            | EuroAlfha   | 1132201 | 0.5%              | 2007                    | 144.271                                   | 25.09.2006                  | 25.09.2012                |                                  |
| EL6             | Electricity consumption at VD        | kWh            | Energia 9   | 44701   | 0.2%              | 2008                    | 459.438                                   | 28.02.2008                  | 28.02.2012                |                                  |
| EL7             | Electricity consumption at VD        | kWh            | Energia 9   | 44702   | 0.2%              | 2008                    | 299.823                                   | 28.02.2008                  | 28.02.2012                |                                  |
| EL8             | Electricity consumption at VD        | kWh            | Energia 9   | 44705   | 0.2%              | 2008                    | 372.036                                   | 28.02.2008                  | 28.02.2012                |                                  |
| EL9             | Electricity consumption at VD        | kWh            | Energia 9   | 44706   | 0.2%              | 2008                    | 189.9                                     | 28.02.2008                  | 28.02.2012                |                                  |
| EL10            | Electricity consumption at press     | kWh            | Energia 9   | 40680   | 0.2%              | 26.08.2008              | 123.31                                    | 09.2006                     | 09.2012                   |                                  |

Table 4: List of electric meters

Electric current provided to the EAFs and LF has so high parameters (more then 5A), that could not be measured directly. The current parameters decreased through the transformers and measured. The following table presents list of transformers using in the electric current measuring.

| ID of<br>transformer | Transforming parameter | Work<br>parameter | Туре     | Serial<br>number | Level of accuracy | Transformation factor | Date of last calibration | Date of<br>next<br>calibration |
|----------------------|------------------------|-------------------|----------|------------------|-------------------|-----------------------|--------------------------|--------------------------------|
| TR1                  | Current at EAF50       | A                 | TPOL-35  | 11               | 0.5%              | 600/5                 | 13.05.2009               | 13.05.2013                     |
| TR2                  | Current at EAF50       | A                 | TPOL-35  | 37               | 0.5%              | 600/5                 | 13.05.2009               | 13.05.2013                     |
| TR3                  | Voltage at EAF50       | V                 | ZNOM-35  | 1138121          | 0.5%              | 35000/100             | 13.05.2009               | 13.05.2013                     |
| TR4                  | Voltage at EAF50       | V                 | ZNOM-35  | 1138211          | 0.5%              | 35000/100             | 13.05.2009               | 13.05.2013                     |
| TR5                  | Voltage at EAF50       | V                 | ZNOM-35  | 1120877          | 0.5%              | 35000/100             | 13.05.2009               | 13.05.2013                     |
| TR6                  | Current at EAF100 #3   | A                 | TPOL-35  | 113              | 0.5%              | 600/5                 | 13.05.2009               | 13.05.2013                     |
| TR7                  | Current at EAF100 #3   | A                 | TPOL-35  | 13               | 0.5%              | 600/5                 | 13.05.2009               | 13.05.2013                     |
| TR8                  | Voltage at EAF100 #3   | V                 | ZNOM-35  | 854859           | 0.5%              | 35000/100             | 13.05.2009               | 13.05.2013                     |
| TR9                  | Voltage at EAF100 #3   | V                 | ZNOM-35  | 854965           | 0.5%              | 35000/100             | 13.05.2009               | 13.05.2013                     |
| TR10                 | Voltage at EAF100 #3   | V                 | ZNOM-35  | 849517           | 0.5%              | 35000/100             | 13.05.2009               | 13.05.2013                     |
| TR11                 | Current at EAF100 #5   | A                 | TPOL-35  | 351              | 0.5%              | 1000/5                | 13.05.2009               | 13.05.2013                     |
| TR12                 | Current at EAF100 #5   | A                 | TPOL-35  | 458              | 0.5%              | 1000/5                | 13.05.2009               | 13.05.2013                     |
| TR13                 | Voltage at EAF100 #5   | V                 | ZNOM-35  | 1284276          | 0.5%              | 35000/100             | 13.05.2009               | 13.05.2013                     |
| TR14                 | Voltage at EAF100 #5   | V                 | ZNOM-35  | 1355405          | 0.5%              | 35000/100             | 13.05.2009               | 13.05.2013                     |
| TR15                 | Voltage at EAF100 #5   | V                 | ZNOM-35  | 1213200          | 0.5%              | 35000/100             | 13.05.2009               | 13.05.2013                     |
| TR16                 | Current at LF          | A                 | TPU 7051 | 5105040894       | 0.5%              | 500/5                 | 13.05.2009               | 13.05.2013                     |
| TR17                 | Current at LF          | A                 | TPU 7051 | 5105040895       | 0.5%              | 500/5                 | 13.05.2009               | 13.05.2013                     |
| TR18                 | Current at LF          | A                 | TPU 7051 | 5105040896       | 0.5%              | 500/5                 | 13.05.2009               | 13.05.2013                     |
| TR19                 | Voltage at LF          | V                 | ZNOM-35  | 1168572          | 0.5%              | 35000/100             | 13.05.2009               | 13.05.2013                     |
| TR20                 | Voltage at LF          | V                 | ZNOM-35  | 1427592          | 0.5%              | 35000/100             | 13.05.2009               | 13.05.2013                     |
| TR21                 | Voltage at LF          | V                 | ZNOM-35  | 1279988          | 0.5%              | 35000/100             | 13.05.2009               | 13.05.2013                     |
| TR22                 | Current at VD          | A                 | T-0.66-1 | 21387            | 0.5%              | 600/5                 | 13.05.2009               | 13.05.2013                     |
| TR23                 | Current at VD          | A                 | T-0.66-1 | 19132            | 0.5%              | 600/5                 | 13.05.2009               | 13.05.2013                     |
| TR24                 | Current at VD          | A                 | T-0.66-1 | 21526            | 0.5%              | 600/5                 | 13.05.2009               | 13.05.2013                     |
| TR25                 | Current at VD          | A                 | T-0.66-1 | 83614            | 0.5%              | 600/5                 | 13.05.2009               | 13.05.2013                     |
| TR26                 | Current at VD          | A                 | T-0.66-1 | 21837            | 0.5%              | 600/5                 | 13.05.2009               | 13.05.2013                     |
| TR27                 | Current at VD          | A                 | T-0.66-1 | 19100            | 0.5%              | 600/5                 | 13.05.2009               | 13.05.2013                     |

| ID of<br>transformer | Transforming<br>parameter | Work<br>parameter | Туре         | Serial<br>number | Level of accuracy | Transformation<br>factor | Date of last calibration | Date of next calibration |
|----------------------|---------------------------|-------------------|--------------|------------------|-------------------|--------------------------|--------------------------|--------------------------|
| TR28                 | Current at VD             | A                 | T-0.66-1     | 19687            | 0.5%              | 600/5                    | 13.05.2009               | 13.05.2013               |
| TR29                 | Current at VD             | A                 | T-0.66-1     | 21888            | 0.5%              | 600/5                    | 13.05.2009               | 13.05.2013               |
| TR30                 | Current at press          | A                 | TPLM-10      | 03051            | 0.5%              | 1500/5                   | 13.05.2009               | 13.05.2013               |
| TR31                 | Voltage at press          | V                 | NTMI-6-66-UZ | 412              | 0.5%              | 6000/100                 | 13.05.2009               | 13.05.2013               |

