

page 1

JOINT IMPLEMENTATION PROJECT DESIGN DOCUMENT FORM Version 01 – in effect as of: 15 June 2006

CONTENTS

- A. General description of the project
- B. <u>Baseline</u>
- C. Duration of the project / crediting period
- D. <u>Monitoring plan</u>
- E. Estimation of greenhouse gas emission reductions
- F. Environmental impacts
- G. <u>Stakeholders</u>' comments

Annexes

- Annex 1: Contact information on project participants
- Annex 2: <u>Baseline information</u>
- Annex 3: <u>Monitoring plan</u>
- Annex 4: Extracts from the "Reference book of quality indicators, volume of coal production and beneficiation products in 2008-2010"
- Annex 5: Reference of the State Statistics Service of Ukraine "Actual expenses of electricity for production of one ton of non-agglomerated coal"
- Annex 6: Additional information on the project participants

Joint Implementation Supervisory Committee

page 2

SECTION A. General description of the project

A.1. Title of the <u>project</u>:

Recultivation of waste heaps in Donetsk region in order to reduce greenhouse gas emissions into the atmosphere

The sectoral scope: (8) Mining/mineral production

The version number of the document: 3.0

The date of the document: 3th of October 2012

A.2. Description of the <u>project</u>:

General provisions on the problem of waste heap formation:

Donbas region of Ukraine is a territory of large scale coal mining. Coal is mainly found in the area of Donbas at the average depth of 400-800 m, and average thickness of coal-bed is 0.6-1.2 m. The method of extraction is mainly based on the mine extracting. The majority of mines operate on the depth of 400-800 m, but there are 35 mines in the region that extract coal from the 1000-1300 m level. Coal-beds of Donetsk basin are interleaved with rock and are usually found every 20-40 m. Field development under such conditions result in vast amounts of rock being brought to the surface. Coal is separated from other rock matter, which are then dumped into huge waste heaps, found almost everywhere in Donbas.

The process of enrichment at the mines was not very effective, it was also considered to be not economically feasible to extract 100% of coal from the rock that had been raised to the surface. That is why Donbas waste heaps contain considerable masses of coal. In the course of time those waste heaps are vulnerable to spontaneous ignition and self-sustained combustion¹. Waste heaps that are burning or are close to spontaneous ignition are sources of uncontrolled greenhouse gas and hazardous substances emissions. Dumping mass of the studied mine waste heaps has ash content within the limits of 57-99%, accounting for 88.5% in average. Water content varies from 0.2% to 11.7%, accounting for 3.4% in average². However, the content of coal even within one waste heap undergoes significant fluctuations and is poorly predicted. There is a possibility that significant part of the waste heap may contain small amount of coal, while the other part has higher concentration of coal mass and increased susceptibility to spontaneous combustion. Over time, almost all waste heaps containing coal are very susceptible to spontaneous combustion and stationary long burning. Thus, the role of the waste heaps in the ecology of the region is extremely negative, increasing many times during its burning. However, outbreak and its very possibility are difficult to forecast, so we can only estimate the probability of ignition, which is very high on the basis of statistics. The process of burning carbon in the waste heap is long enough and lasts for 5-7 years³.

Despite the danger, caused by burning waste heaps, immediate quenching heaps is not a common practice in Donbas. Owners, responsible for waste heaps, are obliged to pay relatively small fines for environmental pollution. Thus there is no weighty stimulus for them in solving this issue, and quenching burning heaps may be postponed for an indefinite term.

¹ Geology of Coal Fires: Case Studies from Around the World, Glenn B. Stracher, Geological Society of America, 2007, p. 47

²<u>http://www.ipages.ru/index.php?ref_item_id=2607&ref_dl=1</u>

³ http://ji.unfccc.int/UserManagement/FileStorage/IE7LK2SZF1NOXRVB4CYG65WQPJMHA3

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

Joint Implementation Supervisory Committee

page 3

The purpose of the proposed <u>project:</u>

The proposed project is aimed at recultivation of the waste heaps by extracting ROM coal from rock mass and its subsequent use in the energy industry sector. The purpose of this project is to reduce greenhouse gases in the atmosphere due to extraction of black coal from the waste heaps. Preventing self-heating and spontaneous combustion of the waste heaps will reduce negative impact on the environment.

Situation before the proposed project start:

Waste heaps, formed by the coal mine, inclined to spontaneous combustion because of the presence of the coal fraction in them. As a result of physical and chemical processes in the middle of the waste heaps burning of coal-containing fractions and other combustible components occurs, leading to fugitive greenhouse gas emissions and other harmful pollutants in the environment. Measures on extinguishing the waste heaps are not regularly conducted, so the probability of spontaneous combustion is very high. Oxidation process of combustible elements in the waste heaps is slow and unpredictable, because it is difficult to identify centres of burning and eliminate them. Implementation of certain measures on extracting coal from the waste heaps are quite costly and are not possible without additional incentives. Legislation of Ukraine does not oblige owners of the waste heaps to monitor fire condition of these objects and liquidation of centres of spontaneous combustion.

Baseline scenario:

Baseline scenario assumes that the problem of waste heaps combustion will not be effectively resolved, rock mass of waste heaps will undergo self-ignition until all volume of coal contained in it does not burn. Continuation of existing situation will lead to large emissions of greenhouse gases in the atmosphere and to the general pollution of the ecosystem of the region. In addition, the coal production in the coal mines will lead to fugitive methane emissions.

Project scenario:

The project "Recultivation of waste heaps in Donetsk region in order to reduce greenhouse gas emissions into the atmosphere" involves the introduction of complex of measures aimed at waste heaps dismantling with the aim of black coal extraction, which will partially replace coal that would otherwise be extracted by mining method, which would in turn lead to fugitive emissions of methane and carbon dioxide by electricity consumption. The project is implemented in Vuhlehirsk, Donetsk region, Ukraine.

Brief information on the history of the project and the role of JI:

The main factor that influenced the decision making on the implementation of this project was the incentive from Joint Implementation mechanism under the Kyoto Protocol. The decision on the implementation of this project was taken on December 14, 2006. During 2007 agreement with company-contractor, who will provide transportation services, was signed, and also lease agreement of concentrating mill and contract on recultivation of the waste heaps were concluded. Starting date of the project is February 02, 2007 – date when single source contract on the modernization of concentrating mill "Vuhlehirska" and on further enrichment of the rock mass, using fixed assets of this enterprise was concluded.

Joint Implementation Supervisory Committee

page 4

A.3. **Project participants**:

Table 1 – Project participants

Party involved	Legal entity <u>project participant</u> (as applicable)	Please indicate if the <u>Party involved</u> wishes to be considered as <u>project participant</u> (Yes/No)
Ukraine (Host party)	"RS-ARPI" LLC	No
Estonia	ProEffect OÜ	No

"RS-ARPI" LLC is Host party of the project and project participant. "RS-ARPI" LLC is the owner of the emission source, where realization of the joint implementation Project is planned.

"RS-ARPI" LLC is the initiator of the project and developer of project design document at the same time. This company specializes in waste heaps dismantling and implements JI project under the Kyoto Protocol.

"ProEffect OÜ" is a project participant and potential buyer of ERUs under the project. Detailed contact information is provided in Annex 1.

A.4. Technical description of the project:

Technical description of the project, as well as detailed information on the location of the project is given below in subsections A.4.1.-A.4.3.

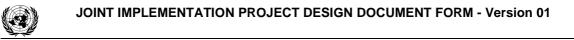
A.4.1. Location of the <u>project</u>:

Vuhlehirsk, Donetsk region, Ukraine.

A.4.1.1. <u>Host Party (ies)</u>:

Ukraine.

Ukraine is the Eastern European country that ratified the Kyoto Protocol to the Framework UN Convention on February 4, 2004, is included in the list of countries of Annex 1, and meets the requirements for participation in Joint Implementation projects.


A.4.1.2. Region/State/Province etc.:

Donetsk region.

A.4.1.3. City/Town/Community etc.

Vuhlehirsk

A.4.1.4. Detail of physical location, including information allowing the unique identification of the <u>project</u> (maximum one page):

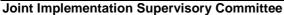


Figure 1 – Location of the project on the map of Ukraine

The project is located in Vuhlehirsk – regional-level city in the Donetsk region, subordinated to Yenakiyeve city council of Yenakiyeve. Population is 8,226 (2011). City is included in Horlivsko-Yenakiyevska agglomeration. The official date of foundation is 1879 – the year of opening the railway station Hatsepetivka (Vuhlehirsk was called village Hatsepetivka until 1958). Vuhlehirsk is located in the south-eastern part of Ukraine at the distance of 61 km from the regional centre of Donetsk and 750 km from the capital of Ukraine, Kyiv.

Geographical location coordinates of the concentrating complex: <u>+48° 28' 87.61", +38° 25' 94.59"</u>

Geographical location coordinates of the waste heaps: <u>+48° 28' 66.77"</u>, <u>+38° 26' 17.76"</u>

Satellite photo of location is shown below in Figure 2.

Figure 2 – Location map of the project

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 5

Joint Implementation Supervisory Committee

page 6

UNFCCC

A.4.2. Technology(ies) to be employed, or measures, operations or actions to be implemented by the <u>project</u>:

Technical solutions under the project allow producing high-quality coal products that will be used for the needs of the energy industry complex.

Concentrating mill is a compact construction, which consists of a main building, where equipment for classification, enrichment, dewatering, lighting of circulating water and products of enrichment is placed. Rock is transferred to the main building of concentrating mill by belt conveyor, which transports output feedstock (rock mass) to the point of previous classification. The basic technology used under the project is wet method of enrichment. Technological process and project equipment are a reflection of modern engineering practice. Enrichment of rock mass of the waste heaps is performed by jigging machines and steeply inclined separators. The proposed method of enriching rock mass is based on separation of mineral mixture by density in the vertical water flow of variable direction that fluctuates. Final products of jigging: concentrate with high content of useful component (in this case - coal) and wastes, but sometimes intermediate product is released, which consists of intergrowths of useful component from barren rock - industrial product.

General view of the concentrating mill is shown in the figure below:

Figure 3 – General view of the concentrating mill

Joint Implementation Supervisory Committee

Before the beginning of the project implementation "Recultivation of waste heaps in Donetsk region in order to reduce greenhouse gas emissions into the atmosphere" enrichment of minerals was carried out by jigging method in jigging pistonless machines. To improve the performance of the mill and of enriching rock mass in order to receive low-ash concentrate certain manufacturing units were modernized. Besides, 6 steeply inclined separators KPS-50 were installed, where separation of fine coal fraction from rock occurs. To ensure maximum stability and performance of concentrating complex operation replacement of some conveyors and feeders was carried out. Modernization of the concentrating mill covers several technical aspects: firstly, shipping and sorting systems were upgraded, secondly, additional modern enriching units were put into operation – steeply inclined separators, thirdly, classification screen was additionally installed after jigging machines by which output of coal concentrate increases. All technological links of concentrating complex underwent anew settings for receiving and enriching rock mass of waste heaps.

Two-stage pistonless jigging machine and steeply inclined separator are taken as basic equipment. Thickening of sludge, captured in spitzkastens, will be implemented in thickening funnels and at the dehydrating screens. Dehydrated sludge together with the concentrate goes to dehydrated bunkers from the screens. This approach allows separating the coal fraction 6-80mm, herewith high quantitative quality indicators of the final product are achieved. Average extraction of the coal-containing fraction varies between 19-20%. General enrichment scheme is as follows:

- 1. Sorting raw materials;
- 2. Jigging rock;
- 3. Dewatering enrichment products;
- 4. Enrichment of coal-containing fraction 6-25 mm in steeply inclined separator;
- 5. Capturing sludge and lighting circulating water;
- 6. Issuing enrichment products.

Sorting raw materials: rock mass is transported by trucks to the first technological link of enrichment complex – sorting department (imported pits and sorting bunkers). Then it comes to crushing and screening unit, where it is sorted into classes of >80mm and 0-80mm. Fraction with bigger particle size is sent to crusher, and then returns to the previous classification. Scraper conveyor distributes rock mass according to classification screens with apertures of sieves of 25 and 6mm. Large classes of 25-100mm and 6-25mm are delivered for enrichment, and siftings come to bunker for class of 0-6mm – this class is waste. Coalcontaining fraction <80mm is a source material for the process of jigging. Loading of jigging machines is carried out by prorating apportionment of raw materials through scraper.

Jigging rock: then gravitational method of enriching rock mass is used which is based on the separation of the material by density in the vertical pulsating water flow. Each jigging machines is set up for a specific class of output feedstock: 25-80mm and 6-25mm. The process of jigging occurs in pistonless jigging machines, where selection of three products occurs on these machines: concentrate, industrial products and barren rock is implemented. Coal concentrate of class 25-80 mm goes to dewatering screens, dewatering bunkers and then is shipped to the warehouse of finished products. Coal-containing fraction 6-25mm is characterized by a high content of ash, so this product is sent for further enrichment in steeply inclined separators. Industrial product returns to jigging machine as circulating load after the previous passing control crushing and screening. Availability of screen and crusher allows reducing the percentage of industrial product in circulating operating liquid and generally raising productivity of the process of enriching rock mass. Barren rock is removed from the technological process by a system of gutters, enters the rotor unloading and then is carried by transport to the site of forming new flat heap. Construction of jigging machine is shown in the figure below:

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 7

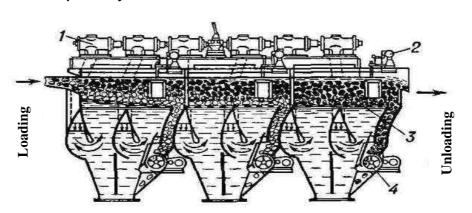


Figure 4 – View of jigging machine for ROM coal enrichment

Dewatering enrichment products: dehydration of concentrate of jigging machines and large sludge is implemented on screens with diameter of sieves 0.5 mm. From jigging machine concentrate gets to dewatering screen through the chute, then goes through immovable sieve, where part of the water is discharged. Final dehydration of these products occurs in dewatering bunkers. Dehydration of fine sludge, captured in the radial thickener, have to be performed in vacuum filters.

Enrichment of coal-containing fraction 6-25 mm in steeply inclined separator: because of the fact that the overwhelming number of enriching coal-containing fraction <25mm, second stage of enriching in steeply inclined separator is implemented in order to receive low-ash coal products. Jigging machine, which is set up for class 6-25 mm gives this material to dewatering screen where the dumping of certain part of water occurs, and then this material goes to KPS-50. Class 6-25mm is output feedstock for steeply inclined separators KPS-50. Basic technology of steeply inclined separator is relatively new, as it was developed in the 90's and was successfully applied in a number of installations in Russia and Kazakhstan⁴. Technological process is simple, does not require a huge amount of primary and secondary equipment, and is reliable and effective. Steeply inclined separators contain almost no moving parts, are easy to manage and operate, and also take up less space compared to other technologies. Construction of steeply inclined separator is shown in the figure below:

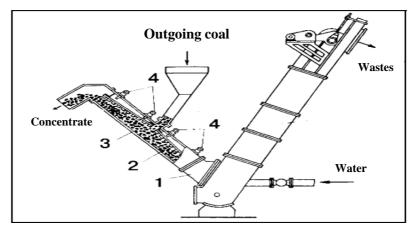


Figure 5 – Steeply inclined separator

page 8

⁴ <u>http://www.kenes.ru/index/ntd/</u>

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

Joint Implementation Supervisory Committee

Outgoing coal through special feeders is loaded to the separators. Operation of 6 KPS-50 is expected under the project: 5 - working units, and one in reserve. The final product of the second stage of enriching is a high-quality concentrate, which then undergoes the process of dehydration on the screens and dewatering bunkers. Closed cycle of water use is expected under the project. The next step of technological scheme is the process of capturing sludge and lighting of circulating water.

Capturing sludge and lighting circulating water: capturing coarse sludge under-grating water of dewatering screens should be performed in pyramidal settling tanks. Drain of pyramidal settling tanks, as well as undergrating water of sludge screens should be enlighten in the radial thickener, thickened product of radial thickener will be sent to the filtration, and drain into the circulation. Small amount of sludge, which departs from the mill, will captured in external sludge settling tanks.

Issuing enrichment products: according to the technological scheme all coal, extracted from the rock mass, goes to dewatering bunkers for further dehydration. Capacity of these bunkers is 1510t. Then, using dosing trunks, coal gets to belt conveyor and goes to the warehouse of finished products through chutes system and feeders. One powerful belt conveyor is installed to optimize the speed of concentrate shipment from the mill.

Technological process of processing heaps is environmentally safe and does not require the use of hazardous materials.

Complete technological scheme of enrichment complex is with the following elements:

1. Crushing and screening unit:

- 1.1 Bunkers of receiving bulk materials;
- 1.2 Belt conveyors and feeders;
- 1.3 Classification installation screen;
- 2. Department of jigging of coal containing fraction:
 - 2.1 Preparatory screening screens;
 - 2.2 Jigging pistonless machines;
 - 2.3 Classification screen and crusher.

3. Department of concentrate dehydration:

- 3.1 Dewatering screens;
- 3.2 Dewatering bunkers;
- 3.3 Dewatering centrifuges;
- 3.4 Vibrating screen;
- 3.5 Bunkers of receiving dehydrated concentrate;
- 3.6 Belt conveyors and feeders;
- 3.7 Point of barren rock shipment;
- 3.8 Warehouse of finished products;
- 3.9 Point of weighing shipped products

4. Enrichment of coal-containing fraction 6-25 mm in steeply inclined separator:

- 4.1 Six steeply inclined separators KPS-50;
- 4.2 Classification screen;
- 4.3 Belt conveyor.

5. Capturing sludge in lighting of circulating water:

- 5.1 Pyramidal settling tanks;
- 5.2 Tanks of recycled water;
- 5.3 Hydraulic cyclones;
- 5.4 Arched sieve;
- 5.5 Radial thickener;

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 9

page 10

UNFCCC

- 5.6 Vacuum filters;
- 5.7 Bunkers of receiving sludge;
- 5.8 Belt conveyors.

6. Issuing enrichment products:

- 6.1 Belt and scraper conveyors;
- 6.2 Bunkers of receiving concentrate;
- 6.3 Warehouse of finished products;
- 6.4 Point of extracted coal weighing.

Enrichment complex has nominal daily production capacity of 7800 tons of rock mass on the basis of the next operating mode:

- Number of working days in a year, days 300;
- Number of shifts per day -2;
- Duration of work per day, per hour -15.

This operating mode allows processing up to 2350 thd. tons of rock mass per year in order to receive low-ash coal concentrate of high quality, which will partially cover the demand for thermal coal for power generation at TPPs.

Technology of enriching rock mass of the waste heaps provides closed water circulation system that prevents negative impact on the environment. Bulldozers and trucks KAMAZ, consuming diesel fuel, are used for waste heaps dismantling. Special technique, used under the project, is presented in the figure below:

Joint Implementation Supervisory Committee

page 11

Figure 6 – Technique, used for waste heaps dismantling under the project

According to the project activity, complex of actions is implemented, which is directed to recultivation of the waste heaps #1/8 and #2/9, that were transfer to "RS-ARPI" LLC using based on the contract No. 246/12 dated December 17, 2007. Characterization of rock mass of the waste heaps is presented in the table below:

Table 2 – Characteristics of the waste heap

Waste heap	Volume, m ³	Ash content, %	Fire condition
#1/8	4 200 000	75.1	Non-burning
#2/9	3 200 000	77.3	Non-burning

Waste heap dismantling is shown in the figure below:

Figure 7 – Waste heap, dismantling under the project

Joint Implementation Supervisory Committee

page 12

As a result of implementation of this JI project ROM coal of thermal class will be extracted, which will partly replace the coal, which would be extracted in the coal mines. Enrichment wastes are formed in the new flat heaps that have no tendency to spontaneous combustion because of the low coal concentration in them, as enrichment waste is inert mass. Use of enrichment wastes is not provided under the project. Barren rock is shipped from concentrating mill and is transported by trucks to the place of formation of the new heap. If necessary, this rock may be used in road construction, building materials, etc. Technology that is being implemented by the projects a modern reflection of engineering solutions in matters of wet concentration of rock mass of waste heaps. Impact of the proposed project on the environment is expected within the permitted maximum allowable concentrations. The project has a positive impact on waste formation, as it implies dismantling and utilization of coal production wastes.

Most part of the equipment within this project, such as trucks, excavators, bulldozers refers to the standard type of industrial equipment used worldwide.

In 2006 it was decided to implement a JI project. Waste heaps, owned by CCM "Vuhlehirska", were transferred for use to "RS-ARPI" LLC for the purpose of their recultivation based on concluded contract No. 246/12 dated December 17, 2007. "RS-ARPI" LLC is the owner of the source of GHG emissions and generated emission reduction units under the project can be sold by it on the international market of emission reduction trading. Contracting company is involved for waste heaps dismantling and transportation of rock mass to concentrating mill of "RS-ARPI" LLC, contracting company acts on the basis of concluded contract No. 22/12-2007 dated December 22, 2007. The starting date of operation of concentrating mill is January 01, 2008.

Stages of the project activity implementation are given in the table below:

Activity	Actual date
Date of decision taking on JI project implementation	14/12/2006
Beginning of the investment phase	02/02/2007
Commissioning works	10/12/2007
End of the investment phase	20/12/2007
Start of operation of concentrating mill	01/01/2008

Table 3 – Stages of project activity implementation

Duration of operational phase of the project is due to constructive possibilities of the project equipment. The beginning of the investment phase is confirmed by the lease agreement of concentrating mill No. 12/02-2007 dated February, 02 2007.

The project does not require intensive pre-training. Required number of staff can receive basic training on the project site. Most workers, such as operators of heavy equipment, truck and excavators drivers, mechanics and electricians work on the project site. Project needs in technical maintenance are met by local resources: own employees for internal maintenance and contractors for repair. The project provides training. All employees must have valid professional certificates, to undergo periodically safety training and pass exams.

page 13

Joint Implementation Supervisory Committee

Important stage of this project is also recultivation of lands that were occupied by waste heaps, and their return to community. Waste from beneficiation complex (empty rock) can be used in the construction of roads and for formation of the territory of abandoned open developments and pits in order to reuse these sites. This part of the project is obligatory but totally expensive, because of this joint implementation mechanism was one of the prominent factors of the project from the very beginning, and financial benefits under this mechanism were considered as one of the reasons of project beginning.

A.4.3. Brief explanation of how the anthropogenic emissions of greenhouse gases by sources are to be reduced by the proposed JI <u>project</u>, including why the emission reductions would not occur in the absence of the proposed <u>project</u>, taking into account national and/or sectoral policies and circumstances:

The problem of waste heaps is very relevant now in Donbas. Waste heaps do not only eliminate large areas of land from economic circulation and lead to disruption of the ecological balance of the natural ecological community, but also are a source of increased environmental hazards. Even in a non-burning state the waste heap is a source of pollution of atmosphere, soil, adjacent waters and groundwater. This danger is increased many times by burning of the waste heap⁵.

The proposed project involves complex of measures aimed at the recultivation of the waste heaps for extracting black coal from them. These measures will allow reducing GHG emissions from burning rock mass and will also allow receiving additional amount of coal that will partially replace coal, which is extracted in coal mines. Besides, implementation of the project activity will allow reducing fugitive methane and carbon dioxide emissions from electricity consumption from the grid during operation of coal mines. Prerequisite for such measures implementation is that waste heaps are often inclined to self-heating and subsequent burning, causing emissions of hazardous substances and greenhouse gases. The part of coal in the waste heaps can be as high as 28-32%, so the risk of spontaneous self-heating and burning is very high⁶. The survey shows⁷, 83% of waste heaps in the Donetsk region are, or have been burning. Burning waste heaps in Ukraine are very often not taken care of properly, especially when there is no immediate danger to population and property, i.e. if the waste heap is located at a considerable distance from a populated area, or is at the early stages of self-heating. The only way to prevent burning heap is extraction of all combustible matter, which are in residual coal after extraction process in coal mines.

Coal extracted from the waste heap will replace coal, which is extracted by mining method, and will be used to generate electricity at TPPs. Coal of the energy group "G" and "T" rank will be extracted under the project.

Emission reductions resulting from this project will come from three main sources:

- Elimination of carbon dioxide emissions sources from combustion of waste heap by extraction of thermal coal from it;
- Reduction of the fugitive methane emissions volume related to coal mining by substitution of amount
 of such coal to the coal that is produced from the waste heaps as a result of the project activity;
- Reducing electricity consumption from the grid during recultivation of the waste heaps in comparison with energy consumption during coal production in the mine.

The process of waste heaps recultivation is very expensive, the investment effect of which is lower than capital investment. There are also many other negative factors in realization of such measures, such as

⁵ <u>http://terrikon.donbass.name/ter_s/290-model-samovozgoraniya-porodnyx-otvalov-ugolnyx-shaxt-donbassa.html</u>

⁶ Geology of Coal Fires: Case Studies from Around the World, Glenn B. Stracher, Geological Society of America, 2007, c. 47

⁷ *Report on the fire risk of Donetsk Region's waste heaps*, Scientific Research Institute "Respirator", Donetsk, 2012 This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 14

Joint Implementation Supervisory Committee

uncertainty of early coal content in the total rock mass, instability of sales market of coal production in Ukraine. Besides, Ukraine does not resolve this issue on a systematic basis. Efforts to stop waste heaps burning and their full dismantling, corresponds the current Legislation of Ukraine on Environmental Protection. Proposed project is positively estimated by local authorities.

Detailed description of the baseline and full analysis of additionality are given in Section B of PDD.

A.4.3.1. Estimated amount of emission reductions over the <u>crediting period</u>:

	Years
Length of the crediting period	5
Year	Estimate of annual emission reductions
1 cai	in tonnes of CO ₂ equivalent
Year 2008	1 014 791
Year 2009	973 042
Year 2010	1 025 411
Year 2011	1 050 108
Year 2012	1 016 096
Total estimated emission reductions over the	
crediting period	5 079 448
(tonnes of CO ₂ equivalent)	
Annual average estimated emission reductions	
over the crediting period	1 015 890
(tonnes of CO ₂ equivalent)	

Table 4 – Estimated amount of emission reductions over the crediting period

Table 5 – Estimated amount of emission reductions after the crediting period

	Years
Length of the period after 2012, for which achieved emission reductions are calculated	3
Year	Estimate of annual emission reductions in tonnes of CO ₂ equivalent
Year 2013	1 008 901
Year 2014	1 008 901
Year 2015	1 008 901
Total estimated emission reductions after the <u>crediting period</u> (tonnes of CO_2 equivalent)	3 026 703
Annual average estimated emission reductions after the crediting period (tonnes of CO ₂ equivalent)	1 008 901

A.5. <u>Project approval by the Parties involved:</u>

Letter of Endorsement № 2749/23/7 dated 26/09/2012 was issued by State Environment Investment Agency of Ukraine. According to the national Ukrainian procedure Letter of Approval from Ukraine is expected after determination of the project. After AIE will prepare determination report, PDD and determination report will be submitted to the State Environmental Investment Agency of Ukraine for receiving Letter of Approval from Ukraine. Letter of Approval from Estonia will be received after publication of the PDD on the JISC website.

Joint Implementation Supervisory Committee

page 15

SECTION B. <u>Baseline</u>

B.1. Description and justification of the <u>baseline</u> chosen:

A baseline for the JI project has to be set in accordance with Appendix B to decision 9/CMP.1 (JI guidelines)⁸, and with further guidance on baseline setting and monitoring developed by the Joint Implementation Supervisory Committee (JISC). In accordance with the Guidance on Criteria for Baseline Setting and Monitoring (version 3)⁹ (hereinafter referred to as "Guidance"), the baseline for a JI project is the scenario that reasonably represents the anthropogenic emissions by sources or anthropogenic removals by sinks of GHGs that would occur in the absence of the proposed project.

In accordance with the Paragraph 9 (a) of the Guidance the project participants may select either: an approach for baseline setting and monitoring developed in accordance with appendix B of the JI guidelines (JI specific approach); or a methodology for baseline setting and monitoring approved by the Executive Board of the clean development mechanism (CDM), including methodologies for small-scale project activities, as appropriate, in accordance with paragraph 4(a) of decision 10/CMP.1, as well as methodologies for afforestation/reforestation project activities. Paragraph 11 of the Guidance allows project participants that select a JI specific approach to use selected elements or combinations of approved CDM baseline and monitoring methodologies or approved CDM methodological tools, as appropriate; or, if necessary, approved CDM methodologies or methodological tools.

The baseline will then include description and justification in accordance with the "Guidelines for users of the Joint Implementation Project Design Document Form", version 04¹⁰, using the following step-wise approach:

Step 1: Identification and description of the theoretical approach chosen to establish the baseline

Project participants have chosen the following approach regarding baseline setting, defined in the Guidance (Paragraph 9a):

• An approach for baseline setting and monitoring already taken in comparable JI cases (JI specific approach).

The Guidance applies to this project as the above indicated approach is selected as mentioned in the Paragraph 12 of the Guidance. The detailed theoretical description of the baseline in a complete and transparent manner, as well as a justification in accordance with Paragraph 23 through 29 of the Guidance should be provided by the project participants.

The baseline for this project should be established in accordance with Annex B JI guidelines. In addition, the baseline should be determined by listing and describing the possible future scenarios based on conservative assumptions and choice most plausible from them. Taking into account JI special approach selected for determining the baseline, in accordance with Article 24 of JISC Guidelines, baseline is identified by listing and describing possible future scenarios based on conservative assumptions and choosing one of the most possible.

To determine the most possible future scenario barrier analysis was used.

After analyzing all variants development of the baseline, two scenarios were identified, one of which reflected the project scenario with JI mechanism. To demonstrate additionality of the project clear and transparent information was provided about similarity of approach of additionality demonstration, it was used

¹⁰ http://ji.unfccc.int/Ref/Documents/Guidelines.pdf

⁸ <u>http://unfccc.int/resource/docs/2005/cmp1/eng/08a02.pdf#page=2</u>

⁹ http://ji.unfccc.int/Ref/Documents/Baseline setting and monitoring.pdf

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 16

in those cases where the final determination of the project was held, with the help of which comparative analysis can be performed.

Description of the possible future scenarios of the baseline is based on the following key factors:

- policies and legislation, directed to reforming of this sector of industry;
- economic situation in the country and socio-demographic factors in the relevant sectors;
- stability of demand on coal market;
- investment;
- fuel prices and its availability;
- national and/or subnational expansion plans for the energy sector.

Step 2. Application of the approach chosen

Plausible future scenarios will be identified in order to establish a baseline.

Sub step 2a. Identifying and listing plausible future scenarios.

Scenario 1. Continuation of the existing situation

Nowadays waste heaps are not utilized. Self-ignition and subsequent burning of waste heaps is common practice, and extinguishing measures are performed from time to time. Burning of heaps leads to fugitive greenhouse gas emissions. Coal is not extracted from the waste heaps but extracted in the mines of the region and used for energy production or other purposes. Coal extraction in the mines causes fugitive methane emissions, and contributes to the emergence of new waste heaps.

<u>Scenario 2. Implementation of measures on the use of thermal energy of the waste heap, which burns, for</u> <u>energy generation.</u>

In certain circumstances burning waste heaps are not extinguished and their condition is not monitored properly. In some cases, for the use of thermal energy of the waste heaps¹¹ special heat exchangers of stationary type are used, that have direct contact with centre of rock mass combustion. Thus, received thermal energy can be used to generate electricity and heat. However, this approach does not exclude greenhouse gas emissions into the atmosphere by burning of the waste heaps. Coal will continue to be produced by underground mines and used for energy sectors purposes. Mining activities result in fugitive gas release, and the formation of more waste heaps.

Scenario 3. Production of construction materials on the basis of raw materials from waste heaps

Waste heaps are being processed in order to produce construction materials (bricks, panels, etc.). Coal in the waste heap matter is burnt during the agglomeration process¹². Coal is produced by underground mines of the region and used for energy production or other purposes. Mining activities result in fugitive gas release, and the formation of more waste heaps.

UNFOCC

¹¹ Method to utilize energy of the burning waste heaps, Melnikov S.A., Zhukov Y.P., Gavrilenko B.V., Shulga A.Y., State Committee Of Ukraine For Energy Saving, 2004.

⁽http://www.masters.donntu.edu.ua/2004/fgtu/zayanchukovskaya/library/artcl3.htm)

¹² Opportunities for international best practice use in coal mining waste heap utilization of Donbas, Matveeva N.G., Ecology: Collection of Scientific Papers, Eastern Ukrainian National University, Luhansk, #1 2007. http://www.nbuv.gov.ua/portal/natural/Ecology/2007_1/Article_09.pdf

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

Joint Implementation Supervisory Committee

page 17

Scenario 4. Coal extraction from waste heaps without incentives of JI mechanism

Situation under this scenario is identical to the project scenario only, the project itself does not benefit from the terms of implementation of JI project. Waste heaps are processed in order to extract coal and use it in the energy complex of industry, due to this less coal is produced by underground mines of the region.

<u>Scenario 5.</u> Systematic monitoring of waste heaps condition, regular fire prevention and application of <u>extinguishing measures</u>

Waste heaps are systematically monitored and its thermal condition is observed. Regular fire prevention measures are taken. In case of burning of waste heap fire is extinguished and measures to prevent burning in the future are held. In this case coal extracted from the waste heaps is not used for energy production, and the whole amount of coal is produced by underground mines that result in fugitive methane release and formation of more waste heaps.

Sub step 2b. Barrier analysis

Scenario 1. Continuation of existing situation

This scenario requires the implementation of no measures, so there are no barriers.

Scenario 2. Implementation of measures on the use of thermal energy of the waste heap that burns for energy generation.

Technological barrier: This scenario is based on an experimental technology that has not yet been used. This approach is not suitable for all waste heaps, as the project owner will have to balance the availability of energy resources (i.e. waste heap location) and location of the energy consumer. Electricity production at the site addresses this issue, but requires additional capacity connections. Generally, it is also need to prove the feasibility of this technology. Besides it does not allow monitoring and controlling the emission of gases. The proposed technology can be applied only in the presence of waste heap with advanced combustion unit. Even if the probability of waste heap ignition is very high, it is currently impossible to predict the time of its outbreak and therefore to predict the start of thermal energy use released during its combustion.

Investment barrier: Considering the fact that this technology is in its initial phase of the experiment, investment into this project results in a high risk besides Ukraine is ranked as a high-risk country¹³. Investments into such kind of unproven energy projects unlikely to attract investors more than some other investment opportunities into energy industry with higher profitability. The pioneering character of the project may interest programmes of technical support and governmental incentives, but the cost of the produced energy is likely to be much higher than that of the alternatives.

Scenario 3. Production of construction materials on the basis of raw materials from waste heaps

Technological barrier: This scenario is based on known technology, which, however, is not currently available in Ukraine and there is no evidence that such projects will be implemented in the near future. It is also not suitable for all types of waste heaps as composition of the waste heap has to be predictable in order

¹³ AMB Country Risk Report: Ukraine October 29, 2010 <u>http://www3.ambest.com/ratings/cr/reports/Ukraine.pdf</u> This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

Joint Implementation Supervisory Committee

page 18

for project owner to be able to produce quality materials¹⁴. High content of sulphur and moisture can reduce the suitability of the waste heap for processing. A large-scale and detailed exploration of the waste heap has to be performed prior to the start of the project. Pilot projects of this type are implemented only with the support of public funding¹⁵.

Investment barrier: Taking into account the fact that introduction of this technology faces many risks and technological barriers; investment attractiveness of this scenario is very low. Condition of the waste heaps is not controlled by the State, and the owners of the heaps often neglect measures on their monitoring. It is not profitable for private entities to produce construction materials by recycling rock mass, because the level of uncertainty is very large. This scenario is only possible under available financial support from the State, which currently does not make any prerequisites, what is possible.

Scenario 4. Coal extraction from waste heaps without incentives of JI mechanism

Investment barrier: This scenario is financially unattractive and faces barriers. Please refer to Section B.2. for details.

<u>Scenario 5.</u> Systematic monitoring of waste heaps condition, regular fire prevention and application of <u>extinguishing measures</u>

Technological barrier: This scenario does not include any income, but involves additional costs for the owners of the waste heaps. Monitoring of the state of waste heaps is not performed systematically, and all activities are left at the discretion of the owner of the heaps. Basically waste heaps belong to mines or regional associations of mining. Coal mines of Ukraine suffer from limited investment that often causes problems of danger because of poor conditions of extraction and financial difficulties, besides salary of miners is often delayed for several months. In this case, the waste heaps are considered as an additional burden, and mine usually do not make even minimum required measures. Self-ignition and burning of heaps are common practice. Exact statistics are not always available. From a commercial point of view fines, which are usually issued by governments, are lower than the cost of necessary measures highlighted in this project.

Investment barrier: This scenario does not represent any revenues but anticipates additional costs for waste heaps owners. Monitoring of the waste heap status is not carried out systematically and actions are left to the discretion of the individual owner of the waste heaps. Mainly waste heaps belong to mines or regional coal mining associations. Coal mines in Ukraine suffer from limited funding resulting in safety problems due to complicated mining conditions and financial constraints with miners' salaries often being delayed by few months. In this case waste heaps are considered as an additional burden, and mines usually do not make even minimum measures required. Self-heating and burning of heaps are common practice. Exact statistics are not always available. From a commercial view point the fines that are usually levied by the authorities are considerably lower than the costs of all the measures outlined in this project.

 ¹⁴ Opportunities for international best practice use in coal mining waste heap utilization of Donbas, Matveeva N.G., Ecology: Collection of Scientific Papers, Eastern Ukrainian National University, Luhansk, No.1 2007.
 <u>http://www.nbuv.gov.ua/portal/natural/Ecology/2007_1/Article_09.pdf</u>
 ¹⁵ http://www.rostovstroy.ru/archive/articles/1164.html

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

Joint Implementation Supervisory Committee

page 19

Sub step 2d. Baseline identification

All scenarios, except Scenario 1 – Continuation of the existing situation, face prohibitive barriers. Therefore, continuation of the existing situation is the most plausible future scenario and is the baseline scenario.

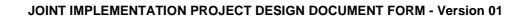
In accordance with the laws and legal norms of Ukraine waste heaps are the source of possible dangerous emissions into the atmosphere. Measures on extinguishing and monitoring of fire-hazardous waste heaps are regulated by "Mine Safety Rules"¹⁶. In practice, the legal use of this document is not significant because in certain cases These measures are regulated by Code of Ukraine on Administrative Violations that in Article 41 provides maximum penalty for such violation¹⁷ only 10 non-taxable minimum incomes, i.e. subsistence level according to Tax Code (Section 1, Article XX section 5 and section IV of article 169.1.1)^{18,19, 20} and is 1044 UAH as of ²¹ July 1, 2012. Thus, the maximum penalty is 10 440 UAH (1004 Euros), that is small amount for the company. However, because of the big number of waste heaps and their large sizes, coupled with the limited resources of the owners, they usually do not make even the minimum required monitoring. In case of self-heating of the waste heap, the owners of these objects typically do not apply any measures to extinguish the fire centres, and only pay small penalties for environmental pollution by combustion products. Under such circumstances it is clear that the baseline scenario does not contradict valid laws and legal norms, taking into account their performance in Ukraine.

This baseline scenario has been established according to the criteria outlined in the JISC Guidance:

- On a project specific basis.
- In a transparent manner with regard to the choice of approaches, assumptions, methodologies, parameters, data sources and key factors. All parameters and data are either monitored by the project participants or are taken from sources that provide a verifiable reference for each parameter. Project participants use approaches suggested by the Guidance and methodological tools provided by the CDM Executive Board;
- Taking into account relevant national and/or sectoral policies and circumstances, local fuel availability, power sector expansion plans, and the economic situation in the coal sector. The above analysis demonstrates that the baseline chosen clearly represents the most probable future scenario taking into account the circumstances of the situation of Donbas coal sector for today;
- In such a way that emission reduction units (ERUs) cannot be earned for decreases in activity levels outside the project activity or due to force majeure. According to the proposed approach the emission reductions will be earned only when project activity generate coal from the waste heaps, so no emission reductions can be earned due to any changes outside of project activity.
- Taking into account the uncertainties and using conservative assumptions. A number of steps have been taken in order to account for uncertainties and safeguard conservativeness:

¹⁶ Chapter IX, Article 7, NPAOP 10.0-1.01-10 Mine Safety Rules. Order No.62 State Committee of Ukraine on industrial security, labour protection and mining supervision – 22.03.2010 <u>http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=z0398-10</u>

¹⁷ Article 41 of the Code of Ukraine on Administrative Violations – <u>http://zakon1.rada.gov.ua/cgi-bin/laws/main.cgi?page=2&nreg=80731-10</u>


¹⁸ <u>http://www.profiwins.com.ua/uk/legislation/kodeks/1368.html</u>

¹⁹ http://www.profiwins.com.ua/uk/legislation/kodeks/1350.html

²⁰ http://jurisconsult.net.ua/spravochniki/382-rozmir-minimalnoyi-zarobitnoyi-plati-z.html

²¹ <u>http://minfin.com.ua/buh/minimum/</u>

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

- 1. If possible, the same approaches are used to calculate baseline and project emissions when possible, that are in the National Inventory Reports (NIRs) of Ukraine. NIRs use country specific approaches and country specific emission factors that are in line with default IPCC values;
- **2.** Default values were used to the extent possible in order to reduce uncertainty and provide conservative data for emission calculations.

Baseline Emissions:

For baseline emissions calculation, following assumptions were made:

- 1. The project will produce thermal coal that will displace the same amount of the same type of coal in the baseline scenario;
- 2. The coal that is displaced in the baseline scenario and the coal that is generated in the project activity are used for the same type of purpose and is stationary combusted;
- 3. The coal that is displaced in the baseline scenario is produced by the underground mines of the region and as such causes fugitive emissions of methane;
- 4. For mining coal that is substituted in the baseline scenario, a significant amount of electricity from the energy grid of Ukraine is consumed which leads to greenhouse gas emissions;
- 5. Waste heaps of the region are vulnerable to spontaneous self-heating and burning and at some point in time will burn;
- 6. The waste heaps that will be dismantled during the project realization are categorized as being at risk of ignition. In other words, if they are not utilized, they will self-heat under normal circumstances;
- 7. The processed rock is not vulnerable to self-heating and spontaneous ignition after the coal has been removed during the processing;
- 8. The correction factor is applied in order to address the uncertainty of the waste heaps burning process. This factor is defined on the basis of the survey of all the waste heaps in the area that provides a ratio of waste heaps that are or have been burning at any point in time to all existing waste heaps;
- 9. The total amount of coal processed by the project will be burned in the heaps over the same period.