Table 5: List of transformers

## Natural gas measurements

For the purpose of monitoring the emission reductions the following parameters are measured:

• Natural gas consumption at 16 reconstructed heating and thermal furnace.

| ID of meter | Measuring<br>parameter                            | Work<br>parameter | Type                            | Serial<br>number | Level of accuracy | Date<br>of installation | NG consumed<br>1.01.2009-<br>01.09.2009 | Date of<br>last<br>calibration | Date of<br>next<br>calibration |
|-------------|---------------------------------------------------|-------------------|---------------------------------|------------------|-------------------|-------------------------|-----------------------------------------|--------------------------------|--------------------------------|
| NG1         | Consumption of the NG at thermal furnace #1, TS   | m <sup>3</sup>    | IRVIS - K - 300                 | 5274             | 1%                | 01.2007                 | 693809                                  | 05.03.2008                     | 05.03.2010                     |
| NG2         | Consumption of the NG at thermal furnace #2, TS   | $m^3$             | IRVIS - K - 300                 | 5275             | 1%                | 01.2007                 | 632161                                  | 05.03.2008                     | 05.03.2010                     |
| NG3         | Consumption of the NG at thermal furnace #9, TS   | $m^3$             | IRVIS - K - 300                 | 5182             | 1%                | 01.2006                 | 292001                                  | 05.03.2008                     | 05.03.2010                     |
| NG4         | Consumption of the NG at thermal furnace #10, TS  | $m^3$             | IRVIS - K - 300                 | 5183             | 1%                | 01.2006                 | 326051                                  | 05.03.2008                     | 05.03.2010                     |
| NG5         | Consumption of the NG at thermal furnace #7, FPS  | $m^3$             | IRVIS - K - 300                 | 5740             | 1%                | 10.2008                 | 1976966                                 | 08.02.2008                     | 08.02.2010                     |
| NG6         | Consumption of the NG at thermal furnace #8, FPS  | $m^3$             | IRVIS - K - 300                 | 5480             | 1%                | 12.2007                 | 1229897                                 | 20.02.2009                     | 20.02.2011                     |
| NG7         | Consumption of the NG at thermal furnace #9, FPS  | $m^3$             | IRVIS - K - 300                 | 5482             | 1%                | 12.2007                 | 1468580                                 | 20.02.2009                     | 20.02.2011                     |
| NG8         | Consumption of the NG at thermal furnace #10, FPS | $m^3$             | IRVIS - K - 300                 | 5483             | 1%                | 12.2007                 | 1334258                                 | 20.02.2009                     | 20.02.2011                     |
| NG9         | Consumption of the NG at thermal furnace #30, FPS | $m^3$             | IRVIS - K - 300                 | 5711             | 1%                | 05.2007                 | 786156                                  | 18.10.2007                     | 18.10.2009                     |
| NG10        | Consumption of the NG at thermal furnace #18, FPS | m <sup>3</sup>    | Kromeschroder DM<br>650 Z150-40 | 98107            | 1.5%              | 03.2008                 | 368362                                  | 24.03.2008                     | 24.03.2010                     |
| NG11        | Consumption of the NG at thermal furnace #19, FPS | m <sup>3</sup>    | Kromeschroder DM<br>650 Z150-40 | 69191748         | 1.5%              | 05.2009                 | 298980                                  | 08.05.2009                     | 08.05.2011                     |
| NG12        | Consumption of the NG at thermal furnace #20, FPS | m <sup>3</sup>    | Kromeschroder DM<br>650 Z150-40 | 69193831         | 1.5%              | 05.2009                 | 375038                                  | 08.05.2009                     | 08.05.2011                     |
| NG13        | Consumption of the NG at thermal furnace #21, FPS | m <sup>3</sup>    | Kromeschroder DM<br>650 Z150-40 | 69193830         | 1%                | 09.2009                 | 83997                                   | 15.07.2009                     | 15.07.2011                     |
| NG14        | Consumption of the NG at thermal furnace #32, FPS | m <sup>3</sup>    | Kromeschroder DM<br>650 Z150-40 | 69191749         | 1%                | 09.2009                 | 123125                                  | 15.07.2009                     | 15.07.2011                     |
| NG15        | Consumption of the NG at thermal furnace #33, FPS | Nm <sup>3</sup>   | ABB FMT500-IG                   | 28751947         | 1%                | 08.2009                 | 1150                                    | 12.08.2009                     | 12.08.2011                     |
| NG16        | Consumption of the NG at thermal furnace #37, FPS | m <sup>3</sup>    | Kromeschroder<br>DM 650 Z150-40 | 69196330         | 1 %               | 09.2009                 | 8848                                    | 16.05.2008                     | 16.05.2010                     |

Table 6: List of natural gas meters

Natural gas meters measuring gas flow in the m<sup>3</sup>. To convert measuring value to Nm<sup>3</sup>, temperature and pressure meters are used. The following tables present temperature and pressure meters.