Baseline emissions come from two major sources:

- 1. Carbon dioxide emissions that occur during combustion of energy coal. These are calculated as stationary combustion emissions from coal in the equivalent of the amount of coal that is extracted from the waste heaps in the project scenario. This emission source is also present in the project scenario and the emissions are assumed to be equal in both project and baseline scenarios. Therefore, this emission source is not included into consideration both in the project and the baseline scenario.
- 2. Carbon dioxide emissions from burning waste heaps. These are calculated as stationary combustion emissions from coal in the equivalent of the amount of coal that is extracted from the waste heaps in the project scenario, adjusted by the probability of a waste heap burning at any point in time. As the baseline suggests that the current situation is preserved regarding the waste heaps burning and the waste heaps in question are at risk of burning, it is assumed that actual burning will occur. The correction factor is applied in order to address the uncertainty of the waste heaps burning process. This factor is defined on the basis of the survey of all the waste heaps in the area providing a ratio of waste heaps that are or have been burning at any point in time to all existing waste heaps.

The table below provides values for constant parameters used to determine the baseline emissions:

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 20

page 21

Data / Parameter	Data unit	Description	Data Source	Value
Р _{wнв}	dimensionless unit	Correction factor, determining the probability of spontaneous combustion of the waste heap	Report on the fire risk of Donetsk Region's waste heaps, Scientific Research Institute "Respirator", Donetsk, 2012	0.83
NCV _{Coal,y}	TJ/kt	Net calorific value of coal in year <i>y</i>	National Inventory Report of Ukraine ²² 1990-2010 p. 456, 462, 468 (1.A.1.a – Public Electricity and Heat Production)	2008 - 21.5 2009 - 21.8 2010 - 21.6 2011 - 21.6 2012 - 21.6
OXID _{Coal,y}	ratio	Carbon oxidation factor of coal in year y	National Inventory Report of Ukraine ²³ 1990-2010 p. 459, 465, 471 (1.A.1.a – Public Electricity and Heat Production)	$\begin{array}{r} 2008-0.963\\ 2009-0.963\\ 2010-0.962\\ 2011-0.962\\ 2012-0.962\\ \end{array}$
$k^{C}_{Coal,y}$	t C/TJ	Carbon content of coal in year y	National Inventory Report of Ukraine ²⁴ 1990-2010 p. 458, 464, 470 (1.A.1.a – Public Electricity and Heat Production)	$\begin{array}{r} 2008-25.95\\ 2009-25.97\\ 2010-25.99\\ 2011-25.99\\ 2012-25.99\end{array}$
A _{coal,y}	%	Average ash content of thermal coal extracted in Donetsk region, Ukraine	Reference book of quality indicators, volume of coal production and beneficiation products in 2008-2010, Ministry of Coal Industry of Ukraine, State Committee of Ukraine, and Luhansk 2010 (see Annex 4). Indicators for thermal coal.	2008 - 38.80 2009 - 39.50 2010 - 38.70 2011 - 38.70 2012 - 38.70
W _{coaly}	%	Average water content of thermal coal extracted in Donetsk region, Ukraine	Reference book of quality indicators, volume of coal production and beneficiation products in 2008-2010, Ministry of Coal Industry of	$\begin{array}{r} 2008-6.9\\ 2009-6.6\\ 2010-6.6\\ 2011-6.6\\ 2012-6.6\end{array}$

Table 6 – List of constants used in the calculations of baseline emissions

²² <u>http://unfccc.int/files/national_reports/annex_i_ghg_inventories/national_inventories_submissions/application/zip/ukr-2012-nir-13apr.zip</u>

²³ <u>http://unfccc.int/files/national_reports/annex_i_ghg_inventories/national_inventories_submissions/application/zip/ukr-</u> 2012-nir-13apr.zip

²⁴ http://unfccc.int/files/national_reports/annex_i_ghg_inventories/national_inventories_submissions/application/zip/ukr-2012-nir-13apr.zip

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 22

Joint Implementation Supervisory Committee

	Ukraine, State Committee of	
	Ukraine, Luhansk 2010 (see	
	Annex 4). Indicators for	
	thermal coal.	

Calculation results are presented in metric tons of carbon dioxide equivalent (tCO₂e), 1 metric ton of carbon dioxide equivalent is equal to 1 metric ton of carbon dioxide (CO₂), i.e. $1 \text{ tCO}_2\text{e} = 1 \text{ tCO}_2$.

Baseline emissions are calculated as follows:

$$BE_{y} = BE_{WHB,y}$$
 (Equation 1),

where:

 BE_y , - Baseline emissions in period y, tCO₂e,

 $BE_{WHR_{yy}}$ - Baseline emissions related to waste heaps combustion in period y, tCO₂e.

Baseline emissions related to waste heaps combustion are calculated as:

$$BE_{WHB} = \frac{FC_{BE,Coal,y}}{1000} \cdot p_{WHB} \cdot NCV_{Coal,y} \cdot OXID_{Coal,y} \cdot k_{Coal,y}^{C} \cdot \frac{44}{12},$$
(Equation 2),

where:

$FC_{BE,Coal,y}$	- Amount of coal that would be mined in the baseline scenario and consumed in the energy sector for energy production in the relevant period <i>y</i> , t;
$ ho_{\scriptscriptstyle W\!HB}$	- Correction factor, determining the probability of spontaneous combustion of the waste heap, dimensionless unit;
$NCV_{Coal,y}$	- Net calorific value of coal in period y , TJ/kt ²⁵ ;
OXID _{Coal,y}	- Carbon oxidation factor for coal in period y, dimensionless unit 26 ;
$k_{Coal,y}^{C}$	- Carbon content of coal in period <i>y</i> , t C/TJ ²⁷ ;
$\frac{44}{12}$	- Ration between molecular mass of CO ₂ and C. Reflect oxidation of C to CO ₂ ;
1/1000	- Physical transformation [t] in [kt] for calculation purposes.

Amount of coal that would be mined in the baseline scenario and consumed in the energy sector for energy production, replaced by equivalent amount of coal, extracted from the waste heaps in the project scenario. Qualitative indicators of coal extracted in the coal mine and received as a result of recultivation of waste heaps may differ significantly. All coal-containing fractions consist of carbon, sulphur, water content (water) and ballast particle – ash, which does not burn. Indicators of ash and water content of coal in baseline and project scenarios should be brought to averaged characteristics for Ukraine. It should also be noted that the averaging characteristics of quality of Ukrainian coal is performed for all classes of coal, including lignite coal, which is not used for electricity production at TPPs. High quality coal concentrate will be produced under the project for the purposes of power engineering. In addition to moisture and ash coal (carbon-

²⁵ <u>http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/6598.php</u>

²⁶ <u>http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/6598.php</u>

²⁷ <u>http://unfccc.int/national reports/annex i ghg inventories/national inventories submissions/items/6598.php</u> This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

containing rock) also has sulphur, but its amount does not exceed few percent²⁸, its content in carbonaceous rock of waste heap always less, then in coal, extracted in the mines, therefore for calculating the amount of extracted in the mine coal, which is substituted by the coal extracted from the waste heaps, this indicator can be neglected. Amount of coal that would have been mined in the baseline scenario and combusted for energy production is calculated as follows:

$$FC_{BE,coal,y} = FR_{coal,y} \cdot \frac{\left(1 - \frac{A_{enrich,y}}{100} - \frac{W_{enrich,y}}{100}\right)}{\left(1 - \frac{A_{coal,y}}{100} - \frac{W_{coal,y}}{100}\right)}$$
(Equation 3),

where:

- Amount of enriched coal of energy class, extracted from the waste heaps as a result of the $FR_{coal,y}$ project activity in period v, t; Average ash content of enriched coal of energy class, extracted from the waste heaps as a result $A_{enrich,y}$ of the project activity in period y,%; Average water content of enriched coal of energy class, extracted from the waste heaps as a $W_{enrich,y}$ result of the project activity in period y,%; $A_{coal,y}$ Average ash content of thermal coal extracted in Donetsk region of Ukraine in period *y*, %;
- Average water content of thermal coal extracted in Donetsk region of Ukraine in period y, %. W_{coal} y

Key information and data used to establish the baseline are provided below in tabular form:

Table 7 – Amount of coal that would be mined in the baseline scenario and consumed in the energy
sector for energy production

Data/Parameter	$FC_{BE,Coal,y}$
Data unit	t
	Amount of coal that would be mined in the baseline scenario
	and consumed in the energy sector for energy production in the
Description	relevant period y, t.
Time of	
determination/monitoring	Monitoring monthly
Source of data (to be) used	Project owner records
Value of data applied	As provided by the project owner
(for ex ante	
calculations/determinations)	
Justification of the choice of	
data or description of	Calculated according to the equation (3), Section B.1.
measurement methods and	Calculated according to the equation (5), Section D.1.
procedures (to be) applied	

²⁸ http://masters.donntu.edu.ua/2009/feht/semkovskiy/library/article9.htm

page 23

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 24

QA/QC procedures (to be)	
applied	According to the internal regulations of the project owner
Any comment	No

Table 8 – Amount of enriched coal of energy class, extracted from the waste heaps as a result of the project activity

Data/Parameter	FR _{Coal,y}
Data unit	t
	Amount of enriched coal of energy class, extracted from the waste
Description	heaps as a result of the project activity in period y, t.
Time of	
determination/monitoring	Monitoring monthly
Source of data (to be) used	Data of the project owner. Weighing coal on special scales.
Value of data applied	Provided by the project owner
(for ex ante	
calculations/determinations)	
Justification of the choice of	
data or description of	
measurement methods and	
procedures (to be) applied	Measured for the commercial purposes on site
QA/QC procedures (to be)	
applied	In accordance with national standards
Any comment	No

Table 9 – Average ash content of enriched coal of energy class, extracted from the waste heaps as a result of the project activity

Data/Parameter	A _{enrich,y}	
Data unit	%	
	Average ash content of enriched coal of energy class, extracted	
	from the waste heaps as a result of the project activity in period	
Description	у.	
Time of		
determination/monitoring	Monitoring annually	
Source of data (to be) used	Data of the company	
Value of data applied		
(for ex ante		
calculations/determinations)	As provided by the project owner	
Justification of the choice of		
data or description of		
measurement methods and		
procedures (to be) applied	Studies of coal samples in the laboratory monthly	
QA/QC procedures (to be)	According to national standards	
applied		
	If the data on the average ash content of sorted faction and average	
	water content of sorted fraction extracted from the heap in the period	
	y are not available to the developer, or are irregular with the high	
Any comment	level of uncertainty, they are taken equal to the corresponding	

page 25

nationwide indicators.

Table 10 – Average water content of enriched coal of energy class, extracted from the waste heaps as a result of the project activity

Data/Parameter	W _{enrich,y}	
Data unit	%	
	Average water content of enriched coal of energy class, extracted	
	from the waste heaps as a result of the project activity in period y,	
Description	%.	
Time of		
determination/monitoring	Monitoring annually	
Source of data (to be) used	Data of the company	
Value of data applied		
(for ex ante		
calculations/determinations)	Records of the project owner	
Justification of the choice of		
data or description of		
measurement methods and		
procedures (to be) applied	Studies of coal samples in the laboratory monthly	
QA/QC procedures (to be)	According to national standards	
applied		
	If the data on the average ash content of sorted faction and average	
	water content of sorted fraction extracted from the heap in the period	
	y are not available to the developer, or are irregular with the high	
	level of uncertainty, they are taken equal to the corresponding	
Any comment	nationwide indicators.	

Table 11 – Correction factor, determining the probability of spontaneous combustion of the waste heap

Data/Parameter	P _{WHB}	
Data unit	dimensionless unit	
	Correction factor, determining the probability of spontaneous	
Description	combustion of the waste heap	
Time of		
determination/monitoring	Fixed ex-ante	
	Report on the fire risk of Donetsk Region's waste heaps, Scientific	
Source of data (to be) used	Research Institute "Respirator", Donetsk, 2012	
Value of data applied		
(for ex ante		
calculations/determinations)	0.83	
Justification of the choice of		
data or description of		
measurement methods and	Last updated specific data available at the moment of determination,	
procedures (to be) applied	verification.	
QA/QC procedures (to be)	According to national standards	
applied		
Any comment	No	

Table 12 – Net calorific value of coal

Joint Implementation Supervisory Committee

Data/Parameter	NCV _{Coal,y}	
Data unit	TJ/kt	
Description	Net calorific value of coal	
Time of		
determination/monitoring	Fixed ex-ante	
	National Inventory Report of Ukraine 1990-2010 p. 456, 462, 468	
Source of data (to be) used	(1.A.1.a – Public Electricity and Heat Production)	
	2008 - 21.5	
	2009 - 21.8	
Value of data applied	2010 - 21.6	
(for ex ante	2011 - 21.6	
calculations/determinations)	2012 - 21.6	
Justification of the choice of		
data or description of		
measurement methods and	Last updated specific data available at the moment of determination,	
procedures (to be) applied	verification.	
QA/QC procedures (to be)	According to national standards	
applied		
Any comment	No	

Table 13 – Carbon content of coal

Data/Parameter	$k_{Coal,y}^{C}$	
Data unit	t C/TJ	
Description	Carbon content of coal	
Time of		
determination/monitoring	Fixed ex-ante	
	National Inventory Report of Ukraine 1990-2010 p. 458, 464, 470	
Source of data (to be) used	(1.A.1.a – Public Electricity and Heat Production)	
	2008 - 25.95	
	2009 - 25.97	
Value of data applied	2010 - 25.99	
(for ex ante	2011 – 25.99	
calculations/determinations)	2012 - 25.99	
Justification of the choice of		
data or description of		
measurement methods and	Last updated specific data available at the moment of determination,	
procedures (to be) applied	verification.	
QA/QC procedures (to be)	According to national standards	
applied		
Any comment	No	

Table 14 – Carbon oxidation factor of coal

Data/Parameter	OXID _{Coal,y}	
Data unit	dimensionless unit	
Description	Carbon oxidation factor of coal	

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 26

Joint Implementation Supervisory Committee

page 27

Time of		
determination/monitoring	Fixed ex-ante	
	National Inventory Report of Ukraine 1990-2010 p. 459, 465, 471	
Source of data (to be) used	(1.A.1.a – Public Electricity and Heat Production)	
	2008 - 0.963	
	2009 - 0.963	
Value of data applied	2010 - 0.962	
(for ex ante	2011 - 0.962	
calculations/determinations)	2012 - 0.962	
Justification of the choice of		
data or description of		
measurement methods and	Last updated specific data available at the moment of determination	
procedures (to be) applied	verification.	
QA/QC procedures (to be)	According to national standards	
applied		
Any comment	No	

Table 15 – Average ash content of thermal coal extracted in Donetsk region, Ukraine

Data/Parameter	$A_{coal,y}$	
Data unit	%	
	Average ash content of thermal coal extracted in Donetsk region,	
Description	Ukraine	
Time of		
determination/monitoring	Fixed ex-ante	
	Reference book of quality indicators, volume of coal production and	
	beneficiation products in 2008-2010, Ministry of Coal Industry of	
	Ukraine, State Committee of Ukraine, and Luhansk 2010 (see Annex	
Source of data (to be) used	4). Indicators for thermal coal	
	2008 - 38.80	
	2009 - 39.50	
Value of data applied	2010 - 38.70	
(for ex ante	2011 - 38.70	
calculations/determinations)	2012 - 38.70	
Justification of the choice of		
data or description of		
measurement methods and	Statistical data	
procedures (to be) applied	At the moment of determination, verification data are available	
QA/QC procedures (to be)	According to national standards	
applied		
Any comment	No	

Table 16 – Average water content of thermal coal extracted in Donetsk region, Ukraine

Data/Parameter	$W_{coal,y}$	
Data unit	%	
	Average water content of thermal coal extracted in Donetsk	
Description	region, Ukraine	
Time of		
determination/monitoring	Fixed ex-ante	

page 28

	Reference book of quality indicators, volume of coal production and	
	beneficiation products in 2008-2010, Ministry of Coal Industry of	
	Ukraine, State Committee of Ukraine, Luhansk 2010 (see Annex 4).	
Source of data (to be) used	Indicators for thermal coal	
	2008 - 6.9	
	2009 - 6.6	
Value of data applied	2010 - 6.6	
(for ex ante	2011 - 6.6	
calculations/determinations)	2012 - 6.6	
Justification of the choice of		
data or description of		
measurement methods and	Statistical data	
procedures (to be) applied	At the moment of determination, verification data are available	
QA/QC procedures (to be)	According to national standards	
applied		
Any comment	No	

B.2. Description of how the anthropogenic emissions of greenhouse gases by sources are reduced below those that would have occurred in the absence of the JI <u>project</u>:

The following step-wise approach is used to demonstrate that reduction of anthropogenic emissions from sources that is provided by the project activity is additional to any other emission reductions:

Step 1. Indication and description of the approach applied

According to Paragraph 44 (b) of the Annex 1 of the Guidance "Guidance on Criteria for Baseline Setting and Monitoring" version 03, additionality can be demonstrated by provision of traceable and transparent information showing that the same approach for additionality demonstration has already been taken in cases for which determination is deemed final and which can be regarded as comparable, using the criteria outlined for baseline determination in paragraph 12 of the Guidance. It was decided to refer to the positively determined project "Waste heaps dismantling with the aim of decreasing the greenhouse gases emissions into the atmosphere"²⁹ (ITL Projects ID: UA1000020). This, project already implemented or the one that will be implemented with comparable conditions (the same measures to reduce the negative impact of GHG, the same country, similar technology, similar scale), will have as a result reduction of anthropogenic emissions by sources or enhancement of net removals by sinks that are additional to any that would have been in the absence of the project, and also relevant to this project.

Step 2. Application of the approach chosen

The following steps are performed to demonstrate additionality of this project:

Sub step 2a: Identify comparable project where an accredited independent entity has already positively determined that it would result in a reduction of anthropogenic emissions by sources or an enhancement of net anthropogenic removals by sinks that is additional in the absence the project.

The project "Waste heaps dismantling with the aim of decreasing the greenhouse gases emissions into the atmosphere" was selected as the comparable JI project. Accredited independent entity has already positively determined that it would result in a reduction of anthropogenic emissions by sources or an enhancement of net anthropogenic removals by sinks that is additional to any that would otherwise occur. This determination has already been deemed final by the JISC.

²⁹ <u>http://ji.unfccc.int/UserManagement/FileStorage/IE7LK2SZF1NOXRVB4CYG65WQPJMHA3</u>

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 29

UNFCCC

Sub step 2b: Demonstrate that the identified project is a comparable project (to be) implemented under comparable circumstances:

In accordance with paragraphs 44 and 12 of Guidelines on criteria for baseline setting and monitoring version 03 we will demonstrate that projects are implemented under comparable circumstances:

1. Both projects propose **the same measures on GHG emissions reduction into the atmosphere**: complex of measures on thermal coal extraction from the waste heaps is implemented, which were formed as a result of the coal mines activity. The result of processing rock mass of the waste heaps is the reduction of GHG emissions level that would have occurred due to their spontaneous combustion and subsequent burning. Besides additional amount of thermal coal is received, which will replace coal from mine and partly meet the needs in energy production. Same sources of GHG emissions are included in the boundaries of both projects – project equipment and waste heaps.

2. Projects are implemented in the same geographical area.

Both projects are implemented in Donetsk region, Ukraine.

3. Both projects have a similar scale:

Projects are Joint Implementation large-scale projects. Large amount of enrichment and auxiliary equipment is used for processing rock mass of the waste heaps. Both projects process a large amount of rock mass and recultivate wastes of the coal industry.

4. Both projects are implemented under identical conditions of legislation:

During the time interval between the dates of implementation of two JI projects regulatory and legal frameworks bases have not undergone significant changes. The situation around the coal industry remained stable.

5. Both projects introduce similar technology:

Technology, which is implemented in the proposed and comparable projects, is similar. In both projects, waste heaps are dismantled using standard excavators and bulldozers. Material from heaps is transported to installation for rock mass beneficiation using trucks. In both projects, wet method of rock beneficiation is used. In both projects steeply inclined separators are used that separate coal fraction from barren rock. Both technologies use closed system of water use, preventing additional impact on the environment. Both technologies are modern and efficient, aimed at enriching rock mass of the waste heaps.

Thus the criteria identified by the Guidance are satisfied and the identified project is indeed a comparable projects implemented under comparable circumstances.

Step 3: Justification why determination of the comparable project refers to this project

The project "Waste heaps dismantling with the aim of decreasing the greenhouse gases emissions into the atmosphere" and the proposed project are implemented within the same geographic region of Ukraine – the Donbas coal mining region. The implementation timeline is quite similar. Projects will share the same investment profile and market environment. These projects are implemented by private companies with no utilization of public funds. The investment climate will be comparable in both cases with the coal sector being an almost non-profitable sector in Ukraine³⁰ burdened by many problems. The market for the extracted coal will also be similar for projects as these are small private companies that will not be able to sell coal in big quantities under long-term contracts. Ukrainian coal sector is largely state-controlled. Energy and Coal Ministry of Ukraine decides production level of state mines, based on their performance. After this, state

³⁰ <u>http://www.necu.org.ua/wp-content/plugins/wp-download_monitor/download.php?id=126</u>

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 30

Joint Implementation Supervisory Committee

controlled mines sell their coal to the state Trading Company "Coal of Ukraine". This company also buys coal from private mines and arranges supply of coal to thermal electricity companies. Prices for coal mines differ significantly for public and private mines³¹.

Both projects also share the investment climate of Ukraine which is far from being favourable. Ukraine is considered to be a high risk country for doing business and investing in. Almost no private capital is available from domestic or international capital markets for mid to long term investments, and any capital that is available has high cost. The table below represents risks of doing business in Ukraine according to various international indexes and studies.

Indicators	2008	Note
Corruption index of Transparency International ³²	134 position from 180	Index of corruption
Rating of business practices of The World Bank (The Doing Business) ³³	139 position from 178	Rating of conduct of business (ease of company opening, licensing, staff employment, registration of ownership, receipt of credit, defence of interests of investors)
The IMD World Competitiveness Yearbook ³⁴	54 position from 55	Research of competitiveness (state of economy, efficiency of government, business efficiency and state of infrastructure)
Index of Economic Freedom of Heritage Foundation ³⁵	133 position from 157	Determination of degrees of freedom of economy (business, auction, financial, monetary, investment, financial, labour freedom, freedom from Government, from a corruption, protection of ownership rights)
Global Competitiveness Index of World Economic Forum ³⁶	72 position from 134	Competitiveness (quality of institutes, infrastructure, macroeconomic stability, education, development of financial market, technological level, innovative potential)

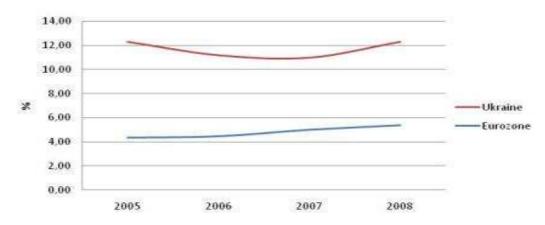
The data above shows that both real and perceived risks of investing in Ukraine are in place and influence the availability of capital in Ukraine both in terms of size of the investments and in terms of capital costs. Comparison of commercial lending rates in Ukraine and in the euro zone for loans for 4 years in Euros is presented in the figure below:

As stated at the Organization for Economic Co-operation and Development Roundtable on Enterprise Development and Investment Climate in Ukraine, the current legal basis is not only inadequate, but to a large extent it sabotages the development of market economy in Ukraine. Voices in the western press can basically be summarized as follows: The reforms in the tax and legal systems have improved considerably with the

³¹ http://www.ier.com.ua/files/publications/Policy papers/German advisory group/2009/PP 09 2009 ukr.pdf

³² http://cpi.transparency.org/cpi2011/in_detail/

³³ http://www.doingbusiness.org/rankings


³⁴ http://www.imd.org/research/publications/wcy/upload/scoreboard.pdf

 ³⁵ <u>http://www.heritage.org/index/country/ukraine</u>
 ³⁶ <u>http://reports.weforum.org/global-competitiveness-2011-2012/</u>

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

adoption of the commercial Code, Civil Code and Customs Code on 1 January 2004 and new Tax Code on 1 January 2011 but still contain unsatisfactory elements and pose a risk for foreign investors³⁷.

Figure 8 – *Commercial lending rates, Euros, for four years*

Ukraine is considered to be heading in the right direction with significant reforms having been put into action but still has a long way to go to realize its full potential. Frequent and unpredictable changes in the legal system along with conflicting and inconsistent Civil and Commercial Codes do not allow for a transparent and stable enforced legal business environment. This is perceived as a great source of uncertainty by international companies, which make future predictions of business goals and strategy risky.

The conclusion from the abovementioned is as follows: the investment climate of Ukraine is risky and unwelcoming, private capital is not available from domestic or international sources or available at prohibitively high cost due to real and perceived risks of doing business in Ukraine as shown by various sources. Alternatives markets, such as Russia, offer similar profile of investment opportunities with lower risk and better business environment.

Subject to the above information, we can conclude that determination of the project "Waste heaps dismantling with the aim of decreasing the greenhouse gases emissions into the atmosphere" is relevant for this project.

Outcome of the analysis: According to Paragraph 44 (b) of Appendix 1 of "Guidance on criteria for baseline setting and monitoring", Version 03, additionality was demonstrated by providing traceable and transparent information that similar approach to demonstrating additionality has already been applied in those cases, where determination is considered final and can be taken as comparable one using criteria for determining the baseline in Paragraph 12 of Guidance, as well as traceable and transparent information that has received positive determination by accredited independent entity that comparative project "Waste heaps dismantling with the aim of decreasing the greenhouse gases emissions into the atmosphere" (ITL Projects ID: UA1000020) is implemented under comparable circumstances (similar technologies, similar technology, similar implementation time, similar project scale), would result in a reduction of anthropogenic emissions

page 31

³⁷ Foreign Direct Investment in Ukraine – Donbas, Philip Burris, Problems of foreign economic relations development and attraction of foreign investments: regional aspect. ISSN 1991-3524, Donetsk, 2007. p. 507-510

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

Joint Implementation Supervisory Committee

sources or an enhancement of net anthropogenic removals by sinks that is additional to any that would otherwise occur and have provided justification on why this determination is relevant for the project at hand. Overall, this project is additional.

B.3. Description of how the definition of the <u>project boundary</u> is applied to the <u>project</u>:

Project boundaries include waste heaps, activity of special equipment and concentrating mill. According to the agreement No. 246/12 dated December 17, 2007 "RS-ARPI" LLC received waste heaps in its using from "CCM "Vuhlehirska" CJSC, located in Vuhlehirsk, Timiryazeva Street 20a, for performance of works on mine technical recultivation of the waste heaps for Joint Implementation project realization on reducing greenhouse gas emissions, what is provided by Article 6 of the Kyoto Protocol to UN Framework Convention on Climate Change dated 09.05.92. "VICTORY TOUR" LLC acts as a contracting company that performs dismantling and transportation of rock to the concentrating mill. "RS-ARPI" LLC is the owner of emission sources, where the implementation of JI project is planned.

Thermal coal extracted from the waste heap will be supplied to the thermal coal market partially replacing coal that would be mined in the baseline scenario in the coal mines. In turn, the project scenario provides project GHG emissions in the atmosphere related to diesel burning by trucks and indirect carbon dioxide emissions during electricity consumption by technological equipment.

According to the baseline, all amount of coal is extracted in coal mines, and delivered to in the energy industry sector for energy generation. Source of emissions from combustion of this coal at TPPs is equivalent to the source, present in the project scenario, so source of GHG emissions from the burning of this coal at TPP excluded from consideration. In addition, coal extraction by mining method leads to fugitive CMM emissions, warming potential of which is in 21 times higher than CO_2 . Coal mine utilizes different types of energy, but electricity consumption takes the bulk of the energy balance of coal enterprises, about³⁸ 90%. The remaining 10% of the balance of energy consumption is not considered in order to provide conservativeness. Emission sources in this PDD are presented in accordance with the provisions of Articles 13 and 14 of the JISC Guidance.

Leakage:

Leakage is the net change of anthropogenic emissions by sources and/or removals by sinks of GHGs which may occur outside the project boundary, and that can be measured and is directly attributable to the JI project.

This project will result in a net change in of anthropogenic emissions by sources and/or removals by sinks of GHGs come from two sources:

- Leakages caused by fugitive methane emissions during coal production in coal mines;
- Leakages related to electricity consumption from the grid of Ukraine during coal production in the mine.

In the baseline scenario coal production by mining method is implemented (underground coal mines), while *fugitive emissions of coal mine methane* appear. In the project scenario, additional amount of thermal coal is extracted, using wet method of rock mass beneficiation of the waste heap, which otherwise would be burned. Therefore, coal produced by the project activity substitutes the coal would have been otherwise mined in the baseline scenario that would lead to the fugitive methane emissions. Thus, coal extraction from the waste heap will cause methane emissions.

page 32

³⁸ THE EFFECTIVE METHOD OF ELECTRICITY CONSUMPTION CONTROL AT COAL MINES Gryaduschy B.A., Doctor of Technical Sciences, DonUGI, Lisovoy G.N., Myalkovsky V.I., ChehlatyN.A., Candidates scientific degree of Technical science, NIIGM named after Fedorov M. M., Donetsk, Ukraine

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

Joint Implementation Supervisory Committee

UNFCCC

As reliable and accurate national data on fugitive methane emissions associated with the production of coal are available, project participants used this data to calculate the amount of fugitive CH_4 .

This leakage is measurable: through the same procedure as used in 2006 IPCC Guidelines³⁹ (See Volume 2, Chapter 4, p. 4-11) and also used in CDM approved methodology ACM009⁴⁰ Version 03.2 (p. 8). Data on the amount of coal extracted from the waste heap which is monitored directly are multiplied by the multi-project carbon emission factor for fugitive methane emissions from coal mining (which is sourced from the relevant national study – National Inventory Report⁴¹ of Ukraine under the Kyoto Protocol) and conversion coefficients. It is important to mention that IPCC and relevant National Inventories take into account raw amount of coal that is being mined in these calculations whereas in the PDD coal extracted from the waste heaps is high quality coal concentrate. Therefore, approach taken in the PDD is conservative as in coal mining more ROW coal should be mined causing more fugitive methane emissions to produce equivalent amount of high quality coal concentrate.

Electricity consumption and related with this greenhouse gas emissions during waste heap dismantling will be included in the calculation of the project emissions. <u>Carbon dioxide gas emissions as a result of electricity</u> <u>consumption</u>, during coal mining in the amount that equals to the project amount of coal, is leakage that can be taken into account on the basis of State Statistics Committee⁴² about the specific electricity consumption during coal production in the mines of Ukraine in the relevant year. Data in this link indicates that the specific level of electricity consumption during coal mining is higher than the specific electricity consumption from grid in the project scenario. Leakages as a result of consumption of other types of energy carriers during coal production in the mines are insignificant in comparison to the leakages as a result of electricity consumption⁴³, so in this respect, and for reasons of conservatism, we will take them equal to zero.

This leakage is directly attributable to the JI project activity according to the following assumption: the coal produced by the project activity from the waste heap will substitute the coal produced by underground mines of the region in the baseline scenario. This assumption is explained by the fact that commercial output (coal), connected with fewer GHG emissions during production, will come on steam coal market and will substitute commercial output in the baseline scenario that is characterized by higher GHG emissions during its production. The project activity cannot influence the general demand for coal on the energy market. In the baseline scenario demand for coal will stay the same and will be met by the traditional source – underground mines of the region. This methodological approach is very common and is applied in all renewable energy projects (substitution of grid electricity with renewable-source electricity, for example, project UA1000256 Construction of Wind Park Novoazovskiy), projects in cement sector (e.g. JI0144, on slag usage and switch from wet to semi-dry process at "Volyn-Cement" OJSC⁴⁴), projects in metallurgy sector (e.g. UA1000181 on construction of arc furnace steelmaking plant "Electrostal" at Kurakhovo, Donetsk Region⁴⁵) and others.

These leakages are significant and will be included in the calculation of the project emission reductions under

Technical science, NIIGM named after Fedorov M. M., Donetsk, Ukraine <u>www.mishor. esco.co. ua/2005/Thesis/10. doc</u> ⁴⁴ <u>http://ji.unfccc.int/JI_Projects/DB/P1QYRYMBQCEQOT0HOQM60MBQ0HXNYU/Determination/Bureau%20V</u> <u>eritas%20Certification1266348915.6/viewDeterminationReport.html</u>

⁴⁵ http://ji.unfccc.int/JIITLProject/DB/4THB9WT0PK6F721UQA5H6PTHZEXT4C/details

³⁹ <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf</u>

⁴⁰ http://cdm.unfccc.int/UserManagement/FileStorage/K4P3YG4TNQ5ECFNA8MBK2QSMR6HTEM

⁴¹ http://unfccc.int/national reports/annex i ghg inventories/national inventories submissions/items/5888.php

⁴² <u>http://www.ukrstat.gov.ua/</u>

⁴³ THE EFFECTIVE METHOD OF ELECTRICITY CONSUMPTION CONTROL AT COAL MINES Gryaduschy B.A., Doctor of Technical Sciences, DonUGI, Lisovoy G.N., Myalkovsky V.I., ChehlatyN.A., Candidates scientific degree of

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

the project. Procedure for ex ante estimate and quantification of this source of leakage is provided below: Table 18 – List of constants used in the calculations of leakage

Data / Parameter	Data unit	Description	Data Source	Value
GWP _{CH4}	tCO2e/ t CH4	Global warming potential of methane	IPCC Second Assessment Report ⁴⁶	21
<i>Рсн4</i>	t/m ³	Methane density	2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Chapter 4: Fugitive Emissions, Page 4.12^{47} . Value was converted from converted Gg·m ⁻³ to t/m ³ . IPCC default value under standard physical conditions (t=293,15 K; p=101,2325 kPa)	0.00067
EF _{CH 4} ,CM	m ³ /t	Fugitive methane emissions factor during coal mines operation	National Inventory Report of Ukraine 1990-2010, p. 90	25.67
N ^e coal,y	MWh/t	Average consumption of electricity per tonne of extracted coal in Ukraine in year y	State Statistics Service of Ukraine. Fuel and energy resources of Ukraine, Statistical Yearbook ^{48,49,50} p. 300, Kyiv 2009 (See Annex 5)	$\begin{array}{r} 2008-0.0878\\ 2009-0.0905\\ 2010-0.0926\\ 2011-0.0842\\ 2012-0.0842\end{array}$
EF grid , y	tCO ₂ /MWh	Specific indirect carbon dioxide emissions from electricity consumption by 2 nd class electricity consumers in accordance with Procedure for determining the class of consumers, adopted by Resolution of National Electricity Regulatory Commission of Ukraine	National Environmental Investment Agency Orders: No.62 dated $15.04.2011^{51}$, No.63 dated $15.04.2011^{52}$ No.43 dated $28.03.2011^{53}$ No.75 dated $12.05.2011^{54}$	2008 – 1.219 2009 – 1.237 2010 – 1.225 2011 – 1.227 2012 – 1.227

UNFCCC

page 34

 ⁴⁶ <u>http://www.ipcc.ch/ipccreports/sar/wg_l/ipcc_sar_wg_I_full_report.pdf</u>
 ⁴⁷ <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf</u>

⁴⁸ <u>http://www.ukrstat.gov.ua/druk/katalog/m-e_res/Pal_en_res.zip</u>

⁴⁹ http://www.ukrstat.gov.ua/druk/katalog/kat_u/2012/sz_per_2010.zip

⁵⁰ http://www.ukrstat.gov.ua/druk/katalog/kat_u/2012/sz_per_2010.zip

⁵¹ http://www.neia.gov.ua/nature/doccatalog/document?id=127171

⁵² http://www.neia.gov.ua/nature/doccatalog/document?id=127172

 ⁵³ <u>http://www.neia.gov.ua/nature/doccatalog/document?id=126006</u>
 <u>http://www.neia.gov.ua/nature/doccatalog/document?id=127498</u>

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

Joint Implementation Supervisory Committee

on 13 of August 1998	
No.1052 in period y	

Leakages in period *y* are calculated as follows:

$$LE_{y} = LE_{CH_{4},y} + LE_{EL,y}$$
(Eq

where:

 LE_y - Leakages as a result from the project implementation in period y, tCO₂e;

 $LE_{CH_{4,y}}$ - Leakages related to the fugitive methane emissions during the operation of mines in period y, tCO₂e;

 $LE_{EL,y}$ - Leakages as a result of electricity consumption from energy grid during coal mining in period y, tCO₂e.

Leakages related to the fugitive methane emissions during the operation of mines in period *y* are calculated as follows:

$$LE_{CH_{4},y} = -FC_{BE,Coal_{y}} \cdot EF_{CH_{4},CM} \cdot \rho_{CH_{4}} \cdot GWP_{CH_{4}}$$
(Equation 5),

where:

 $FC_{BE,Coal,y}$ - Amount of coal that would be mined in the baseline scenario and consumed in the
energy sector for energy production in the relevant period y, t; $EF_{CH_4,CM}$ - Fugitive methane emissions factor during coal mining, m³/t; ρ_{CH4} - Methane density⁵⁵, t/m³; GWP_{CH4} - Global warming potential of methane, tCO₂e/tCH₄.

Amount of coal that would be mined in the baseline scenario and combusted for energy production is calculated according to equation (3) of this PDD.

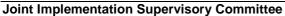
Leakages related to electricity consumption from energy grid during coal mining in period *y* are calculated as follows:

$$LE_{EL,y} = -(FC_{BE,Coal,y} \cdot N^{e}_{coal,y} \cdot EF_{grid,y})$$
(Equation 6),

where:

 $FC_{BE,coal,y}$ Amount of coal that would be mined in the baseline scenario and consumed in the
energy sector for energy production in the relevant period y, t; $N^{E}_{coal,y}$ -Average consumption of electricity per tonne of extracted coal in Ukraine in period y,
MWh/t; $EF_{grid,y}$ -Specific indirect carbon dioxide emissions from electricity consumption by 2^{nd} class
electricity consumers in accordance with Procedure for determining the class of consumers,
adopted by Resolution of National Electricity Regulatory Commission of Ukraine on 13 of
August 1998 No.1052 in period y, tCO₂/MWh.

The table below demonstrates all sources of GHG emissions under the project:


page 35

⁵⁵ GOST 31369-2008 <u>DIN ISO 6976 (1995): Density of methane under standard conditions of temperature (293.15 °K)</u> and pressure (1013 mbar).

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

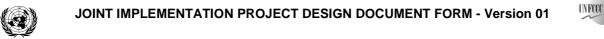
page 36

io	Source	Gas	Included/Excluded	Justification/Explanation
Baseline scenario	Waste heap burning	CO ₂	Included	Main emission source
	Coal combustion	CO ₂	Excluded	This coal is extracted from the waste heaps. This emission source is equal to the one present in the baseline scenario and, therefore is excluded from consideration.
Project scenario	Coal combustion	CO ₂	Excluded	This coal is extracted from the waste heaps. This emission source is equal to the one present in the baseline scenario and, therefore is excluded from consideration.
	Electricity consumption from the grid as a result of project activity	CO ₂	Included	Main emission source
	Burning diesel fuel by trucks as a result of project activity	CO ₂	Included	Main emission source
Leakage	Leakages related to the fugitive methane emissions during the operation of mines	CH ₄	Included	These emissions are attributable to baseline scenario, which provides fugitive methane emissions as a result of coal production by coal mining
	Leakages as a result of electricity consumption from the grid at coal production in mines	CO ₂	Included	These emissions are attributable to baseline scenario, which provides coal production in coal mines
	Consumption of other types of energy carriers during mine operating	CO ₂	Excluded	These leakages are not significant, but also for reasons of conservatism, they are excluded from consideration.

Table 19 – Demonstration of emission sources

Baseline scenario:

The baseline scenario is the continuation of the existing situation. Coal is produced by the underground mines and is used for energy generation. Waste heaps are often self-heating and burning that causes CO_2 emissions into the atmosphere. Emission sources in the baseline that are included into the project boundary are:


• CO₂ emissions related to waste heap combustion.

Project scenario:

Project scenario provides GHG emissions from combustion of diesel fuel by transport operating in the project activity and from electricity consumption by technological equipment.

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

 \sim

Emission sources in the project scenario are:

- Project emissions as a result of consumption of diesel fuel by project activity in period y;
- Project emissions as a result of electricity consumption from the grid by project activity in period *y*.

Leakage:

The proposed project provides availability of leakages, related to the operation of coal mines. Emission sources are:

- Fugitive CMM emissions during operation of coal mines;
- Indirect CO₂ emissions related to electricity consumption during the operation of coal mines.

For demonstration of the boundaries of the project and emission sources in the baseline and project scenarios there are following figures:

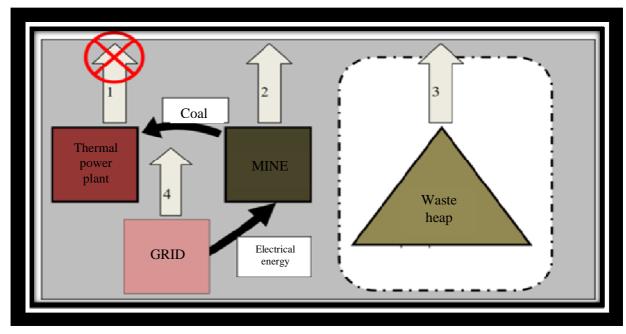


Figure 9 – Baseline boundaries of the project

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 37

page 38

Joint Implementation Supervisory Committee

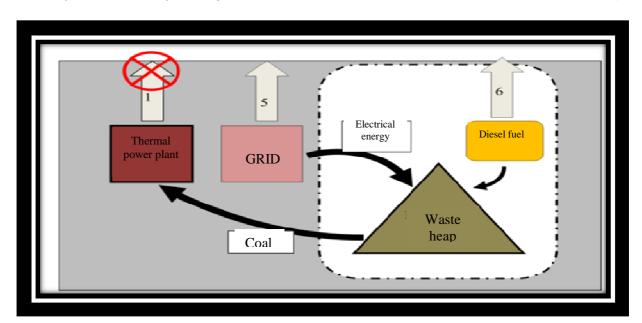
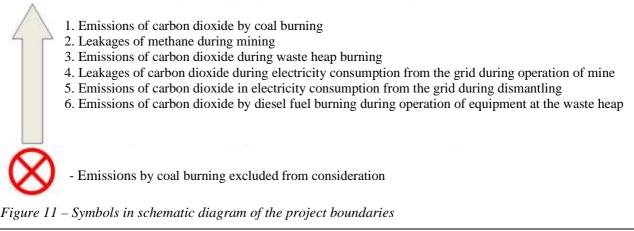



Figure 10 – Project boundaries of the project

Sources of greenhouse gas emissions on the schemes

B.4. Further <u>baseline</u> information, including the date of <u>baseline</u> setting and the names of the persons/entities setting the <u>baseline</u>:

Date of baseline setting: 07/09/2012

Name of person/entity setting the baseline:

"RS-ARPI" LLC is initiator of this project and developer of the project design documentation simultaneously. This company supports processes of receiving the Letter of Endorsement from SEIA, determination, registration, receiving the Letter Approval from SEIA and verification of achieved emission reductions by the project "Recultivation of waste heaps in Donetsk region in order to reduce greenhouse gas emissions into the atmosphere". "RS-ARPI" LLC is a project participant.