| ID of meter | Measuring<br>parameter                            | Work<br>parameter | Type          | Serial<br>number | Level of<br>accuracy | Date<br>of installation | Date of<br>last calibration | Date of<br>next<br>calibration |
|-------------|---------------------------------------------------|-------------------|---------------|------------------|----------------------|-------------------------|-----------------------------|--------------------------------|
| TP1         | Temperature of the NG at thermal furnace #1, TS   | Co                | TSMU 274-05   | 655358           | 0.5%                 | 09.2008                 | 16.09.2008                  | 16.09.2009                     |
| TP2         | Temperature of the NG at thermal furnace #2, TS   | Co                | TSMU 274-05   | 655355           | 0.5%                 | 09.2008                 | 16.09.2008                  | 16.09.2009                     |
| TP3         | Temperature of the NG at thermal furnace #9, TS   | C°                | TSMU 274-05   | 655359           | 0.5%                 | 09.2008                 | 14.07.2008                  | 14.07.2009                     |
| TP4         | Temperature of the NG at thermal furnace #10, TS  | Co                | TSMU 274-05   | 655363           | 0.5%                 | 09.2008                 | 14.07.2008                  | 14.07.2009                     |
| TP5         | Temperature of the NG at thermal furnace #7, FPS  | C°                | TSMU 274-05   | 655354           | 0.5%                 | 09.2008                 | 14.07.2008                  | 14.07.2009                     |
| TP6         | Temperature of the NG at thermal furnace #8, FPS  | C°                | TSMU 274-05   | 655362           | 0.5%                 | 09.2008                 | 14.07.2008                  | 14.07.2009                     |
| TP7         | Temperature of the NG at thermal furnace #9, FPS  | C°                | TSPU - 205    | 8360             | 0.008t               | 09.2008                 | 23.09.2008                  | 23.09.2009                     |
| TP8         | Temperature of the NG at thermal furnace #10, FPS | C°                | TSPU - 205    | 8362             | 0.008t               | 09.2008                 | 23.09.2008                  | 23.09.2009                     |
| TP9         | Temperature of the NG at thermal furnace #30, FPS | C°                | TSPU - 205    | 8365             | 0.008t               | 09.2008                 | 23.09.2008                  | 23.09.2009                     |
| TP10        | Temperature of the NG at thermal furnace #18, FPS | C°                | TCMU – 274-05 | 655360           | 0.008t               | 07.2008                 | 14.07.2008                  | 14.07.2009                     |
| TP11        | Temperature of the NG at thermal furnace #19, FPS | C°                | TCMU - 205    | 6000             | 0.008t               | 05.2009                 | 12.05.2009                  | 12.05.2010                     |
| TP12        | Temperature of the NG at thermal furnace #20, FPS | C°                | TCMU - 205    | 6011             | 0.008t               | 05.2009                 | 12.05.2009                  | 12.05.2010                     |
| TP13        | Temperature of the NG at thermal furnace #21, FPS | C°                | TSPU - 205    | 655361           | 0.008t               | 09.2009                 | 17.09.2009                  | 17.09.2010                     |
| TP14        | Temperature of the NG at thermal furnace #32, FPS | C°                | TCMU - 274    | 655356           | 0.008t               | 09.2009                 | 09.07.2009                  | 09.07.2010                     |
| TP15        | Temperature of the NG at thermal furnace #37, FPS | C°                | TCMU – 274    | 750917           | 0.008t               | 09.2009                 | 21.07.2009                  | 21.07.2010                     |

Table 7: List of temperature meters

| ID of meter | Measuring<br>parameter                         | Work<br>parameter | Туре            | Serial<br>number | Level of accuracy | Date<br>of installation | Date of<br>last calibration | Date of<br>next<br>calibration |
|-------------|------------------------------------------------|-------------------|-----------------|------------------|-------------------|-------------------------|-----------------------------|--------------------------------|
| PR1         | Pressure of the NG at thermal furnace #1, TS   | kPa               | Metran 100 DI   | 274538           | 0.5%              | 01.2007                 | 5.12.2008                   | 5.12.2009                      |
| PR2         | Pressure of the NG at thermal furnace #2, TS   | kPa               | Metran 100 DI   | 275890           | 0.5%              | 01.2007                 | 5.12.2008                   | 5.12.2009                      |
| PR3         | Pressure of the NG at thermal furnace #9, TS   | kPa               | Metran 100 DI   | 241764           | 0.5%              | 01.2006                 | 25.05.2009                  | 26.05.2010                     |
| PR4         | Pressure of the NG at thermal furnace #10, TS  | kPa               | Metran 100 DI   | 241763           | 0.5%              | 01.2006                 | 25.05.2009                  | 26.05.2010                     |
| PR5         | Pressure of the NG at thermal furnace #7, FPS  | kPa               | Metran 100 DI   | 422353           | 0.5%              | 10.2008                 | 29.08.2008                  | 29.08.2009                     |
| PR6         | Pressure of the NG at thermal furnace #8, FPS  | kPa               | Metran 100 DI   | 376707           | 0.5%              | 12.2007                 | 9.03.2009                   | 9.03.2010                      |
| PR7         | Pressure of the NG at thermal furnace #9, FPS  | kPa               | Metran 100 DI   | 000088           | 0.5%              | 12.2007                 | 2.04.2009                   | 2.04.2010                      |
| PR8         | Pressure of the NG at thermal furnace #10, FPS | kPa               | Metran 100 DI   | 000087           | 0.5%              | 12.2007                 | 10.02.2009                  | 10.02.2010                     |
| PR9         | Pressure of the NG at thermal furnace #30, FPS | kPa               | Metran 100 DI   | 387352           | 0.5%              | 05.2007                 | 18.02.2009                  | 18.02.2010                     |
| PR10        | Pressure of the NG at thermal furnace #18, FPS | kPa               | Metran 55 Ex DA | 461211           | 0.25%             | 05.2008                 | 19.05.2009                  | 19.05.2010                     |
| PR11        | Pressure of the NG at thermal furnace #19, FPS | kPa               | Metran 55 Ex DA | 486509           | 0.25%             | 05.2009                 | 19.05.2009                  | 19.05.2010                     |
| PR12        | Pressure of the NG at thermal furnace #20, FPS | kPa               | Metran 55 Ex DA | 486786           | 0.25%             | 05.2009                 | 19.05.2009                  | 19.05.2010                     |
| PR13        | Pressure of the NG at thermal furnace #21, FPS | kPa               | Metran 55 DA    | 458976           | 0.5%              | 09.2009                 | 19.05.2009                  | 19.05.2010                     |
| PR14        | Pressure of the NG at thermal furnace #32, FPS | kPa               | Metran 55 DA    | 486510           | 0.5%              | 09.2009                 | 19.05.2009                  | 19.05.2010                     |
| PR15        | Pressure of the NG at thermal furnace #37, FPS | kPa               | Metran 55 Ex DA | 461217           | 0.25%             | 09.2009                 | 24.07.2009                  | 21.07.2010                     |

Table 8: List of pressure meters

## **Steel weight measurement**

For the purpose of monitoring the emission reductions the following parameters are measured:

- Weight of steel proceeded in the Electro Steel Melting Workshop;
- Weight of half-finished products proceeded through reconstructed heating and thermal furnaces.

| ID of weighing machine | Measuring<br>parameter                  | Work<br>parameter | Type            | Serial<br>number | level of accuracy | Date<br>of installation | Date of<br>last calibration | Date of<br>next calibration |
|------------------------|-----------------------------------------|-------------------|-----------------|------------------|-------------------|-------------------------|-----------------------------|-----------------------------|
| WM1                    | Weight of half-finished products of FPS | t                 | ErMack-Vk1rk-10 | 0115047          | 6kg               | 2005                    | 09.06.2009                  | 09.06.2010                  |
| WM2                    | Weight of half-finished products of TS  | t                 | ErMack-Vk1rk-20 | 205122           | 15kg              | 2005                    | 30.01.2009                  | 30.01.2010                  |
| WM3                    | Weight of half-finished products of TS  | t                 | ErMack-Vk1rk-50 | 506149           | 60kg              | 2006                    | 09.06.2009                  | 09.06.2010                  |
| WM4                    | Weight of half-finished products of FPS | t                 | ErMack-Vk1rk-80 | 806148           | 150kg             | 2006                    | 09.06.2009                  | 09.06.2010                  |
| WM5                    | Weight of steel melted at LF            | t                 | 01VKT-200M      | 222              | 2kg               | 2007                    | 20.11.2008                  | 16.11.2009                  |

Table 9: List of weighting machines

## **B.1.3.** Calibration procedures

For Electricity Meters:

| QA/QC procedures                                                                                                                               | Body responsible for calibration and certification |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Calibration interval of such meters is 4 years for the meters produced before 01.01.1988 and 6 years for the meters produced after 01.01.1988. | Ukrainian Centre for Standardization and Metrology |

For Natural Gas Meters

| QA/QC procedures                                | Body responsible for calibration and certification |  |
|-------------------------------------------------|----------------------------------------------------|--|
| Calibration interval of such meters is 2 years. | Ukrainian Centre for Standardization and Metrology |  |

For temperature meters

| QA/QC procedures                               | Body responsible for calibration and certification |
|------------------------------------------------|----------------------------------------------------|
| Calibration interval of such meters is 1 year. | Ukrainian Centre for Standardization and Metrology |

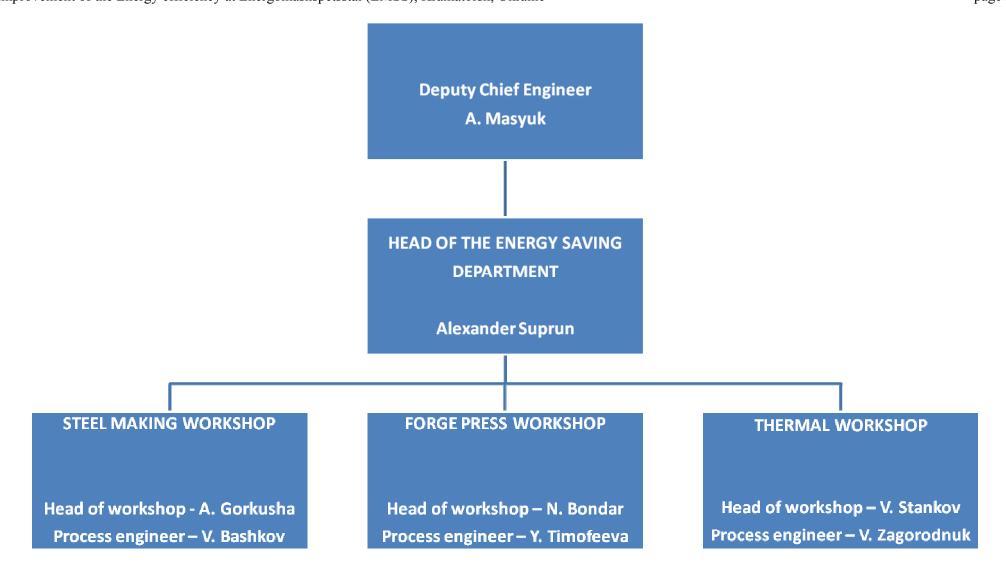
For pressure meters

|     | QA/QC procedures                             | Body responsible for calibration and certification |  |
|-----|----------------------------------------------|----------------------------------------------------|--|
| Cal | libration interval of such meters is 1 year. | Ukrainian Centre for Standardization and Metrology |  |

For weighting machines:

| QA/QC procedures                               | Body responsible for calibration and certification |  |
|------------------------------------------------|----------------------------------------------------|--|
| Calibration interval of such meters is 1 year. | Ukrainian Centre for Standardization and Metrology |  |

For transformers:


| 101 (1411)                                      |                                                    |
|-------------------------------------------------|----------------------------------------------------|
| QA/QC procedures                                | Body responsible for calibration and certification |
| Calibration interval of such meters is 4 years. | Ukrainian Centre for Standardization and Metrology |

## **B.1.4.** Involvement of Third Parties:

Ukrainian Centre for Standardization and Metrology.

## B.2. Data collection (accumulated data for the whole monitoring period):

The operational and management structure of the project see PDD, Flowchart D.3.1: Responsibilities within the monitoring team.



## B.2.1. List of fixed default values and ex-ante baseline factors:

| Data variable                                                                   | Source of data     | Data unit | Comment                                   |
|---------------------------------------------------------------------------------|--------------------|-----------|-------------------------------------------|
| <i>EF<sub>NG</sub></i> , emission factor of the NG burning process              | IPCC 2006          | tCO2/MWh  | IPCC 2006 default value = 0.202 tCO2/MWh. |
| EF <sub>el,y</sub> , emission factor of the Ukrainian grid for reducing project | See Annex 4 of PDD | tCO2/MWh  | = 0.896 tCO2/MWh                          |

Table 10: Project fixed default values

| Data variable               | Source of data | Data unit | Comment                   |
|-----------------------------|----------------|-----------|---------------------------|
| $EF_{Coal}$ ,               | IPCC 2006      | tCO2/MWh  | IPCC 2006 default value = |
| emission factor for local   |                |           | 0.353 tCO2/MWh            |
| (anthracite) coal burning   |                |           |                           |
| $EF_{el,y}$                 | See Annex 4    | tCO2/MWh  | = 0.896 tCO2/MWh          |
| emission factor of the      |                |           |                           |
| Ukrainian grid for reducing |                |           |                           |
| project                     |                |           |                           |
|                             |                |           |                           |

Table 11:Baseline fixed default values

| Data variable                                                                                                | Source of data                   | Data unit                       | Comment                                            |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|----------------------------------------------------|
| SPNG <sub>tf</sub> ,<br>the baseline ex-ante specific<br>NG consumption of the 26<br>reconstructed furnaces  | Baseline information             | 1000nm <sup>3</sup> /t<br>steel | See PDD, Table A2.1 for more detailed information  |
| $SPH_{VD}$ , the baseline ex ante specific heat consumption of the old VD                                    | Baseline three years information | MWh/t                           | See PDD, Table A2.2 for more detailed information  |
| SPEL <sub>VD</sub> ,<br>baseline ex ante specific<br>electrical consumption of the<br>old VD                 | Baseline information             | MWh/t                           | =0.000028 MWh/t steel                              |
| SPEL <sub>ES</sub> ,<br>baseline ex ante specific<br>consumption of electricity<br>per tone of electro steel | Baseline three years information | MWh/t                           | See PDD, Table A2.3 for more detailed information  |
| <i>EL</i> <sub>MOT</sub> , installed capacity of the press' serving motors before reconstruction             | Project design documentation     | MW                              | It was 24 motors, 500kW each. So, $EL_{MOT}$ =12MW |