Contact details:

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

chiefy

Joint Implementation Supervisory Committee

Company name:"RS-ARPI" LLCCompany address:83001, Donetsk, Artem Street, b. 71.Contact person:Zhdanov Serhiy PetrovychTitle:DirectorPhone:+38 (099) 410-89-89Fax:E-mail:rs-arpi.dok@gmail.com

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 39

UNFCCC

Joint Implementation Supervisory Committee

page 40

SECTION C. Duration of the project/crediting period

C.1. Starting date of the project:

Starting date of the project is February 02, 2007 – date when single source contract on the modernization of concentrating mill "Vuhlehirska" and on further enrichment of the rock mass, using fixed assets of this enterprise was concluded.

C.2. Expected operational lifetime of the project:

Expected operational lifetime of the project is estimated to last until 31/12/2015. Thus expected operational lifetime of the project will be 8 years or 96 months.

C.3. Length of the <u>crediting period</u>:

Start of the crediting period: 01/01/2008.

End of the crediting period: 31/12/2012.

Crediting period for issuance of ERUs starts only after the beginning of 2008 and does not exceed the operational lifetime of the project.

Duration of the crediting period: 5 years or 60 months.

Starting date of generating emission reductions: 01/01/2008 – beginning of implementation of measures for recultivation of the waste heaps (this date is shown in the order about the beginning of works on recultivation of waste heaps).

Emission reductions generated after the crediting period may be used in accordance with an appropriate mechanism under the UNFCCC. The crediting period can extend subject to the approval by the Host Party.

page 41

SECTION D. Monitoring plan

D.1. Description of monitoring plan chosen:

Description and explanation of the monitoring plan chosen a step-wise approach is used:

Step 1. Indication and description of the approach chosen regarding monitoring

Option (a) provided by the document "Guidelines for users of the Joint Implementation project design document form" Version ⁵⁶ 04: JI specific approach is used for this project and therefore will be used for establishment of a monitoring plan. Among other, monitoring plan includes the following:

- Collecting and archiving all relevant data necessary for estimating or measuring anthropogenic emissions by sources of GHGs occurring within the project boundary during the crediting period;
- Collecting and archiving all relevant data necessary for determining the baseline of anthropogenic emissions by sources of GHGs within the project boundaries during the crediting period;
- Identification of all potential sources of, and the collection and archiving of data on increased anthropogenic emissions by sources of GHGs outside the project boundaries which are significant and reasonably attributable to the project during the crediting period;
- Quality assurance and control procedures for the monitoring process;
- Procedures for the periodic calculation of the reductions of anthropogenic emissions by sources by the proposed JI project, and for leakage effects, if any.

Step 2. Application of the approach chosen

Key factors that affect emissions level under the project and under the baseline scenario were taken into account and described in detail in section B.1. The project activity will include monitoring of greenhouse gas emissions in the project and baseline scenarios. Detailed information on emission sources of the project and baseline is presented hereunder. The data relating to the monitoring of GHG emission reductions will be archived and kept at least 2 years after last transfer of ERUs to the buyer.

⁵⁶ <u>http://ji.unfccc.int/Ref/Documents/Guidelines.pdf</u>

page 42

Baseline scenario:

The basic scenario is the continuation of the existing situation. Coal is extracted in coal mines and used for energy production. Waste heaps are often prone to burning and self-heating, which results in CO_2 emissions into the atmosphere. The sources of emissions in the baseline scenario that are included in the project boundaries are:

• Carbon dioxide emissions related to waste heap burning.

Project scenario:

Project scenario provides GHG emissions from diesel fuel combustion by transport operating under the project activity and from electricity consumption by technological equipment.

Emission sources in the project scenario are:

- Project emissions because of diesel fuel consumption by project activity in period y;
- Project emissions due to electricity consumption from the grid by project activity in period *y*.

Leakage:

The proposed project provides availability of leakages related to the operation of coal mines. Sources of leakages are:

- Fugitive CMM emissions during the operation of coal mines;
- Indirect CO₂ emissions related to electricity consumption during the operation of coal mines.

Carbon dioxide emissions as a result of combustion of thermal coal are calculated as emissions from stationary burnt coal in the amount equivalent to amount of coal extracted from heaps in the project scenario. This emission source can also be found in the project scenario and it is assumed that emissions are equivalent in the project and in the baseline scenarios. Therefore, this emission source is not considered in both cases.

Emission reduction as a result of the project implementation will be ensured by three main sources:

- Liquidation sources of carbon dioxide emissions as a result of burning of waste heaps by extracting thermal coal from it;
- Reducing the amount of fugitive methane emissions related to mine production by replacing the amount of such coal to the coal that is
 produced from the waste heaps as a result of the project activity;
- Reduction of electricity consumption from the grid during recultivation of the waste heaps in comparison with energy consumption during coal extraction in the mine.

page 43

During any period of monitoring data on the following parameters should be collected and registered:

1. Amount of electricity that was consumed by the project activity in the relevant period *y*.

For measurement of this parameter data of the company commercial is used. To confirm this parameter are used monthly acceptance certificates from the company-supplier of electricity. This parameter is recorded by the help of special energy meters. Meters are located directly behind the current transformers at the industrial site of concentrating mill. These meters record all electricity consumed within the project boundaries, as the access to the power grid is implemented through it only. Indications are used for commercial calculations with the company-supplier of electricity. Regular cross-checks with the company-supplier of electricity are carried out. The monthly and annual reports are based on these data.

2. Amount of diesel fuel, consumed in the relevant period as a result of the project activity in the relevant period y.

For the metering of this parameter the commercial data of the company is used. Completion certificate from the company-contractor are used in order to confirm the amount of fuel consumed. Company-contractor performs works on the waste heap dismantling, transporting rock mass to the concentrating mill and other transportation services required by the project activity. Consumption of diesel fuel occurs only by trucks, excavators and bulldozers under the project, but if the rest will be used by other types of transport that consume diesel fuel this consumption will also be taken into account. Amount of diesel fuel consumed in the accounting records is given in litres, so conversion of measuring unit for the amount of this fuel is implemented for monitoring purposes into tonnes using the density of 0.85 kg/l ⁵⁷. Regular cross-checks between the project owner and the company-supplier are carried out. The monthly and annual reports are based on these data.

3. Amount of enriched coal of energy class, extracted from the waste heaps as a result of the project activity in the relevant period y.

This parameter is tracked basing on internal company documents. Monitoring of the amount of enriched coal is implemented according to acceptance certificates of shipped coal products. Only that products that are shipped to a customer, is taken into account and related to the project activity to calculate GHG emission reductions. Weighing is implemented at the industrial site of central concentrating mill "Vuhlehirska" using special automobile and railway scales. Regular cross-checks with buyers of coal products are performed to provide complete control under this parameter. At the end of the month monthly technical report is prepared, annual reports based on these data are prepared. Information on the volumes of ROM coal production is stored in paper and electronic forms.

4. Quality of enriched coal of energy class, extracted from the waste heaps as a result of the project activity in the relevant period y.

⁵⁷ GOST 3868-99 Diesel fuel. Specifications. The density of 0.85 kg/l is taken as average value between the two types of diesel fuel: summer and winter (data from Table 1). Values are converted from kg/m³ into kg/l.

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 44

Key indicators of the quality of coal products, obtained as a result of enriching rock mass of the waste heaps, are indicators of ash and moisture. Under the project monitoring of ash and moisture of coal products is performed according to the results of laboratory studies. Coal Chemistry Laboratory of "CCM "Vuhlehirska" CJSC provides certificates of quality for produced coal on a monthly basis. Clear and transparent information on the number of coal party that is shipped indicators of ash and moisture are provided in the laboratory conclusions. Coal Chemistry Laboratory of "CCM "Vuhlehirska" CJSC meets the criteria of certification and is certified for measurements conducting in the field of spreading state metrological control. Studies of samples of extracted coal may be performed at the request of the consumer on the contrary to the internal regulations. Results of laboratory studies are stored in paper and electronic forms. Quantitative indicators of coal ash and water content are determined in accordance with normative documents: ISO 4096-2002, GOST 27314-91, GOST11022-95 and others. If the data on the average ash content and average water content of enriched coal, extracted from the heap in period y, is not available for the developer, or is irregular with a high level of uncertainty, they are taken equal to the corresponding of nationwide parameters.

More detailed information on the parameters used in the baseline scenario presented in Annex 2 of this PDD.

Data and parameters that were not monitored during the whole crediting period, are determined only once (and remain constant during the whole crediting period) and are available at the stage of determination of the PDD, are listed in the table below:

Data / Parameter	Data unit	Description	Data Source	Value
GWP _{CH4}	tCO2e/ t CH4	Global warming potential of methane	IPCC Second Assessment Report ⁵⁸	21
<i>₽сн</i> 4	t/m ³	Methane density	2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Chapter 4: Fugitive Emissions, Page 4.12^{59} . Value was converted from converted Gg·m ⁻³ to t/m ³ .IPCC default value under standard physical conditions (t=293,15 K; p=101,2325 kPa)	0.00067

Table 20 – List of constants used in calculations of emissions

⁵⁸ <u>http://www.ipcc.ch/ipccreports/sar/wg_I/ipcc_sar_wg_I_full_report.pdf</u> Page 22.

⁵⁹ http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2 Volume2/V2 4 Ch4 Fugitive Emissions.pdf

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page	45

P _{WHB}	dimensionless unit	Correction factor, determining the probability of spontaneous combustion of the waste heap	Report on the fire risk of Donetsk Region's waste heaps, Scientific Research Institute "Respirator", Donetsk, 2012	0.83
EF _{CH 4} ,CM	m ³ /t	Fugitive methane emissions factor during coal mines operation	National Inventory Report of Ukraine 1990-2010, p. 90	25.67
NCV _{Coal,y}	TJ/kt	Net calorific value of coal in year y	National Inventory Report of Ukraine ⁶⁰ 1990-2010 p. 456, 462, 468 (1.A.1.a – Public Electricity and Heat Production)	$\begin{array}{c} 2008-21.5\\ 2009-21.8\\ 2010-21.6\\ 2011-21.6\\ 2012-21.6\\ \end{array}$
OXID _{Coal,y}	dimensionless unit	Carbon oxidation factor of coal in year y	National Inventory Report of Ukraine 1990-2010 p. 459, 465, 471 (1.A.1.a – Public Electricity and Heat Production)	$\begin{array}{c} 2008 - 0.963\\ 2009 - 0.963\\ 2010 - 0.962\\ 2011 - 0.962\\ 2012 - 0.962\\ \end{array}$
$k^{\scriptscriptstyle C}_{\scriptscriptstyle Coal,y}$	t C/TJ	Carbon content of coal in year y	National Inventory Report of Ukraine 1990-2010 p. 458, 464, 470 (1.A.1.a – Public Electricity and Heat Production)	$\begin{array}{r} 2008-25.95\\ 2009-25.97\\ 2010-25.99\\ 2011-25.99\\ 2012-25.99\end{array}$
$A_{coal,y}$	%	Average ash content of thermal coal extracted in Donetsk region, Ukraine	Reference book of quality indicators, volume of coal production and beneficiation products in 2008-2010, Ministry of Coal Industry of Ukraine, State Committee of Ukraine, Luhansk 2010 (see Annex 4). Indicators for thermal coal.	$\begin{array}{r} 2008-38.80\\ 2009-39.50\\ 2010-38.70\\ 2011-38.70\\ 2012-38.70\\ \end{array}$
W _{coal,y}	%	Average water content of thermal coal extracted in Donetsk region, Ukraine	Reference book of quality indicators, volume of coal production and beneficiation products in 2008-2010, Ministry of Coal Industry of Ukraine, State Committee of Ukraine, Luhansk 2010 (see Annex 4). Indicators for thermal coal.	$\begin{array}{c} 2008-6.9\\ 2009-6.6\\ 2010-6.6\\ 2011-6.6\\ 2012-6.6\end{array}$

⁶⁰ <u>http://unfccc.int/files/national_reports/annex_i_ghg_inventories/national_inventories_submissions/application/zip/ukr-2012-nir-13apr.zip</u> This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 46

N ^e coal ,y	MWh/t	Average consumption of electricity per tonne of extracted coal in Ukraine in year y	State Statistics Service of Ukraine. Fuel and energy resources of Ukraine, Statistical Yearbook, Kyiv 2009 (see Annex 5)	$\begin{array}{r} 2008-0.0878\\ 2009-0.0905\\ 2010-0.0926\\ 2011-0.0842\\ 2012-0.0842 \end{array}$
NCV diesel , y	TJ/kt	Net calorific value of diesel fuel in year y	National Inventory Report of Ukraine 1990-2010 p. 473 ⁶¹ ,476, 479 (value for mobile combustion, off-road transportation)	$\begin{array}{r} 2008-42.2\\ 2009-42.3\\ 2010-42.5\\ 2011-42.5\\ 2012-42.5\end{array}$
OXID diesel , y	ratio	Carbon oxidation factor of diesel fuel in period <i>y</i>	National Inventory Report of Ukraine 1990-2010 p. 475, 478, 481 (value for mobile combustion, off-road transportation)	$\begin{array}{c} 2008-0.99\\ 2009-0.99\\ 2010-0.99\\ 2011-0.99\\ 2012-0.99\end{array}$
$k_{diesel,y}^{C}$	t C/TJ	Carbon content of diesel fuel in period y	National Inventory Report of Ukraine 1990-2010 p. 475, 478, 481 (value for mobile combustion, off-road transportation)	$\begin{array}{c} 2008-20.20\\ 2009-20.20\\ 2010-20.20\\ 2011-20.20\\ 2012-20.20\\ \end{array}$
EF grid , y	tCO ₂ /MWh	Specific indirect carbon dioxide emissions from electricity consumption by 2 nd class electricity consumers in accordance with Procedure for determining the class of consumers.	National Environmental Investment Agency Orders: No. 62 dated 15.04.2011 for 2008 No. 63 dated 15.04.2011 for 2009 No. 43 dated 28.03.2011 for 2010 No. 75 dated 12.05.2011 for 2011 (2012)	$\begin{array}{c} 2008-1.219\\ 2009-1.237\\ 2010-1.225\\ 2011-1.227\\ 2012-1.227\end{array}$

The data and parameters that are not monitored throughout the crediting period but are determined only once (and thus remain fixed throughout the crediting period), and that are available already at the stage of determination.

⁶¹ <u>http://unfccc.int/files/national_reports/annex_i_ghg_inventories/national_inventories_submissions/application/zip/ukr-2012-nir-13apr.zip</u> This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 47

All parameters taken for calculations of GHG emission reductions under the project, and sources of which are National Inventory Report of Ukraine 1990-2010, as well as data of State Statistics Service of Ukraine and DFP of Ukraine (SEIA) publication of the Intergovernmental Panel on Climate Change and studies on fire hazard of waste heaps, held by Scientific Research Institute "Respirator", can be updated in case of publication of new relevant documents. If data for the current period are not available, the last available data are taken into calculation of GHG emission reductions.

The data and parameters that are monitored throughout the crediting period:

- $EC_{PJ,y}$ Amount of electricity that was consumed by the project activity in the relevant period y;
- $FC_{PJ,Diesel,y}$ Amount of diesel fuel that was consumed by transport as a result of the project activity in the relevant period y;
- *FR Coal y* Amount of enriched coal of energy class, extracted from the waste heaps as a result of the project activity in the relevant period *y*;
- $A_{enrich,y}$ Average ash content of enriched coal extracted from the waste heaps in the relevant period y;
- $W_{enrich,y}$ Average water content of enriched coal extracted from the waste heaps in the relevant period in the relevant period y.

Setup of measurement installation

Measurement of certain parameters that are to be monitored in this project goes as follows:

- 1. Amount of electricity consumed by the project activity is measured using the special meters, which are multifunction devices for measurement of electric energy. Electricity meter runs regular calibration in accordance with the internal regulations of the Host party. For the calibration of meters representatives of the State Metrology Service of Ukraine are involved.
- 2. Amount of enriched coal of energy class, extracted from the waste heap by the project activity is measured by special automobile and railway scales. All scales are under the control of the relevant persons who are responsible for their functional status. For the calibration of scales representatives of the State Metrology Service of Ukraine are involved. Any changes, substitution or verify the functionality of all scales are recorded in the technical passports of these devices.
- 3. Amount of diesel fuel, which was consumed by transport by the project activity, will be confirmed by completion certificates from company-contractor. This document provides information on the volumes of consumed diesel fuel, details of the parties and seals. Reliability and transparency of data is due to the fact that completion certificates are provided by the third disinterested party.

page 48

4. Indicators of ash and water content of enriched coal are determined by independent laboratory that analyzes samples of the extracted coal, and presents the results of the analysis in certificates of product quality. Buyer of coal products has free access to this information. Procedures for conducting studies meet the following regulations: ISO 4096-2002, GOST 27314-91, GOST11022-95 and others.

Measuring devices

All measuring devices operating within the project activity will undergo regular periodic calibration procedures according to the characteristics of their passport, and according to the technical regulations of the Host Party. Appointed person will be responsible for controlling and serviceability of measuring devices (see Section D.3). Representatives of the State Metrologic System of Ukraine will be involved for calibration of measuring devices.

For measuring electricity consumption different multifunctional electric energy meters are used. Thay take into account all electricity consumed within the project activity. According to the passport data of electricity meters interval between calibrations is 6 years. More detailed information on conducting calibration of meters will be given in the monitoring report. Types of meters that register electricity consumption under the project are presented below:

- 1. Electricity meter "LZQM 321.02.534";
- 2. Electricity meter "NIK 2303 ARP1T";
- 3. Electricity meter "NIK 2303 ARK1T".

For measuring the amount of shipped thermal coal the following scales are used:

- 1. Railway scales "VET-150-C";
- 2. Railway scales "VET-150";
- 3. Railway scales "VVET-150";
- 4. Automobile scales "VET-60A-18".

All scales used for weighing coal products undergo regular calibration with periodicity of 1 year according to the internal regulations of the Host party and technical characteristics of devices.

Archiving, data storage and record handling procedure

page 49

Documents and reports on the data that are monitored will be archived and stored by the project participants. The following documents will be stored: primary documents for the accounting of monitored parameters in paper form; intermediate reports, orders and other monitoring documents in paper and electronic form; documents on measurement devices in paper and electronic form. These documents and other data monitored and required for determination and verification, as well as any other data that are to be monitored and are necessary for verification must be kept for two years after the last transfer of ERUs to the buyer. If expected data for monitoring concerning the production of coal is not available (that is used for calculating baseline emissions and leakages), they will not be taken into account and emission reductions will not be included. If there are no data of parameters used to calculate project emissions: consumption of electricity or diesel fuel, average specific data on consumption for the previous periods will be used. This is a conservative.

Training of monitoring personnel

Training on safety issues is mandatory and must be provided to all personnel of the project as required by local regulations. Procedure for safety trainings includes the scope of the trainings, training intervals, forms of training, knowledge checks etc. The project host management will maintain records for such trainings and periodic knowledge check-ups.

Activities that are directly related to the monitoring do not require specific training other than provided by the professional education. Thus, personnel, responsible for monitoring, will receive training on monitoring procedures and requirements.

Procedures identified for corrective actions in order to provide for more accurate future monitoring and reporting

In cases if any errors, fraud, inconsistencies or situations when monitoring data are unavailable will be identified during the monitoring process special commission will appointed by project host management that will conduct a review of such case and issue an order that must also include provisions for necessary corrective actions to be implemented that will ensure such situations are avoided in future.

The project host management of the company, where the project is implemented, has to establish a communication channel that will make it possible to submit suggestions, improvement proposals and project ideas for more accurate future monitoring for every person involved in the monitoring activities. All communications will be delivered to the project host management who is required to review these communications and in case it is found appropriate implement necessary corrective actions and improvements. "RS-ARPI" LLC will conduct periodic review of the monitoring plan and procedures and if necessary will propose changes to improve control of certain indicators.

Procedures that will be implemented if expected data from any sources are not available

page 50

For data and parameters, monitoring of which is not made during the whole crediting period, and the values are determined only once (and remain unchanged during the whole crediting period) and are available or unavailable at the stage of determination of the PDD, the values indicated in the PDD are used. If updated data are not available, last publicly available actual values are used. If any data are not available for calculations GHG emissions data of the previous period are used.