Table 12:Baseline ex-ante factors

## **B.2.2.** List of variables:

The list of variables was defined in the PDD (Section D) in order to calculate ERs in a proper way. Some of variables could not be monitored directly, so data from the meters should be adjusted by appointed correction factors. The following table establishes the link between data from the meters and corresponding variables.

| Data variable                                                              | Data unit             | Method of calculation                                                                                                                                                                                                                                                              | Meters used for calculation                                                     |  |
|----------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| NG <sub>tf,y</sub> , quantity of NG, used by the 26 reconstructed furnaces | 1,000 Nm <sup>3</sup> | $NG_{tf,y} = m^{3} \times \frac{P \times T_{N}}{P_{N} \times T \times K \times 1000} + NG15,$                                                                                                                                                                                      | m <sup>3</sup> = (NG1,, NG16); (see Table 6)<br>P = (PR1,, PR15); (see Table 8) |  |
|                                                                            |                       | Where:  m³ = volume of NG at working condition, m³;  P = pressure of NG at working condition, MPa;  TN = 293.15K;  PN = 0.101325MPa;  T = (273.15 + t) temperature of NG at working condition, K;  K = 0.9998 factor of compressibility of NG.                                     | t = (TP1,, TP15). (see Table 7)                                                 |  |
| EL <sub>VD</sub> , electricity consumed by the new vacuum system (VD)      | MWh                   | $EL_{VD} = \frac{EL \times K_{TR}}{1000},$                                                                                                                                                                                                                                         | EL= (EL6+EL7+EL8+EL9) (see Table 3)                                             |  |
|                                                                            |                       | Where:<br>EL = electricity consumption, monitored at VD, kWh;<br>$K_{TR} = 600/5$ transformation factor, (see Table 4, TR22,,TR29).                                                                                                                                                |                                                                                 |  |
| <i>EL<sub>LF</sub></i> , Electricity consumed by the ladle furnace         | MWh                   | $EL_{LF} = \frac{EL \times K_{TR,current} \times K_{TR,voltage}}{1000},$                                                                                                                                                                                                           | EL=EL5 (see Table 3)                                                            |  |
|                                                                            |                       | Where: EL = electricity consumption, monitored at LF, kWh; $K_{TR,current} = 500/5$ , transformation factor of current transformer, (see Table 4, TR16, TR17, TR18); $K_{TR,voltage} = 35000/100$ , transformation factor of voltage transformer, (see Table 4, TR19, TR20, TR21); |                                                                                 |  |

| $EL_{EAF}$ ,                                                                 | MWh | $EL_{EAF} = EL_{EAF50} + EL_{EAF100\#3} + EL_{EAF100\#5}$                                                                                                                         | $EL_{EAF50} = EL1 + EL2$ (see Table 3) |
|------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Electricity consumed by the                                                  |     | EAF LAT 30 EAF 100#3                                                                                                                                                              |                                        |
| EAFs                                                                         |     | With                                                                                                                                                                              | $EL_{EAF100#3} = EL3$ (see Table 3)    |
|                                                                              |     | $EL_{EAF50} = EL_{50},$                                                                                                                                                           | $EL_{EAF100\#5} = EL4 $ (see Table 3)  |
|                                                                              |     | $EL_{EAF100#3} = \frac{EL_{100#3} \times K_{TR100#3, current} \times K_{TR100#3, voltage}}{1000},$                                                                                |                                        |
|                                                                              |     | $EL_{EAF100\#5} = \frac{EL_{100\#5} \times K_{TR100\#5,current} \times K_{TR100\#5,voltage}}{1000},$                                                                              |                                        |
|                                                                              |     | Where: $EL_{EAF50}$ = electricity consumption, monitored at EAF50, MWh;                                                                                                           |                                        |
|                                                                              |     | $EL_{EAF100\#3}$ = electricity consumption, monitored at EAF100#3, kWh; $K_{TR100\#3,current}$ = 600/5, transformation factor of current transformer, (see Table 4, TR6, TR7);    |                                        |
|                                                                              |     | K <sub>TR100#3,voltage</sub> = 35000/100, transformation factor of voltage transformer, (see Table 4, TR8, TR9, TR10);                                                            |                                        |
|                                                                              |     | $EL_{EAF100\#5}$ = electricity consumption, monitored at EAF100#3, kWh; $K_{TR100\#5, current}$ = 600/5, transformation factor of current transformer, (see Table 4, TR11, TR12); |                                        |
|                                                                              |     | $K_{TR100\#5,voltage} = 35000/100$ , transformation factor of voltage transformer, (see Table 4, TR13, TR14, TR15);                                                               |                                        |
| <i>EL<sub>PR</sub></i> , electricity consumed by the new pumps of the 15,000 | MWh | $EL_{PR} = \frac{EL \times K_{TR,current} \times K_{TR,voltage}}{1000},$                                                                                                          | EL = EL10 (see Table 3)                |
| tonnes press                                                                 |     | Where:                                                                                                                                                                            |                                        |
|                                                                              |     | EL = electricity consumption, monitored at press, kWh;                                                                                                                            |                                        |
|                                                                              |     | $K_{TR,current} = 1500/5$ , transformation factor of current transformer, (see Table 4, TR30);                                                                                    |                                        |
|                                                                              |     | $K_{TR,voltage} = 6000/100$ , transformation factor of voltage transformer, (see Table 4, TR31).                                                                                  |                                        |

Table 13: Project variables

## Baseline emissions variables to be measured:

| Data variable                                                                                          | Source of data                                                 | Data unit | Method of calculation                                                                                                    | Meters used for calculation    |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| PRST <sub>tf</sub> , the production level of each of the 26 reconstructed thermal and heating furnaces | Measuring devices of the thermal shop and forge and press shop | Tonnes    | $PRST_{tf}$ is a result of direct measurement (weighing) of the of half-finished products proceeded through each furnace | WM1-WM4                        |
| PRVS <sub>VD</sub> ,<br>the production volume of<br>vacuumed steel                                     | Measuring devices of the VD                                    | Tonnes    | $PRVS_{VD}$ is a result of direct measurement (weighing) of the steel proceeded through VD                               | WM5                            |
| PRES, the production volume of electro steel                                                           | Measuring devices of the electro steel shop                    | Tonnes    | PRES is a result of direct measurement (weighing) of the steel proceeded through LF                                      | WM5                            |
| T <sub>pp</sub> , working hours of press                                                               | Server at energy saving department                             | hours     | T <sub>pp</sub> is the sum from registry log book records                                                                | Registry log-<br>book on press |

Table 14:Baseline measurable variables

# B.2.3. Data concerning GHG emissions by sources of the project activity:

| Variable         | Description                                        | Unit                 | Value     |
|------------------|----------------------------------------------------|----------------------|-----------|
| $NG_{tf,y,1}$    | Natural gas consumption at thermal furnace #9,TS   | $1000 \mathrm{Nm}^3$ | 301.495   |
| $NG_{tf,y,2}$    | Natural gas consumption at thermal furnace #10,TS  | $1000 \mathrm{Nm}^3$ | 336.947   |
| $NG_{tf,v,3}$    | Natural gas consumption at thermal furnace #1,TS   | $1000 \mathrm{Nm}^3$ | 738.243   |
| $NG_{tf,v,4}$    | Natural gas consumption at thermal furnace #2,TS   | $1000 \mathrm{Nm}^3$ | 672.111   |
| $NG_{tf,v,5}$    | Natural gas consumption at heating furnace #10,FPS | $1000 \mathrm{Nm}^3$ | 1 479.354 |
| $NG_{tf,v,6}$    | Natural gas consumption at heating furnace #9,FPS  | $1000 \mathrm{Nm}^3$ | 1 611.766 |
| $NG_{tf,y,7}$    | Natural gas consumption at heating furnace #8,FPS  | $1000 \mathrm{Nm}^3$ | 1 385.938 |
| $NG_{tf, y, 8}$  | Natural gas consumption at heating furnace #7,FPS  | 1000Nm <sup>3</sup>  | 2 217.277 |
| $NG_{tf,y,9}$    | Natural gas consumption at thermal furnace #30,FPS | 1000Nm <sup>3</sup>  | 853.114   |
| $NG_{tf, y, 10}$ | Natural gas consumption at thermal furnace #18,FPS | 1000Nm <sup>3</sup>  | 412.565   |
| $NG_{tf,y,11}$   | Natural gas consumption at thermal furnace #19,FPS | 1000Nm <sup>3</sup>  | 326.726   |

| Variable       | Description                                           | Unit                 | Value      |
|----------------|-------------------------------------------------------|----------------------|------------|
| $NG_{tf,v,12}$ | Natural gas consumption at thermal furnace #20,FPS    | $1000 \mathrm{Nm}^3$ | 411.420    |
| $NG_{tf,v,13}$ | Natural gas consumption at thermal furnace #21,FPS    | $1000 \mathrm{Nm}^3$ | 93.494     |
| $NG_{tf,v,14}$ | Natural gas consumption at thermal furnace #32,FPS    | $1000 \mathrm{Nm}^3$ | 136.004    |
| $NG_{tf,v,15}$ | Natural gas consumption at thermal furnace #33,FPS    | $1000 \mathrm{Nm}^3$ | 1.150      |
| $NG_{tf,v,16}$ | Natural gas consumption at thermal furnace #37,FPS    | $1000 \mathrm{Nm}^3$ | 9.915      |
| $EL_{VD}$      | Electricity consumption by new VD                     | MWh                  | 129.792    |
| $EL_{LF}$      | Electricity consumption by LF                         | MWh                  | 12 869.347 |
| $EL_{EAF}$     | Electricity consumption by EAFs                       | MWh                  | 83 641.696 |
| $EL_{PR}$      | Electricity consumption by the new pumps of the press | MWh                  | 1 608.629  |

Table 15: Data collected in the project scenario

## B.2.4.Data concerning GHG emissions by sources of the baseline:

| Variable       | Description                                                | Unit   | Value    |
|----------------|------------------------------------------------------------|--------|----------|
| $PRST_{tf,1}$  | Half finish products production at thermal furnace #9,TS   | Tonnes | 3490.21  |
| $PRST_{tf-2}$  | Half finish products production at thermal furnace #10,TS  | Tonnes | 3035.4   |
| $PRST_{tf,3}$  | Half finish products production at thermal furnace #1,TS   | Tonnes | 5517.7   |
| $PRST_{tf,4}$  | Half finish products production at thermal furnace #2,TS   | Tonnes | 6955.07  |
| $PRST_{tf,5}$  | Half finish products production at heating furnace #10,FPS | Tonnes | 9992.44  |
| $PRST_{tf,6}$  | Half finish products production at heating furnace #9,FPS  | Tonnes | 8183.25  |
| $PRST_{tf,7}$  | Half finish products production at heating furnace #8,FPS  | Tonnes | 9370.48  |
| $PRST_{tf,8}$  | Half finish products production at heating furnace #7,FPS  | Tonnes | 12877.19 |
| $PRST_{tf,9}$  | Half finish products production at thermal furnace #30,FPS | Tonnes | 3937.0   |
| $PRST_{tf,10}$ | Half finish products production at thermal furnace #18,FPS | Tonnes | 3140.1   |
| $PRST_{tf,11}$ | Half finish products production at thermal furnace #19,FPS | Tonnes | 1580.3   |
| $PRST_{tf,12}$ | Half finish products production at thermal furnace #20,FPS | Tonnes | 2369.9   |
| $PRST_{tf,13}$ | Half finish products production at thermal furnace #21,FPS | Tonnes | 758.0    |
| $PRST_{tf,14}$ | Half finish products production at thermal furnace #32,FPS | Tonnes | 788.3    |
| $PRST_{tf,15}$ | Half finish products production at thermal furnace #33,FPS | Tonnes | 57.4     |
| $PRST_{tf,16}$ | Half finish products production at thermal furnace #37,FPS | Tonnes | 39.6     |
| $PRVS_{VD}$    | Vacuumed steel production at VD                            | Tonnes | 65303.72 |
| <i>EBDHC</i>   | efficiency of the steam boilers at the DHC                 | %      | 84.00    |
| PRES           | Steel production at LF                                     | Tonnes | 71691.00 |
| $T_{PP}$       | Working time of the motors on press                        | Hours  | 4088.83  |

Table 16: Data collected in the baseline scenario

page 27

## **B.2.5.** Data concerning leakage:

PDD did not identify any leakages therefore this section is not applicable.

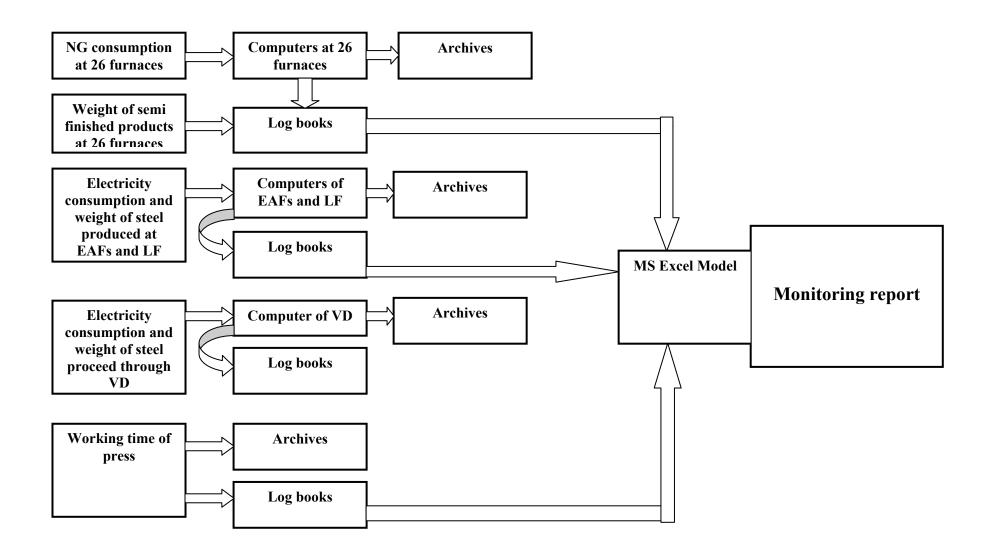
### **B.2.6.** Data concerning environmental impacts:

The project improved efficiency of use of natural gas, electricity and heat at the enterprise and thus leaded to decrease of harmful emissions.