For data and parameters, which are monitored during the whole crediting period, standard procedures in this sector for each data type are used. For example cross-checking with suppliers, receiving estimated values, averaging etc. In each case, changing the method of receiving data will be recorded and displayed in the monitoring report.

Emergency preparedness for cases where emergencies can cause unintended emissions

During operation of the project it is impossible to predict all factors and emergency situations that can cause unintended GHG emissions. Safe operation of equipment and personnel is ensured by systematic training on security. Procedures for dealing with general emergencies such as fire, major malfunctions etc. are developed as part of the mandatory business regulations and are in accordance with local requirements.

Compliance with the standard procedures used in the relevant field.

Used monitoring procedure corresponds to the standard procedures for projects of this type and common practice in the field. The monitoring approach in this project is fully consistent with the standards in the field and includes monitoring of the amount of coal, extracted from the waste heap, the amount of fuel, consumed by the project activity, and the amount of electricity, consumed under the project. Additional monitoring parameters (ash and water content of coal is removed from the waste heap, emission factors, etc.) serve to improve the accuracy of monitoring and correspond to the applied approach to determining the baseline and monitoring in the project.

D.1.1. Option 1 – <u>Monitoring</u> of the emissions in the <u>project</u> scenario and the <u>baseline</u> scenario:

This section is left blank on purpose.

	D.1.1.1. Data to be collected in order to monitor emissions from the project, and how these data will be archived:										
ID	Parameters	Source of data	Data unit	Measu	Recording	Proportion of	How will	Comment			
number				red	frequency	data to be	the data be				
(Please				(m),		monitored	archived?				
use				calcula			(electronic/				
numbers				ted (c),			paper)				
to ease				estima							

page 51

cross- referenci				ted (e)				
ng to D.2.)								
P-1	<i>EC</i> $_{PJ,y}$ - Amount of electricity that was consumed by the project activity in the relevant period <i>y</i>	Acceptance certificates of consumed electricity. Indications of electricity meters	MWh	m/c	Monthly	100%	Electronic and paper	Data will be archived during 2 years after the last transfer of ERUs to the buyer
P-2	<i>FC</i> $_{PJ,Diesel,y}$ - Amount of diesel fuel that was consumed by transport as a result of the project activity in the relevant period y	Company records	t	С	Monthly	100%	Electronic and paper	Data will be archived during two years after the last transfer of ERUs to the buyer
P-3	$EF_{grid,y}$ - Specific indirect carbon dioxide emissions from electricity consumption by electricity consumers, related to the relevant period y	See Section D.1.	tCO ₂ /MW h	e	Fixed ex- ante	100%	Electronic and paper	Last updated specific data available at the time of determination, verification
P-4	$NCV_{Diesel,y}$ - Net calorific value of diesel fuel in period y	National Inventory Report of Ukraine 1990-2010 (value for mobile combustion, off- road transportation)	TJ/kt	e	Fixed ex- ante	100%	Electronic and paper	Last updated specific data available at the time of determination, verification
P-5	<i>OXID</i> _{Diesel,y} - Carbon oxidation factor of	National Inventory Report of Ukraine 1990-2010 (value	ratio	e	Fixed ex- ante	100%	Electronic and paper	Last updated specific data available at the

page 52

	diesel fuel in period y	for mobile combustion, off- road transportation)						time of determination, verification
P-6	$k_{Diesel,y}^{C}$ - Carbon content of diesel fuel in period y	National Inventory Report of Ukraine 1990-2010 (value for mobile combustion, off- road transportation)	t C/TJ	e	Fixed ex- ante	100%	Electronic and paper	Last updated specific data available at the time of determination, verification

D.1.1.2. Description of formulae used to estimate <u>project</u> emissions (for each gas, source etc.; emissions in units of CO₂ equivalent):

Calculation results are presented in metric tons of carbon dioxide equivalent (tCO₂e), 1 metric ton of carbon dioxide equivalent is equal to 1 metric ton of carbon dioxide (CO₂), i.e. 1 tCO₂e = 1 tCO₂.

Project GHG emissions are calculated as follows:

$$PE_{y} = PE_{EL,y} + PE_{Diesel,y},$$

where:

 PE_y , - Project emissions due to project activity in period y, tCO₂e;

 $PE_{FL,y}$ - Project emissions due to consumption of electricity from the grid by the project activity in period y, tCO₂e;

 $PE_{Diesel,y}$ - Project emissions due to consumption of diesel fuel by the project activity in period y, tCO₂e.

Project emissions due to consumption of electricity from the grid by the project activity are calculated as follows:

$$PE_{EL,y} = EC_{PJ,y} \cdot EF_{grid,y},$$
(Equation 8),

where:

 $EC_{PI,y}$ - Additional electricity consumed in period y as a result of the implementation of the project activity, MWh;

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

(Equation 7),

- Specific indirect carbon dioxide emissions from electricity consumption by 2^{nd} class electricity consumers in accordance with EF grid . v Procedure for determining the class of consumers, adopted by Resolution of National Electricity Regulatory Commission of Ukraine on 13 of August 1998 No.1052, tCO₂/MWh.

Project emissions due to consumption of diesel fuel by the project activity are calculated as follows:

$$PE_{Diesel,y} = \frac{FC_{PJ,Diesel,y}}{1000} \cdot NCV_{Diesel,y} \cdot OXID_{Diesel,y} \cdot k_{Diesel,y}^{C} \cdot \frac{44}{12},$$
 (Equation 9),

where:

- Amount of diesel fuel consumed as a result of the project activity in period y, t; $FC_{PJ,Diesel,y}$

 $OXID_{Diesel y}$ - Carbon oxidation factor of diesel fuel in period y, ratio;

$$k_{Diesei}^{C}$$

Diesel, y - Carbon content of diesel fuel in period y, t C/TJ;

 $\frac{44}{12}$ - Ration between molecular mass of CO₂ and C. Reflect oxidation of C to CO₂.

D.1.1.3. Relevant data necessary for determining the baseline of anthropogenic emissions of greenhouse gases by sources within the project boundary, and how such data will be collected and archived:

page 54

ID number (Please use numbers to ease cross- referencin g to D.2.)	Parameters	Source of data	Data unit	Measured (m), calculated (c), estimated (e)	Recording frequency	Proporti on of data to be monitore d	How will the data be archived? (electronic/ paper)	Comment
B-1	<i>FR</i> _{<i>Coal</i>, <i>y</i>} - Amount of enriched coal of energy class, extracted from the waste heaps as a result of the project activity in the relevant period y	Commercial data of the company. Weighing is implemented using special scales.	t	m/c	continuousl y	100%	Electronic and paper	Data will be archived during 2 years after the last transfer of ERUs to the buyer
B-2	$A_{enrich,y}$ - Average ash content of enriched coal extracted from the waste heaps in the relevant period y	Quality certificate of coal products. Acceptance certificates.	%	m/c	monthly	100%	Electronic and paper	Data will be archived during 2 years after the last transfer of ERUs to the buyer
B-3	$W_{enrich,y}$ - Average water content of enriched coal extracted from the waste heaps in the relevant period y	Quality certificate of coal products. Acceptance certificates.	%	m/c	monthly	100%	Electronic and paper	Data will be archived during 2 years after the last transfer of ERUs to the buyer

UNFCCC

Joint Implementation Supervisory Committee

B-4	$FC_{BE,Coal,y}$ - Amount of coal that would be mined in the baseline scenario and consumed in the energy sector for energy production in the relevant period y	Data of the company	t	с	monthly	100%	Electronic and paper	Calculated under equation "3"in Section B.1.
B-5	A _{coal,y} - Average ash content of thermal coal extracted in Donetsk region, Ukraine in period y	See Annex 4	%	e	Fixed ex- ante	100%	Electronic and paper	Statistical data Are available at the time of determination, verification data
B-6	$W_{coal,y}$ - Average ash content of thermal coal extracted in Donetsk region, Ukraine in period y	See Annex 4	%	е	Fixed ex- ante	100%	Electronic and paper	Statistical data Are available at the time of determination, verification data
B-7	$NCV_{Coal,y}$ - Net Calorific Value of coal in period y	National Inventory Report of Ukraine 1990- 2010 (1.A.1.a – Public Electricity and Heat Production)	TJ/kt	e	Fixed ex- ante	100%	Electronic and paper	Last updated specific data available at the time of determination, verification
B-8	<i>OXID</i> _{Coal,y} - Carbon oxidation factor of coal in year y	National Inventory Report of Ukraine 1990- 2010 (1.A.1.a – Public Electricity and Heat Production)	ratio	e	Fixed ex- ante	100%	Electronic and paper	Last updated specific data available at the time of determination, verification

page 56

B-9	$k_{Coal,y}^{C}$ - Carbon content	National	T C/TJ	e	Fixed ex-	100%	Electronic and	Last updated
	of coal in period y	Inventory Report			ante		paper	specific data
	or com in periody	of Ukraine 1990-						available at the
		2010 (1.A.1.a –						time of
		Public						determination,
		Electricity and						verification
		Heat Production)						
B-10		Report on the	dimension	e	Fixed ex-	100%	Electronic and	Last updated
	<i>p</i>	fire risk of	less unit		ante		paper	specific data
	p_{WHB} - Correction	Donetsk						available at the
	factor, determining the	Region's waste						time of
	probability of	heaps, Scientific						determination,
	spontaneous	Research						verification
	combustion of the	Institute						
	waste heap	"Respirator",						
		Donetsk, 2012						

D.1.1.4. Description of formulae used to estimate <u>baseline</u> emissions (for each gas, source etc.; emissions in units of CO₂ equivalent):

Calculation results are presented in metric tons of carbon dioxide equivalent (tCO₂e), 1 metric ton of carbon dioxide equivalent is equal to 1 metric ton of carbon dioxide (CO₂), i.e. 1 tCO₂e = 1 tCO₂.

Baseline emissions are calculated as follows:

 $BE_{y} = BE_{WHB,y}$

where:

 BE_y , - Baseline emissions in period y, tCO₂e;

 $BE_{WHB_{yy}}$ - Baseline emissions related to waste heap burning in period y, tCO₂e.

Baseline emissions related to waste heaps combustion are calculated as:

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

(Equation 10),

$$BE_{WHB} = \frac{FC_{BE,Coal,y}}{1000} \cdot p_{WHB} \cdot NCV_{Coal,y} \cdot OXID_{Coal,y} \cdot k_{Coal,y}^{C} \cdot \frac{44}{12},$$
(Equation 11),

where:

- Amount of coal that would be mined in the baseline scenario and consumed in the energy sector for energy production $FC_{BE,Coal,y}$ in the relevant period *y*, t; - Correction factor, determining the probability of spontaneous combustion of the waste heap, dimensionless unit; $ho_{_{\!W\!H\!B}}$ NCV_{Coal}, v - Net calorific value of coal in period y, TJ/kt; OXID_{Coal,v} - Carbon oxidation factor of coal in period y, ratio; $k_{Coal,v}^{C}$ - Carbon content of coal in period y, tC/TJ; 44 - Ration between molecular mass of CO₂ and C. Reflect oxidation of C to CO₂; 12 1/1000 - Physical transformation [t] in [kt] for calculation convenience.

Amount of coal that would be mined in the baseline scenario and burned for energy production is calculated by the formula:

$$FC_{BE,coal,y} = FR_{coal,y} \cdot \frac{\left(1 - \frac{A_{enrich,y}}{100} - \frac{W_{enrich,y}}{100}\right)}{\left(1 - \frac{A_{coal,y}}{100} - \frac{W_{coal,y}}{100}\right)}$$
(Equation 12),

where:

 $FR_{coal,y}$ Amount of enriched coal of energy class, extracted from the waste heaps as a result of the project activity in the relevant period $A_{enrich,y}$ - $A_{enrich,y}$ - $W_{enrich,y}$ - $W_{enrich,y}$ -Average water content of enriched coal of energy class, extracted from the waste heaps as a result of the project activity in periody, %;

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 57

page 58

$A_{coal,y}$	-	Average ash content of thermal coal produced in the Donetsk region of Ukraine in period y , %;
W _{coal,y}	-	Average ash content of thermal coal produced in the Donetsk region of Ukraine in period y, %;
1/100	-	Mathematical transformation into fraction, relative unit.

D. 1.2. Option 2 – Direct monitoring of emission reductions from the project (values should be consistent with those in section E.):

This section is left blank on purpose.

D.1	D.1.2.1. Data to be collected in order to monitor emission reductions from the project, and how these data will be									
archived:	archived:									
ID number (Please use numbers to ease cross-referencing to D.2.)	Parameters	Source of data	Data unit	Measured (m), calculated (c), estimated (e)	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment		

This section is left blank on purpose.

D.1.2.2. Description of formulae used to calculate emission reductions from the <u>project</u> (for each gas, source etc.; emissions/emission reductions in units of CO₂ equivalent):

This section is left blank on purpose.

D.1.3. Treatment of leakage in the monitoring plan:

This project will result in a net change in fugitive methane emissions due to the mining activities. As coal in the baseline scenario is only coming from mines it causes fugitive emissions of methane. These are calculated as standard country specific emission factor applied to the amount of

page 59

coal that is extracted from the waste heaps in the project scenario (which is equivalent to the same as the amount of coal that would be mined in the baseline scenario). Also, the project takes into account other sources which are observed in the operation of coal mines, namely, electricity consumption from the grid of Ukraine. Coal mines consume large amounts of electricity, so these emissions should be considered.

This leakage is significant and will be included in the monitoring plan and calculation of the project emission reductions.

D.1.3.1.	If applicable, please des	cribe the data a	and informa	tion that will	be collected in	order to moni	itor <u>leakage</u> ef	fects of the
project:							1	1
ID number (Please use numbers to ease cross- referencing to D.2.)	Parameters	Source of data	Data unit	Measured (m), calculated (c), estimated (e)	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment
L-1	$FR_{Coal,y}$ - Amount of enriched coal of energy class, extracted from the waste heaps as a result of the project activity in the relevant period y	Commercial data of the company. Determined by weighing on special scales	t	m/c	continuously	100%	Electronic and paper	Data will be archived during two years after the last transfer of ERUs to the buyer
L-2	$FC_{BE,Coal,y}$ - Amount of coal that would be mined in the baseline scenario and consumed in the energy sector for energy production in the relevant period y	Data of the company	t	С	monthly	100%	Electronic and paper	Calculated under equation "3"in Section B.1.
L-3	<i>GWP CH4</i> - Global warming potential of Methane	See Section D.1.	tCO ₂ e/ tCH ₄	e	Fixed ex-ante	100%	Electronic and paper	Are available at the time of determination, verification

page 60

								data
L-4	N ^e _{coal,y} - Average electricity consumption per ton of coal, produced in Ukraine in period y	See Section D.1.	MWh/t	е	Fixed ex-ante	100%	Electronic and paper	Last updated specific data available at the time of determination, verification
L-5	ρ <i>cH4</i> – Methane density under standard conditions	See Section D.1.	t/m ³	е	Fixed ex-ante	100%	Electronic and paper	Are available at the time of determination, verification data
L-6	$EF_{CH_4,CM}$ - Fugitive methane emissions factor during coal mines operation in period y	See Section D.1.	m ³ /t	e	Fixed ex-ante	100%	Electronic and paper	Last updated specific data available at the time of determination, verification
L-7	$EF_{grid,y}$ - Specific indirect carbon dioxide emissions from electricity consumption by electricity consumers in the relevant period y	See Section D.1.	tCO ₂ / MWh	е	Fixed ex-ante	100%	Electronic and paper	Last updated specific data available at the time of determination, verification

Parameters given in Sections D.1.1.1, D.1.1.2, D.1.3.1, and are determined ex-ante, are collected by using publicly available sources, which are periodically updated. Such sources are National Inventory Report of Ukraine 1990-2010, and also IPCC Guidelines.

D.1.3.2. Description of formulae used to estimate <u>leakage</u> (for each gas, source etc.; emissions in units of CO₂ equivalent):

Leakages in period *y* are calculated as follows:

$$LE_{y} = LE_{CH_{4},y} + LE_{EL,y}$$

where:

 LE_y - Leakages as a result of the project implementation in period y, tCO₂e;

 $LE_{CH_{1,y}}$ - Leakages related to fugitive emissions of methane during operation of mines in period y, tCO₂e;

 LE_{EL_y} - Leakages related to electricity consumption during operation of mines in period y, tCO₂e.

Leakages related to fugitive emissions of methane during operation of mines in period y are calculated as follows:

$$LE_{CH_{4},y} = -FC_{BE,Coal_{y}} \cdot EF_{CH_{4},CM} \cdot \rho_{CH_{4}} \cdot GWP_{CH_{4}}$$
(Equation 14),

where:

- $FC_{BE,Coal,y}$ Amount of coal that would be mined in the baseline scenario and consumed in the energy sector for energy production in the relevant period y, t;
- $EF_{CH,CM}$ Fugitive methane emissions factor during coal mining , m³/t;

 ρ_{CH4} - Methane density, t/ m³;

 GWP_{CH4} - Global warming potential of methane, tCO₂e/tCH₄.

Amount of coal that would be mined in the baseline scenario and consumed in the energy sector for energy production in the relevant period is calculated under the equation "3" of Section B.1.

Leakages related to electricity consumption from energy grid during coal mining in period *y* are calculated as follows:

$$LE_{EL,y} = -FC_{BE,Coal,y} \cdot N^{e}_{coal,y} \cdot EF_{grid,y}$$

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

(Equation 13),

(Equation 15),

page 61

page 62

where:

$FC_{BE,coal,y}$ -	Amount of coal that would be mined in the baseline scenario and consumed in the energy sector for energy production in
BE, coal, y	the relevant period y, t;
ът <i>Е</i>	Average electricity consumption per ton of coal, produced in Ukraine in period y, MWh/t;
$N^{\scriptscriptstyle E}{}_{\scriptscriptstyle coal,y}$ -	
	Specific indirect carbon dioxide emissions from electricity consumption by 2^{nd} class electricity consumers in accordance with

 $EF_{grid,y}$ - Specific indirect carbon dioxide emissions from electricity consumption by 2th class electricity consumers in accordance with Procedure for determining the class of consumers, adopted by Resolution of National Electricity Regulatory Commission of Ukraine on 13 of August 1998 No.1052 in period *y*, t CO₂/MWh.

D.1.4. Description of formulae used to estimate emission reductions for the <u>project</u> (for each gas, source etc.; emissions/emission reductions in units of CO₂ equivalent):

Annual emission reductions are calculated as follows:

$$ER_{y} = BE_{y} - PE_{y} - LE_{y}$$

where:

 ER_y – Emission reductions as a result of the project implementation in period y, tCO₂e;

 BE_y – Emissions in baseline scenario in period y, tCO₂e;

 PE_y – Project emissions as a result of the project implementation in period y, tCO₂e;

 LE_y – Leakages as a result of the project implementation in period y, tCO₂e.

D.1.5. Where applicable, in accordance with procedures as required by the <u>host Party</u>, information on the collection and archiving of information on the environmental impacts of the <u>project</u>:

Collection and archiving of the information on the environmental impacts of the project will be done based on the approved EIA in accordance with the Host Party legislation – *State Construction Standard DBN A.2.2.-1-2003: "Structure and Contents of the Environmental Impact Assessment Report (EIA) for Designing and Construction of Production Facilities, Buildings and Structures"* State Committee Of Ukraine On Construction And Architecture, 2004 (see Section F.1).

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

(Equation 16),

page 63

D.2. Quality control		e (QA) procedures undertaken for data monitored:
Data	Uncertainty level of data	Explain QA/QC procedures planned for these data, or why such procedures are not necessary.
(Indicate table and	(high/medium/low)	
ID number)		
D.1.1.1. – P-1	Low	Electricity meters are calibrated according to the procedures of the Host party. Interval of
		calibration implementation is 6 years.
	Low	These data are used in commercial activity of the company. Documentation of business
D.1.1.1. – P-2		accounting will be used - expenditure invoices and write-off certificates, as well as work
	-	completion certificates from the company-contractor.
	Low	This parameter is provided by DFP of Ukraine at the annual basis. If the value of factor is not
D.1.1.1. – P-3		available at the time of determination or verification, calculation will include the value for the
		previous year.
D.1.1.1. – P-4 - P-6	Low	The values of these parameters are taken according to the most current source – National
	Ŧ	Inventory Report of Ukraine
D.1.1.3. – B-1	Low	These data are used in commercial activity of the company. Scales are calibrated in accordance
	Low	with the procedures of the Host party. Interval of calibration implementation is 6 years.
D.1.1.3. – B-2	Low	This parameter is used in commercial activity of the company. Laboratory studies. Monthly
		monitoring
D.1.1.3. – B-3	Low	This parameter is used in commercial activity of the company. Laboratory studies. Monthly
D112 D4	T.	monitoring
D.1.1.3. – B-4	Low	This parameter is calculated according to equation (3) of this PDD
	Low	These parameters are determined in accordance with Reference book of quality indicators,
D.1.1.3. – B-5 – B-6		volume of coal production and beneficiation products in 2008-2010, Ministry of Coal Industry
	Low	of Ukraine, State Consumer Standard. This source provides clear and transparent information. The values of these parameters are taken according to the most current source – National
D.1.1.3. – B-7 – B-9	Low	Inventory Report of Ukraine
D.1.1.3. – B-10	Low	Current studies of SRI "Respirator"
D:1.1.5 D-10	Low	These data are used in commercial activity of the company. Scales are calibrated in accordance
D.1.3.1. – B-1	LUW	with the procedures of the Host party. Interval of calibration implementation is 6 years.
	Low	These parameters are determined in accordance with Reference book of quality indicators,
D.1.1.3. – B-5 - B-6	LUW	volume of coal production and beneficiation products in 2008-2010, Ministry of Coal Industry
D.1.1.5 D-5 - D-0		of Ukraine, State Consumer Standard. This source provides clear and transparent information.
D.1.1.3. – ID 7- ID 9	Low	The values of these parameters are taken according to the most current source – National
	Lon	The values of allose parameters are taken according to the most current source. Tranonal

page 64

		Inventory Report of Ukraine
D.1.1.3. – ID 10	Low	Current studies of SRI "Respirator"
D.1.3.1. – L-1	Low	The values of these parameters are taken according to the most current source – National Inventory Report of Ukraine
D.1.3.1. –L-2	Low	This parameter is calculated according to equation (3) of this PDD
D.1.3.1. – L-3	Low	International generally accepted values provided by IPCC are used
D.1.3.1 ID 4	Low	Current statistical data for the country that are provided by the State Statistics Service entity
D.1.3.1 ID 5	Low	International generally accepted values provided by IPCC are used
D.1.3.1 ID 6	Low	The values of these parameters are taken according to the most current source – National Inventory Report of Ukraine
D.1.3.1. – L-7	Low	This parameter is provided by DFP of Ukraine at the annual basis. If the value of factor is not available at the time of determination or verification, calculation will include the value for the previous year.

D.3. Please describe the operational and management structure that the project operator will apply in implementing the monitoring plan:

The project owner, which will implement the provisions of this monitoring plan in the structure of organization and quality management, is "RS-ARPI" LLC. Stages of collecting information, generating reports, storing monitoring data are performed by different responsible persons and departments, and then sent to the Director of "RS-ARPI" LLC, which has overall responsibility for monitoring. Detailed structure of the administrative board of the company will be established in Monitoring report before the primary and the first verification. The basic structure is demonstrated by the following block diagram:

page 65

Joint Implementation Supervisory Committee

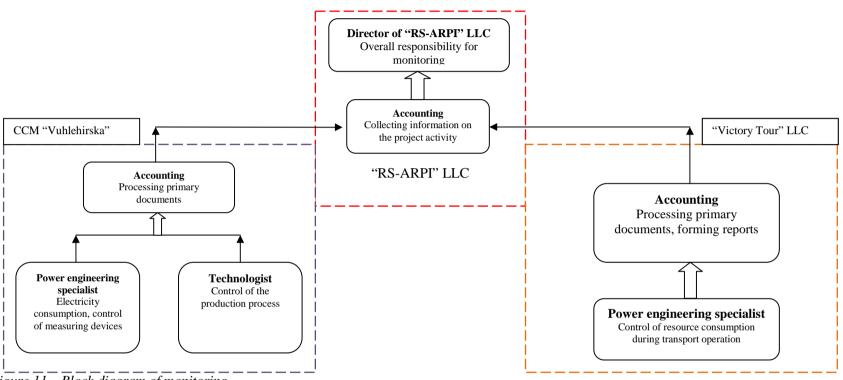


Figure 11 – Block diagram of monitoring.

The project is implemented in several stages by different companies. Accounting of "Victory Tour" LLC is responsible for dismantling and transporting rock mass. Number of persons working at CCM "Vuhlehirska" is responsible for the enrichment process and shipment of finished product. All reports and changes under the project goes to accounting of "RS-ARPI" LLC, which processes initial report, makes certain calculations and presents technical reports to the Director, who has overall responsibility for monitoring.

Information on the management scheme of "RS-ARPI" LLC, acting under the project, is presented below:

Director of "RS-ARPI" LLC is the main figure in management structure of the enterprise. He is responsible for the accuracy and reliability
of all monitoring indicators, provides cross checks of certain parameters used for calculation of GHG emission reductions. Strategy of
development and planning of the project depends on his direct actions;

page 66

Department of accounting of "RS-ARPI" LLC is an important link of the management scheme. All information on the amount of consumed energy resources, amount of shipped coal products, cost for planned preventative maintenance and repairs, salaries of employees and etc. goes to this department. Accounting performs processing documents, received from other departments of involved parties, forms reports, makes predictions about the possible volumes of shipped products, and also makes cross-checks of primary documents with the other parties. Accounting serves as a buffer between the industrial site and director of the enterprise. This department is also responsible for conducting periodic studies of coal samples that were extracted from the waste heap by the project activity;

The management scheme that acts at CCM "Vuhlehirska":

- Power engineering specialist is responsible for the condition of metering equipment, timely execution of procedures of measuring devices calibration, electrical equipment condition and conducting timely repair of technological equipment. He controls the timely calibration of measuring devices; representatives State Metrologic System are involved for this purpose. Power engineering specialist collects primary documents on electricity consumption and forms technical report, which then submits to the accounting department;
- Technologist is responsible for the technological operating modes of the project equipment, for safety at work, and he takes the decision to
 perform repair and maintenance work of concentrating mill. He sends data on the volume of shipped coal products to the accounting
 department. On the basis of this information, accounting performs cross-checks with documents from buyers. Technologist also forms
 monthly technical reports, which submits to the accounting CCM "Vuhlehirska";
- Accounting department collects processes and stores all primary documentation and submits it to "RS-ARPI" LLC. Cross-check on the reliability and clarity of the collected information is performed between two departments.

The management scheme that acts at "Victory Tour" LLC:

- Power engineering specialist is responsible for the Process of waste heaps dismantling and transportation of rock mass to concentrating mill. He sends requests to the accounting on the required volumes of purchasing diesel fuel, keeps a log of trucks mileage, and regulates the issuance of diesel fuel. He sends sales invoices and other primary documents to the accounting department. Power engineering specialist also monitors the condition of special equipment for preventing down times in operation and unplanned repairs;
- Accounting department is responsible for collecting, archiving, visualization of raw data on the consumption of diesel fuel. It generates monthly and annual technical reports and submits them to accounting and Director of "RS-ARPI" LLC.

page 67

D.4. Name of person(s)/entity(ies) establishing the monitoring plan:

"RS-ARPI" LLC is the owner of emission sources and developer of project design document. All sections of this PDD were developed by "RS-ARPI" LLC. "RS-ARPI" LLC is not a project participant.

Company name:	"RS-ARPI" LLC
Company address:	83001, Donetsk, Artem Street, b. 71.
Contact person:	
Name:	Zhdanov Serhiy Petrovych
Title:	
	Director
Phone:	+38 (099) 410-89-89
Fax:	-
E-mail:	rs-arpi.dok@gmail.com

page 68

SECTION E. Estimation of greenhouse gas emission reductions

E.1. Estimated <u>project</u> emissions:

The formulas used to estimate the project anthropogenic emissions by sources of greenhouse gas emissions, description of calculations by these formulas and all the assumptions used are described in Section D.1.1.2.

Project emission	Unit	2008	2009	2010	2011	2012	Total
Project emissions due to consumption of electricity from the grid as a result of the project activity in period y	tCO ₂ e	4 805	6 155	6 508	6 828	6 135	30 431
Project emissions due to consumption of diesel fuel as a result of the project activity in period y	tCO ₂ e	1 345	1 471	1 429	1 525	1 540	7 310
Total project emissions over the crediting period	tCO ₂ e	6 150	7 626	7 937	8 353	7 675	37 741

 Table 21 – Estimated project emissions during the crediting period for 2008-2012

Table 22 – Estimated project emissions after the crediting period for 2013-2015

Project emission estimated for 2013- 2015	Unit	Annual emissions	Total
Project emissions due to consumption of electricity from the grid as a result of the project activity in period y	tCO ₂ e	6 085	18 255
Project emissions due to consumption of diesel fuel as a result of the project activity in period y	tCO ₂ e	1 465	4 395
Total project emissions after the crediting period	tCO ₂ e	7 550	22 650

E.2. Estimated leakage:

The formulas used to estimate the leakage under the project activities, description of calculations by these formulas and all the assumptions used are described in Section D.1.3.

Table 23 – Estimated leakages during the crediting period for 2008-2012

Leakages	Unit	2008	2009	2010	2011	2012	Total
Leakages due to fugitive emissions of methane in the mining activities in the period y	tCO ₂ e	-175 312	-166 106	-176 200	-181 349	-175 405	-874 372

page 69

Leakages as a result of electricity consumption during coal mining in period y	tCO ₂ e	-51 951	-51 485	-55 339	-51 874	-50 174	-260 823
Total leakages during the crediting period	tCO ₂ e	-227 263	-217 591	-231 539	-233 223	-225 579	-1 135 195

Table 24 – Estimated leakages after the crediting period for 2013-2015

Leakages estimated for 2013-2015	Unit	Values of annual GHG emissions	Total
Leakages due to fugitive emissions of methane in the mining activities in period <i>y</i>	tCO ₂ e	-174 151	-522 453
Leakages as a result of electricity consumption during coal mining in period <i>y</i>	tCO ₂ e	-49 815	-149 455
Total leakages after the crediting period	tCO ₂ e	-223 966	-671 898

E.3. The sum of **E.1.** and **E.2.**:

Table 25 – Estimated total emissions as a result of the project activity during the crediting period for 2008-2012

Parameter	Unit	2008	2009	2010	2011	2012	Total
Total project emissions during the crediting period	tCO ₂ e	-221 113	-209 965	-223 602	-224 870	-217 904	-1 097 454

Table 26 – Estimated total project emissions after crediting period for 2013-2015

Parameter	Unit	Values of annual GHG emissions	Total
Total project emissions after the crediting period	tCO ₂ e	-216 416	-649 248

E.4. Estimated <u>baseline</u> emissions:

Table 27 – Estimated baseline emissions during the crediting period for 2008-2012

Baseline emissions	Unit	2008	2009	2010	2011	2012	Total
Baseline emissions due to burning of the	tCO ₂ e	793 678	763 077	801 809	825 238	798 192	3 981 994
waste heap in period y							

Joint Implementation Supervisory Committee

page 70

Total baseline emissions over the	tCO ₂ e	793 678	763 077	801 809	825 238	798 192	3 981 994
crediting period		170 010	100 011	001 007	020 200	//01/2	

Table 28 – Estimated baseline emissions after the crediting period for 2013-2015

Baseline emissions estimated for 2013- 2015	Unit	Values of annual GHG emissions	Total
Total baseline emissions after the crediting period related to burning of the waste heap in period y	tCO ₂ e	792 485	2 377 455

E.5. Difference between E.4. and E.3. representing the emission reductions of the project:

Table 29 – Estimated emission reductions during the crediting period for 2008-2012

Parameter	Unit	2008	2009	2010	2011	2012	Total
Emission reductions during the crediting period	tCO ₂ e	1 014 791	973 042	1 025 411	1 050 108	1 016 096	5 079 448

Table 30 – Estimated emission reductions after the crediting period for 2013-2015

Emission reductions estimated for 2013- 2015	Unit	Values of annual GHG emissions	Total
Emission reductions after the crediting period	tCO ₂ e	1 008 901	3 026 703

page 71

E.6. Table providing values obtained when applying formulae above:

Year	Estimated	Estimated	Estimated	Estimated
	Project	Leakage (tonnes	Baseline	Emissions
	Emissions	CO ₂ equivalent)	Emissions	Reductions
	(tonnes CO ₂		(tonnes CO ₂	(tonnes CO ₂
	equivalent)		equivalent)	equivalent)
Year 2008	6 150	-227 263	793 678	1 014 791
Year 2009	7 626	-217 591	763 077	973 042
Year 2010	7 937	-231 539	801 809	1 025 411
Year 2011	8 353	-233 223	825 238	1 050 108
Year 2012	7 675	-225 579	798 192	1 016 096
Total (tonnes CO ₂ equivalent)	37 741	-1 135 195	3 981 994	5 079 448

Table 31 – Estimated balance of emissions under the proposed project over the crediting period

Table 32 – Estimated balance of	of emissions under the p	proposed project after the	crediting period

Year	Estimated Project <u>Emissions</u> (tonnes CO ₂ equivalent)	Estimated <u>Leakage</u> (tonnes CO ₂ equivalent)	Estimated <u>Baseline</u> Emissions (tonnes CO ₂ equivalent)	Estimated Emissions Reductions (tonnes CO ₂ equivalent)
Year 2013	7 550	-223 966	792 485	1 008 901
Year 2014	7 550	-223 966	792 485	1 008 901
Year 2015	7 550	-223 966	792 485	1 008 901
Total (tonnes CO ₂ equivalent)	22 650	-671 898	2 377 455	3 026 703

page 72

SECTION F. Environmental impacts

F.1. Documentation on the analysis of the environmental impacts of the <u>project</u>, including transboundary impacts, in accordance with procedures as determined by the h<u>ost Party</u>:

The Host Party for this project is Ukraine. Environmental Impact Assessment (EIA) is the part of the Ukrainian project planning and permitting procedures. Implementation regulations for EIA are included in the Ukrainian State Construction Standard DBN A.2.2.-1-2003⁶² (Title: "Structure and Contents of the Environmental Impact Assessment Report (EIR) for Designing and Construction of Production Facilities, Buildings and Structures").

In Annex E of this standard there is a list of "types of projects or activities that are of high environmental hazard" for which full-scale EIA is obligatory, Ministry of Environment and Natural Resources of Ukraine is competent authority for performing of it. Project activities that consist of utilization of wastes of coal industry and of coal production are included in this list.

Comprehensive EIA according to the legislation of Ukraine was performed for the proposed project by PE PB "Ekoservice". Here are some general conclusions of this EIA:

- The main impact of the project activity on the environment is the impact on air. Additional amount of coal dust and dust of coal concentrate will be released to the atmosphere as a result the project activity. However, the study of emission levels and pollutant distribution schemes show that during the project lifetime maximum concentration boundaries will not be exceeded. Fugitive emissions of dust and hazardous substances from the waste heap can also be avoided;
- Impact on water is insignificant. During the project activity water will be used in a closed cycle without draining wastewater. For replenishment of water balance, drainage water from a nearby mine will be used. Thus discharge of this water (treated with chlorine) into the environment will be reduced;
- Impact on flora and fauna is mixed. As a result of the project activity the existing landscape will change, but the aggregate final effect is positive. Grass and trees will be planted on the recultivated land. Rare or endangered species will avoid impact. Place of the project activity implementation is not located near national parks or areas that are protected;
- Noise impact is limited. The main source of noise will be at the minimum desired distance from residential areas, mobile sources as for noise (traffic) provisions of local standards will be met;
- Impact on land use is positive. Considerable areas of land will be exempt from waste heaps and available for building;
- There are no transboundary effects. There are no impacts which occur on the territory of any other country, and which are caused by the implementation of this project that is physically located entirely within Ukraine.

⁶² State Construction Standard DBN A.2.2.-1-2003: "Structure and Contents of the Environmental Impact Assessment Report (EIR) for Designing and Construction of Production Facilities, Buildings and Structures" State Committee Of Ukraine On Construction And Architecture, 2004

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 73

F.2. If environmental impacts are considered significant by the <u>project participants</u> or the <u>host Party</u>, please provide conclusions and all references to supporting documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the host <u>Party</u>:

Comprehensive EIA was performed in 2007 by PE PB "Ekoservice". This study was focused on the impact of waste heaps dismantling on the environment. Conclusions of the report are above in section F.1. Project impact on the environment is not significant and harmful. According to Ukrainian laws and regulations, preparation of reports from Environmental Impact Assessment and positive conclusions of State Department of Ecology and Natural Resources makes procedure of environmental impact assessment.

page 74

SECTION G. <u>Stakeholders</u>' comments

G.1. Information on <u>stakeholders</u>' comments on the <u>project</u>, as appropriate:

No stakeholder consultation process for the JI projects is required by the Host Party. Stakeholder comments will be collected during the time of this PDD publication in the internet during the determination procedure. As a part of EIA, stakeholders must be informed via mass media about the proposed project as provided in *State construction standards of Ukraine DBN A.2.2.-1-2003: "Structure and Contents of the Environmental Impact Assessment (EIA) materials during design and construction of enterprises, buildings and structures"* issued by State Committee of Construction and Architecture in 2004. In accordance with the mentioned regulations, the relevant information was published in the local newspaper "Nash Kray" # 38 dated September 18, 2007. No comments were received.

Middle name:

First name:

page 75

Annex 1

CONTACT INFORMATION ON PROJECT PARTICIPANTS

Organisation:	"RS-ARPI" LLC
Street/P.O.Box:	Artem Street
Building:	Building 71.
City:	Donetsk
State/Region:	Donetsk
Postal code:	83001
Country:	Ukraine
Phone:	+38 (099) 410-89-89
Fax:	
E-mail:	rs-arpi.dok@gmail.com
URL:	-
Represented by:	Zhdanov Serhiy Petrovych
Title:	Director
Salutation:	Mr.
Last name:	Zhdanov
Middle name:	Petrovych
First name:	Serhiy
Department:	-
Phone (direct):	+38 (099) 410-89-89
Fax (direct):	
Mobile:	-
Personal e-mail:	rs-arpi.dok@gmail.com
Organisation:	ProEffect OÜ
Street/P.O.Box:	Türi
Building:	6
City:	Tallinn
State/Region:	
Postal code:	11313
Country:	Estonia
Phone:	+372 5102246
Fax:	-
E-mail:	-
URL:	pro.effect@live.com
Represented by:	Boris Kuznetsov
Title:	Board Member
Salutation:	Mr.
Last name:	Kuznetsov

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

_

Boris

JOINT IMPLEMENTATION PROJECT DESIGN DOCUMENT FORM - Version 01

Joint Implementation Supervisory Committee

12.

page 76

Department:	-
Phone (direct):	+372 5102246
Fax (direct):	-
Mobile:	-
Personal e-mail:	pro.effect@live.com

page 77

Annex 2

BASELINE INFORMATION

Description of parameters included in the baseline

#	Parameter	Unit	Data source
1	$FC_{BE,Coal,y}$ - Amount of coal that would be mined in the baseline scenario and consumed in the energy sector for energy production in the relevant period <i>y</i> .	t	Calculated according to the equation (3), Section B.1. Documents of the project owner
2	$FR_{Coal,y}$ - Amount of enriched coal of energy class, extracted from the waste heaps as a result of the project activity in the relevant period <i>y</i> .	t	Documents of the project owner
3	$A_{enrich,y}$ Average ash content of enriched coal of energy class, extracted from the waste heaps as a result of the project activity in period y	%	Documents of the project owner. Laboratory study
4	$W_{enrich,y}$ - Average ash content of enriched coal of energy class, extracted from the waste heaps as a result of the project activity in period y	%	Documents of the project owner. Laboratory study
5	$EF_{CH_4,CM}$ - Fugitive methane emissions factor during coal mines operation	m ³ /t	National Inventory Report of Ukraine 1990-2009 p. 90
6	p_{WHB} - Correction factor, determining the probability of spontaneous combustion of the waste heap	dimensi onless unit	Report on the fire risk of Donetsk Region's waste heaps, Scientific Research Institute "Respirator", Donetsk, 2012
7	GWP_{CH4} - Global Warming Potential of Methane	tCO ₂ e/ tCH ₄	IPCC Second Assessment Report
8	ρ_{CH4} - Methane density	T/M ³	2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Chapter 4: Fugitive Emissions, Page 4.12. Value was converted from converted $Gg \cdot m^{-3}$ to t/m^3 . IPCC default value under standard physical conditions (t=293,15 K; p=101,2325 kPa)

page 78

9	$NCV_{Coal,y}$ - Net Calorific Value of coal in period y	TJ/kt	National Inventory Report of Ukraine 1990-2010
10	$OXID_{Coal,y}$ - Carbon Oxidation factor of coal in period y	ratio	National Inventory Report of Ukraine 1990-2010
11	$k_{Coal,y}^{C}$ - Carbon content of coal in period y	tC/TJ	National Inventory Report of Ukraine 1990-2010
12	$N^{e}_{coal,y}$ - Average electricity consumption per ton of coal, produced in Ukraine in period y	MWh/t	State Statistics Service of Ukraine. Fuel and energy resources of Ukraine, Statistical Yearbook, Kyiv 2009, State Statistics Service of Ukraine. Fuel and energy resources of Ukraine, Statistical Yearbook, Kyiv 2011. See also Annex 5
13	$EF_{grid,y}$ - Specific indirect carbon dioxide emissions from electricity consumption by 2 nd class electricity consumers in accordance with Procedure for determining the class of consumers, adopted by Resolution of National Electricity Regulatory Commission of Ukraine on 13 of August 1998 No.1052	tCO ₂ / MWh	National Environmental Investment Agency Orders: No.62 dated 15.04.2011 p. 63 , 2008 – 1.219 No.63 dated 15.04.2011 p. 64 2009 – 1.237 No.43 dated 28.03.2011 p. 65 2010 – 1.225 No.75 dated 12.05.2011p. 66 (2011 – 1.227; 2012 – 1.227 – the latest country-specific data) SEIA presents actual data of factor of indirect CO ₂ emissions on an annual basis until March 1. If data are not available at the time of determination or verification, for GHG calculation value for the previous year is used.
14	$EF_{CH_4,CM}$ - Fugitive methane emissions factor during coal mines operation	m ³ /t	National Inventory Report of Ukraine 1990-2009 p. 90
15	$p_{\rm WHB}$ - Correction factor, determining the probability of spontaneous combustion of the waste heap	dimensi onless unit	Report on the fire risk of Lugansk Region's waste heaps, Scientific Research Institute "Respirator", Donetsk, 2012

 ⁶³ <u>http://www.neia.gov.ua/nature/doccatalog/document?id=127171</u>
 <u>http://www.neia.gov.ua/nature/doccatalog/document?id=127172</u>
 <u>http://www.neia.gov.ua/nature/doccatalog/document?id=126006</u>
 <u>http://www.neia.gov.ua/nature/doccatalog/document?id=127498</u>

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 79

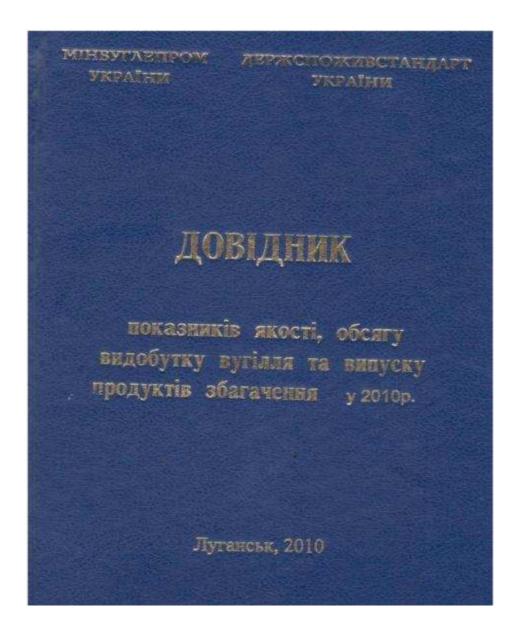
Joint Implementation Supervisory Committee

12.