#### B.3.Data processing and archiving (incl. software used):

**Subproject 1. Reconstruction of thermal and heating furnaces.** Information from flow meters, pressure and temperature sensors are transmitting to the control and monitoring computer system. All information about technological process is saved continuously. The archiving period for the log files is at least one year. Information that corresponds to the natural gas consumption in nine month of 2009 has been burned on CDs. These CDs are stored till the end of the crediting period plus two years. Every half-finished product that process through the furnaces has his own unique certificate. This certificate reflects all operations performed on the product and the weight on the exit of every workshop. So, the weight of half-finished products that proceed through each furnace could be easily monitored. Information from the certificates is saved in the log books in order to simplify the monitoring process.

A report including natural gas consumption and weight of half finished products is generating on a monthly basis. The report is signing by Head of Energy Saving Department, Head of corresponding workshop and approved by Chief Engineer.


**Subproject 2. Installation of a new vacuum system.** Information from meters is coming to the control and monitoring computer system of vacuumator. A computer system records information about every vacuumation session, including melt passport, time and electricity consumption. The archiving period for the log files is at least one year. Information that corresponds to the electricity consumption in nine month of 2009 has been burned on CDs. These CDs are stored till the end of the crediting period plus two years.

**Subproject 3. Installation of an arc ladle furnace.** The data from electricity meters concerning electricity consumption is transmitted to the control and monitoring computer system continuously. The computer system records information about each melt process, including melt certificate. This certificate includes information about the number of EAF where steel was melted, steel content, amount of electricity consumed during melting and weight of steel. The archiving period for the log files is at least one year. All melt certificates for the year nine month of 2009 has been burned to CDs. These CDs are stored till the end of the crediting period plus two years.

### **Subproject 4. Modernization of press equipment.**

All data concerning electricity consumption is transmitted to the control and monitoring computer system. The press has a special registry log book, where working time of press is logged, among other data. The following figure presents electricity supplying system of the press with metering points.

The overall data processing presents on the following figure



## JI MONITORING REPORT

"Improvement of the Energy efficiency at Energomashspetsstal (EMSS), Kramatorsk, Ukraine"

page 29

## **B.4. Special event log:**

Unexpected event took place on the plant at 03.07.2009 from 8.35am to 8.55am. Inflaming has been occurred at the machine hall of electromagnetic interfusion – EAF50. Uncontrolled flame destroyed the equipment in control desk premise, the communication and power cables of the automatic control system and process controlling equipment.

In connection with the incident, mentioned above, there was issued the Order #547/OB dated 22.07.2009 which prescribed to use for power consumption measurements the alternative measuring device "Energy-9" #40688, which has been calibrated in July 2007 for next six years.

## SECTION C. Quality assurance and quality control measures

## C.1. Documented procedures and management plan:

#### C.1.1. Roles and responsibilities:

The general management of the monitoring team is implemented by the Deputy Chief Engineer of the EMSS through supervising and coordinating activities of his subordinates, such as the head of Energy Saving Department, the head of Steel Making Shop, Press-Forging Shop and Thermal Shop. On-site day-to-day (operational) management is implemented by the heads of corresponding shops. The technological process data is logged into the PCs continuously. The PCs at reconstructed furnaces, LF, VD, etc., have not only monitoring but control functions as well. Keeping the PCs in a working condition is a responsibility of the Department of the automated control systems.

All data necessary for the CO<sub>2</sub> emission reductions calculation is collected in the Energy Saving Department. The head of the Energy Saving Department is making calculations on a monthly basis. The general supervision of the monitoring system is executed by the Deputy Chief Engineer.

For this monitoring period the names of the personnel involved is as follows:

- Deputy Chief Engineer: A. Masyuk
- Head of Energy Saving Department: A. Suprun
- Head of the Steel Making Shop: A. Gorkusha
- Head of the Press-Forging Shop: N. Bondar
- Head of the Thermal Shop: V. Stankov

#### C.1.2. Trainings:

All contracts for the equipment supplying include chapter describing personnel training. Training is providing by equipment producers.

#### C.2. Involvement of Third Parties:

The Ukrainian Centre for Standardization and Metrology is a Third Party involved.

## C.3. Internal audits and control measures:

 $CO_2$  emission reductions calculations are performing on the monthly basis by the head of the Energy Saving Department. All energy sources flows (such as electricity and natural gas) are logged on the server in the Energy Saving Department. Hence the head of Department checks the correctness of measurements by the indirect calculations.

## **C.4.** Troubleshooting procedures:

Every day the Energy Saving Department reports to the Chief Engineer about energy resources consumption by EMSS. That report is the result of analyzing of the data logging on a dedicated server. In case of any meter failure, data discrepancy will be found within one day. The meter will be substituted by working one.  $CO_2$  emissions reduction will be calculated by cross-checking method for the period of malfunctioning.

"Utilization of Coal Mine Methane at the Coal Mine named after A.F. Zasyadko" Pproject

#### SECTION D. Calculation of GHG emission reductions

## **D.3.1.** Project emissions:

The project emissions are calculated by the equation:

$$PE_{y} = \sum_{i=1}^{i=4} PE_{spi} ; \qquad (Equation 1)$$

Where:

 $PE_{y}$  - are the project emissions for the nine month, [tCO<sub>2</sub>];

 $PE_{spi}$  - are the project emissions from each subproject, from SP1 to SP4;

The project emissions [tCO2/y] from SP1 are:

$$PE_{sp1} = \sum_{i=1}^{i=n} {\binom{26}{\Sigma}} NG_{if,i} * LCV_{NG,i} * EF_{NG});$$
 (Equation 2)

Where

 $PE_{\mathit{sp1}}$  - is the sum of project emissions of subproject 1 from each month of the monitoring period , [tCO2];

 $NG_{tf}$  - is the volume of NG, used by the 26 reconstructed furnaces in the month i, [1000 nm3];

 $LCV_{NG,i}$  - is the lower calorific value of the NG for the month i, [MWh/1000nm3];

 $EF_{NG}$  - is the emission factor of the NG burning process, [tCO2/MWh].

The project emissions [tCO2/y] from SP2 are:

$$PE_{sp2} = \sum_{i=1}^{n} (EL_{VD,i} * EF_{el});$$
 (Equation 3)

Where:

 $PE_{\mathit{sp2}}$  - is the sum of project emissions of subproject 2 from each month of the monitoring period, [tCO<sub>2</sub>];

 $EL_{{\scriptscriptstyle V\!D},i}$  - is the electrical consumption of the new VD in the month i, [MWh];

 $EF_{\it el}$  - is the calculated emission factor of the Ukrainian grid, [tCO2/MWh].

The project emissions [tCO2/y] from SP3 are:

$$PE_{sp3} = \sum_{i=1}^{n} ((EL_{LF,i} + EL_{EAF,i}) * EF_{el});$$
 (Equation 4)

Where:

 $PE_{sp3}$  - is the sum of project emissions of subproject 3 from each month of the monitoring period, [tCO<sub>2</sub>];

 $EL_{LF,i}$  - is the electrical consumption of the new ladle furnace in the month i, [MWh];

 $EL_{{\scriptscriptstyle EAF},i}$  - is the electrical consumption of the electric arc furnace in the month i, [MWh];

The project emissions [tCO2/y] from SP4 are:

$$PE_{sp4} = \sum_{i=1}^{n} \left( EL_{PR,i} * EF_{el,y} \right);$$
 (Equation 5)

Where:

 $PE_{sp4}$  - is the sum of project emissions of subproject 4 from each month of the monitoring period, [tCO<sub>2</sub>];  $EL_{PRi}$  - is the electrical consumption of the new pumps of the 15,000 tonnes press in the month i, [MWh].

|                                                              | 2009                 |
|--------------------------------------------------------------|----------------------|
| Project emissions                                            | [tCO <sub>2</sub> e] |
| Subproject 1. Reconstruction of thermal and heating furnaces | 21 370               |
| Subproject 2. Installation of a new vacuum system            | 142                  |
| Subproject 3. Installation of an arc ladle furnace           | 56 565               |
| Subproject 4. Modernization of press equipment               | 1 989                |
| Total for the nine months of 2009                            | 80 066               |

Table 17: Project emissions

#### **D.3.2.** Baseline emissions:

$$BE_{y} = \sum_{i=1}^{i=4} BE_{spi};$$
 (Equation 6)

Where:

 $BE_{\scriptscriptstyle y}$  - are the baseline emissions for the nine months, [tCO2];

 $BE_{\it spi}$  - are the baseline emissions from each subproject, from SP1 to SP4.

## The baseline emissions for SP1 [tCO2/y] are:

$$BE_{sp1} = \sum_{1}^{26} \left( \sum_{i=1}^{n} (SPNG_{tf} * PRST_{tf} * LCV_{NG} * EF_{NG}) \right);$$
 (Equation 7)

Where:

 $BE_{sp1}$  - is the sum of baseline emissions of subproject from each month of the monitoring period, [tCO<sub>2</sub>];  $SPNG_{tf}$  - is the baseline ex-ante specific NG consumption of the 26 reconstructed furnaces, [1000nm3/t steel];

 $PRST_{tf}$  - is the production steel level of each of the 26 reconstructed thermal and heating furnaces in the month i, [tonnes].

## The baseline emissions for SP2 [tCO2/y] are:

$$BE_{sp2} = \sum_{i=1}^{n} \left( SPH_{VD} * PRVS_{VD,i} \div EB_{DHC} * EF_{Coal} + SPEL_{VD} * PRVS_{VD,i} * EF_{el,y} \right); (Equation)$$

8

Where:

 $BE_{sp2}$  - is the sum of baseline emissions of subproject 2 from each month of the monitoring period, [tCO2];

 $SPH_{\scriptscriptstyle VD}$  - is a baseline ex ante specific heat consumption of the old VD, [MWh/t];

 $PRVS_{VD,i}$  - is the monthly production volume of vacuumed steel, [t];

 $EB_{DHC}$  - is the efficiency of the steam boilers at the DHC;

 $EF_{\it coal}$  - is the emission factor for local (anthracite) coal burning, [tCO2/MWh];

 $SPEL_{vD}$  - is a baseline ex ante specific electrical consumption of the old VD, [MWh/t];

 $EF_{el,y}$  - is the calculated emission factor of the Ukrainian grid, [tCO2/MWh].

## The baseline emissions for SP3 [tCO2/y] are:

$$BE_{sp3} = \sum_{i=1}^{n} \left( SPEL_{ES} * PRES_{i} * EF_{el,y} \right) ;$$
 (Equation 9)

Where:

 $BE_{\it sp3}$  - is the sum of baseline emissions of subproject 3 from each month of the monitoring period, [tCO2];

 $SPEL_{ES}$  - is the baseline ex ante specific consumption of electricity per tone of electro steel, [MWh/t steel];

PRESi – is the monthly production volume of electro steel, [t].

## The annual baseline emissions for SP4 [tCO2/y] are:

$$BE_{sp4} = \sum_{i=1}^{n} (T_{pp} * EL_{MOT} * EF_{el,y});$$
 (Equation 10)

Where:

 $BE_{sp4}$  - is the sum of baseline emissions of subproject 4 from each month of the monitoring period, [tCO<sub>2</sub>];  $T_{pp}$  - is a working hours of the press in the month i, [h];

 $EL_{\tiny MOT}$  - is the press' serving motors before reconstruction, [MW].

|                                                              | 2009                 |
|--------------------------------------------------------------|----------------------|
| Baseline emissions                                           | [tCO <sub>2</sub> e] |
| Subproject 1. Reconstruction of thermal and heating furnaces | 97 269               |
| Subproject 2. Installation of a new vacuum system            | 31 915               |
| Subproject 3. Installation of an arc ladle furnace           | 66 162               |
| Subproject 4. Modernization of press equipment               | 43 963               |
| Total for nine months of 2009                                | 239 310              |

Table 18: Baseline emissions

## D.3.3. Leakage:

Not Applicable

# D.3.4. Summary of the emissions reductions during the monitoring period:

|                                                              | 2009                 |
|--------------------------------------------------------------|----------------------|
| <b>Emission Reductions</b>                                   | [tCO <sub>2</sub> e] |
| Subproject 1. Reconstruction of thermal and heating furnaces | 75 899               |
| Subproject 2. Installation of a new vacuum system            | 31 773               |
| Subproject 3. Installation of an arc ladle furnace           | 9 597                |
| Subproject 4. Modernization of press equipment               | 41 974               |
| Total for nine months of 2009                                | 159 244              |

Table 19: Emission Reductions