Annex 3

MONITORING PLAN

Monitoring plan is described in Section D of this PDD.


- - - - -

page 80

Annex 4

EXTRACTS FROM THE "REFERENCE BOOK OF QUALITY INDICATORS, VOLUME OF COAL PRODUCTION AND BENEFICIATION PRODUCTS IN 2008-2010"⁶⁷

⁶⁷ http://ji.unfccc.int/UserManagement/FileStorage/NMPXTGSA7E4C095DHRJYUWLOI8Z3V1

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 81

Table 33 – Coal extraction in mines and stripe mines in 2010

	Дольова уча-		ayeinna 3472-96	Operational and peterson a y 2004 p	ycinas	Визобут во тога	ок ридов нустыся у			ĸ	ncebivanif	in organity	per
Hallongynnos unter	сть класти у выдобутку ку- таля по алком у 2010 роц. 76	20101	ewepr.	(186. T)	30.74- 10075 A ⁴ , 15	195.1	3005- 1075- A ⁴ : 94	Cipra S ¹ 1 N	Dorora W". 14	Cepeasili noszinne alaberrs ainpodry R _m %	Тонцона повстич- мого ца- РУ У, мм	Davis set- sax perio- san na cy- coli etter V ^{dad} 15	Bauna rero- ators sco- parras Q, ^{dal} , MAR aT
МІНВУГЛЕПРОМ УКРАЇНИ				72522,5	38,6	76204,5	35,9	2,0	7,7	4	100	26,5	\$166
Y MONY YEAR			-		20.2	-	10.0					24,5	8025
emplemente ayotan		-		50458,0	39,2	52135,8 200,0	38,9 42,1	2,0			0	39,5	
		-	4	273,2	49,0	15455.7	39,4					41,5	
		-	10	11919.0	42,5	12775.1	41,4		7,6				
		-	X	435,1	35.3	316.0	43,0					36,1	8365
		-	1 ff	7806,1	35,2	\$303,0	36,4			2,43	0	8,4	8520
		-	A	15350,6	37,6	15086.0	37,7	1,3		4,55	0	3,7	80,59
		-		22064.5	37.2	24068.7	39,0	2,1	6,7		1.41.1	30,9	
souching systems		A.	-	567,4	32,8	53,3	33,2					and the second sec	
		I I		2855,0	34,9	4532,7	36,1	2,2	6,9				
		Ж	1	8388,1	37,5	9807,7	39,0	2,4	6,6				
		K		9430,9	38,1	8694,0	40,8			1,23			
		IIC		823,1	35,3	981,0	35,7	2,8	6,4	1,61	10	18,7	8650

	Since you		ajrista 3475.50	panerski v 2004		Bandy ac-wa		ant entities	-		-		
Halannynerse saxess	ette suarris y anaodyrey sp- riare na saori y 2016 peak. Na	8293.	-	**	112	796.2	184	100	No. 5			「「日日」	"E CI I S
Папоридковані Міквуглепрому		-	-	343HLS	193,6	39064,5	39,7	2.1	7,1	-		21,0	\$293
p midary stacas;													1
enepteemanne spoltes				31248,0	49,0	32171,0	40,0		. 7,2		÷.	19,4	8123
	1	1	A	13.1	动脉	260,6	47.1	2,4	13,5		a di seconda de la constante de	A summer in the plant in the	7487.6
	1		20	3.748,8	43,1	3305,0	41,2	2,6	9,9		8	and the second second	791
			T.	9645,4	43,6	10332,0	43,5		7,4		13		817
	-		X	435,1	363	316,0	43,0		4,9		23		836
	1		13	2811,9	36,9	3032,0	37,9		0,6				850
	-		A	15350.6	37,6	and the second sec	37,7	13	6,6				805
wowcinve oyelaan		-	10.00	7138,5	37,8	6895,0		_	6,7		1. 2.	28,2	857
	1	3		1452.5	35,5	summer and builded at	Alternation of Advances		6,6		14		835
		家	1.1.1	2358.0	35,4	2150,0		2,6	6,8		21		843
	1	K		2496,3	42,1	2404.0	41,7	2,7	6,7	Concernance of the second			862
March 19 Mar	1	IIC		823,1	35,3	981.0	35,7	2,8	6,4	1,61	10	19,2	865
Непідпорядковані Мінвуглепрому				34327,8	37,4	37138,5	38,1	1,9	8,3			32,4	813
NINGSY STREET	-		-	10107.0	22.0	100748	19.19 15	1.10	9,8			32,7	786
eneptionscie eyeline	17.00		-	19193,0	37,9		37,2		12,2		A COLORADO AND A COLORADO	and the second se	
			瓜	10914,3	39,0	2443.1	a manufacture of the	denter and the second	8,3			and the second s	and the second se
	1		1 1	4994.3	34.4	5271.0	Second se	and the second second	4,9	A contract of the		And and a state of the local division of the	853
	1.000		п	14934.0	36.9	and the second second second			6,7			32,0	844
	11000	-	-	567.4	32,8	the second se	and the second s	distanting the set	10,2	and the second design of the s	and the second division of the second divisio	a summing the set	821
concinue aprilant	1	- 75		507,4	34,5	and the second state of the second second			7.1				and the second second second
	1	J.	-	6030,1	36,3	and the second state	and the second se			and the second s			836
		Ж	-	6934,0	36,6	Contraction in the second state						and the second se	
	-	K		34127.8		and the second sec						32,4	

182

page 82

	Дальова уча- оть влаютіе у видобутку яр- нало по шахті у 2010 році, 96	Марял ДСТУ	кугілля 3472-05	Dustrieunsk at pszosoro a v 2009 s	ringe	BataoByr (IID 1088	чик рилов нуеться у	oro ayri 2010 p	ane. Diti	10	acoditati(1	tel mpassierp	ui .
Найменунопол шахти		ROSE	entpi.	7 2007 2 THE T	Soni- elets A ^x , %	196.1	3031- mets A ⁴ , %	Cipia S N	Bosora W's %	CopezariA uzektowa sizifarris sizifarris sizifarris sizifarris R _a , %	Тонтанта шластичн ного ша- ру У, мя	Bunin aer- kon perd- mer na cy- koñ cran V ^{dar} , 15	Биша тер зник эго- расня Ос ⁴⁴ , Кар кг
Понецька область	1.2.2		1011	32159,6	38,1	32638,5	38,3	2,1	6.9			25,6	\$38
р таму мисла				1500000	11-1-1		-					200	830
Підпорядковіті Мінеуслепрому				17919,6	40.0	18344,0	39,9	2,4	7,1			27,6	
Непідворьдковані Мілауглепрому	1		1	14240,0	35,6	13694,5	36,2	2,0	6,6	×	1.9.1	22,9	849
p money much	100 L	100		1000	-		-	-	100			22,3	829
eveptemative system				16921,1	39,5	18025.0	38,7	2,4	6,6	-	-		
		1.00	Д	273,2	49,0	200,0	42,1	2,4			0		
	1.	11	J.F	1460,3	44.7	1575,0	41,8	2,6		0,63	8	And in case of the local division of the loc	
			1	6431.7	42,1	6906,0	40,1	2.5		0,80	12		
			11	7074,8	35,1	7458,0	36,3			2,44	- 0	and the second se	
		1	A	1681,1	42,3	1886,0	40,2	1,0		4,17	0		
conclana apelian	1		1	15238,5	36,4	14013,5	37,9					29,7	
Tostione distan	P P	F	1	2037,5	35,1	1985,8	36,6	2,5				and the second se	
	1 C	36		4497,7	34,6	4757.7	36,2	2,4		0,99	23		
	1 5	K	1	7944,3	37,9	6394,0	39,7	1,4					
	1	BC		759,0	35,9	\$76,0	36,5	2,7			10	the summaries of the local	And and a state of the
Луганська область				23401.7	38,8	25502,0	39,3	2,1	6,9		1	17,6	787
y many vacal		1		1 Contraction		1000		13		-			100
Підпорядковані Мангуслепраму України				17246.7	38,3	17502,0	38,4				÷	11,1	
Hendonanderanawi Minepatenpiany Yepahra				6155,0	40,4	8500,9	41,1	2,5	6,0	1.1	(a)	31,3	747

Надискумания шахтя У 2010 род. С С С у такуу числі: 17960,6 354,4 12547,0 34,1 1,5 7,4 . сперзетнечне пусілан 2210 род. 2210 род. 1220 в12,5 43,1 1640,0 42,5 3,0 12,0 0,454 сперзетнечне пусілан 221 в12,5 43,1 3040,0 42,5 3,0 12,0 0,454 сперзетнечне пусілан 221 в12,5 43,1 3040,0 42,5 3,0 12,0 0,454 сперзетнечне пусілан 221 в12,5 43,1 3040,0 42,5 3,0 6,7 2,3 6,6 4,64 сперзетнечне пусілан 13731,3 36,7 845,0 36,7 2,3 5,6 - 2,3 5,8 0,93 1,12,9 0,64 1,12,9 1,12,9 1,12,9 1,12,9 1,12,9 1,12,9 1,12,9 1,12,9 1,12,9 1,12,9 1,12,9 1,12,9 1,12,9 1,12,9 1,12,9 1,12,9 1,12,9 <t< th=""><th>-</th><th>-</th></t<>	-	-
синсролетичне вуслам 179665.5 35.4 из 47,0 38.1 1.9 7.4 - 20 512,5 43,1 1640,0 42,5 3,8 12.8 0,42,4 10 512,5 43,1 1640,0 42,5 3,0 12.8 0,42,4 11 731,3 36,7 845,0 36,7 3,3 6,7 2,36 12 731,3 36,7 845,0 36,7 3,3 6,7 2,36 13 1340,0 37,3 1,4 6,6 4,61 - 13 14 0,2 7455,0 42,2 4 5,6 - 13 14 0,2 7455,0 42,2 2,4 5,6 - 10 5441,1 40,2 7455,0 42,2 1,7 5,8 0,93 11 10 117 10,9 13,8 14,9 12,1 - 11 11 11 11 - 11	100 cm 100 cm	1111
Image Interview dyclass Image Interview dyclass <thimage dyclass<="" interview="" th=""> <thimage interview<="" td=""><td></td><td>12.7 7</td></thimage></thimage>		12.7 7
роксівни пусілля посклівни пус	-	41.8 1
Роксівни пусілал локсівни пусіл локсівни пусіл локсівни пусіла	11	40.7 5
A 13665.5 37,1 13280,0 37,3 1,4 6,4 4,61 совсляни прелим 5441,1 40,3 7455,0 42,2 2,4 5,6 - Ж 3890,4 40,8 5950,0 41,7 2,3 5,8 0,93 К 1486,6 39,2 2340,0 43,5 2,4 5,2 1,29 INC 644,1 29,2 105,0 29,3 3,6 7,6 1,81 ивалу числі 13732,0 38,0 15144,0 38,2 1,6 11,2 - ивалу числі 13732,0 38,0 15144,0 38,2 1,6 11,2 - ивалу числі 12347,1 38,5 12543,8 38,8 1,4 12,1 - ивалу числі 13133,0 2,1 7,9 0,75 - - - - - - - - - - - - - - - - - <td>8</td> <td>5,0 1</td>	8	5,0 1
конссиние пуслим 5444,1 40,3 7435,0 42,2 2,4 5,6 - Ж 33890,4 40,8 5050,0 41,7 2,3 5,8 0,93 К 14866,6 39,2 2390,0 43,9 2,4 5,8 0,93 К 14866,6 39,2 2390,0 43,9 2,4 5,7 1,29 ПС 64,1 29,2 105,0 29,3 3,6 7,6 1,81 ПО 13732,0 38,0 15144,9 38,2 1,6 11,2 - ПО 10914,3 35,0 1250,7 <td>0</td> <td>3.7 1</td>	0	3.7 1
ж 3890.4 40,8 509.0 41,7 2,3 5,8 0,93 к 1486,6 39,2 2300,9 43,9 2,4 5,2 1,29 ПС 64,1 29,2 105,0 29,3 3,6 7,6 1,81 разлоду часлі 13732,0 38,0 15844,0 38,2 1,6 11,3 - тахлу часлі 12347,1 38,5 12543,8 38,8 1,5 12,1 - тахлу часлі 12347,1 38,5 12543,8 38,8 1,5 12,1 - тахлу часлі 12347,1 38,5 12543,8 38,8 1,5 12,1 - тахлу часлі 12347,1 38,5 12543,7 38,9 1,4 12,2 0,57 т 1432,8 34,4 293,1 33,0 2,3 7,9 0,75 кожсівне вукілов 1343,9 33,8 2609,2 35,5 2,0 7,0 - Г		29.7 1
ж 1486,6 39,2 2300,0 43,9 2,4 5,2 1,29 ПС 64,1 29,2 105,0 29,3 3,6 7,6 1,81 флартическа область 13732,0 38,0 15144,0 38,2 1,6 11,2 - толу часка 12347,1 38,5 12543,8 38,8 1,5 12,1 - толу часка 12347,1 38,5 12543,8 38,8 1,5 12,1 - толу часка 112347,1 38,5 12543,8 38,8 1,5 12,1 - толу часка 112347,1 38,5 12543,7 38,9 1,4 12,2 0,57 т 1432,8 34,4 293,1 33,0 2,1 7,9 0,75 кожский в дускихи 1384,9 33,8 2609,2 35,5 2,0 7,0 - Кожский в дускихи 1 817,5 34,5 2546,9 35,6 2,0 7,0 0,75	22	32.4 4
ПС 64,1 29,2 105,0 29,3 3,6 7,6 1,81 Цейпропетровська область 13732,0 38,0 15144,9 38,2 1,6 11,3 - поллу часлі вперелянчие про100 12347,1 38,5 12545,8 38,8 1,5 12,1 - ПГ 10914,3 39,0 12550,7 38,9 1,4 12,2 0,57 ГГ 1432,8 34,4 293,3 33,0 2,3 7,9 0,75 конскине про100 1384,9 33,8 2609,2 35,5 3,0 7,9 0,75 конскине про100 1384,9 33,8 2609,2 35,5 3,0 7,0 - 1384,9 33,8 2609,2 35,5 3,0 7,0 - 1391 817,5 34,5 2546,9 35,6 2,0 7,0 0,75 Вотимеська область 101 476,0 35,2 590,0 37,2 2,1 9,3 0,64	22	24,4 8
Дзбпропетровська область (11, 2) (11,	8	17.0 1
ранаронитровника область енеракивичне пуская конссинне пуская Волимиська область енерсеначине пуская ДГ 476,0 38,2 599,0 37,2 2,1 9,3 0,64		
сперенличие лусков 12347,1 38,5 12543,8 38,8 1,5 12,1 - ДГ 10914,3 35,0 12340,7 38,9 1,4 12,2 0,67 Г 1432,8 34,4 293,1 33,0 2,3 7,9 0,75 1344,9 33,8 2600,2 35,5 2,0 7,0 - F 567,4 32,8 53,3 33,2 1,2 10,2 0,61 ДГ 817,5 34,5 2546,9 35,6 2,0 7,0 - Волимська область ДГ 476,0 38,2 590,0 37,2 2,1 9,3 0,64		41,5 1
ДГ 10914,3 35,0 12250,7 38,9 1,4 12,2 0,57 Г 1431,8 34,4 293,1 33,0 2,1 7,9 0,75 классиние вусказе 1384,9 33,8 2609,2 35,5 2,0 7,9 0,75 Г 567,4 32,8 53,3 33,2 1,2 10,2 0,61 ДГ 817,5 34,5 2546,9 35,6 2,0 7,0 - Волимська область		43.7 1
кажскана аусилан кажскана ау	. 8	41.8 1
клиские ауское	10	40,1 1
F 567,4 32,8 53,3 33,2 1,2 10,2 0,61 ДГ 817,5 34,5 2546,9 35,6 2,0 7,0 0,75 Волинська область сперсемичее вуское ДГ 476,0 38,2 590,0 37,2 2,1 9,3 0,64	101	40.6
ДГ 817,5 34,5 2546,9 38,6 2,0 7,0 0,75 Волимська область сперсетичне вусков ДГ 476,0 38,2 590,0 37,2 2,1 9,3 0,64	9	39.6
Да 817,3 33,3 236,7 30,6 24 74 476,0 38,2 590,0 37,2 2,1 9,3 0,64	11	40.6
енергетичне вусілля ДТ 476,0 35,2 590,0 37,2 2,1 9,3 0,64		4000
enepremuse excluse	7	37.1
Пьејаська область 1753,2 45,0 2630,0 47,6 2,3 5,8 -		36.7
	14	36.8
Γ 2318,1 46,8 2314,0 48,3 2,2 6,1 0,9 3K 435,1 35,3 316,0 43,0 3,3 4,0 0,9	21	36,1

page 83

Table 34 – Coal extraction in mines and stripe mines in 2008

І ВИДОБУТОК ВУГІЛЛЯ ШАХТАМИ ТА РОЗРІЗАМИ

	Autocae ywa- son oneerin y nazodytwy sy- riane niu uzacel y 2007 poul, 76		ayrinas 3423-36	Фактичный радового у 2007	syvices	Bingolog uno nas	tore process	noro 191 5 2008 7	1828. 1010	Kanadinaulited requestors			
Hallsesynesis czern		aper.	nepr.	M6.1	Sem- sizes A ⁴ , %	THE 7	Rational Highs A", N	Cipat S'a 14	Basers WL %	Ceptania sometona sinforms simposity R_ %	Танарна падстан- ната дар- 27 У. нен	Bunka ner- tors penn- tors out sy- soft crass V ¹⁰⁷ , 36	Bourn yn Bourn 190 Phones Q. ⁶⁶⁴ , Kladd S7
MIHBYTTERPOM YKPAIHK				75095,4	35,1	78343.6	38,4	2.1					
F Midwy Nacal		-		1000100		(0.743,0	39,4	4.1	8,0		4	28,1	824
Поднарядковані Менерскеприму		_		42152,3	40.1	46800.0	39,2	2,2			-	-	
Henrichtepischeonaut Ministeringtono/		_		32943.1	35.5	32343.6	37,2	2.1	7,1		-	24,5	
y milosy wachy						200.000	1111	4+3	2,4			33,9	831
eneptemanne sprints				49145.3	39,0	\$3103,0	36,6	2.2	8,6			25,8	
		-	L	270.2	48,9	365,0	411.5	1,1 2,4	13,0	0.50	*		815
	1		20	8341.5	41,6	8465.0	40.1	1.9	11.2	0,61	0	41,2	
			r	16608,8	41,8	18780,0	41.8	2,6	8,4	6,76	10	40,7	801 817
			ж	290,5	28.6	165,0	33.5	2.0		0,87	23	36,0	817
		_	13	7012,4	34.5	7183.0	34,4	2,9	5,4	2,40	0	10,1	854
		_	A	16502.5	37,0	17290,0	36,8	1,3	6.5	4,10	6	5,6	808
percenter of another the			E.	219,4	24.9	855,0	34,5	3,8	\$5,6	0.14	0	60,6	609
NORTHINE RUCLER		_		25950,1	36,3	25140,6	37.9	2,2	6,7			33,0	844
	1	F.		3238,4	35,4	3600,0	36,3	1.6	7,5	0.72	12	40,9	835
		ж	-	11878.0	35,5	12657,6	37.3	2,8	6.5	0,93	25	35.0	545
		K	1	10141,3	37,5	8703.0	39,6	1,5	6.5	1,24	19	27,8	840
		TIC	-	701.8	38,6	\$\$0,0	36,3	3,0	6.8	1.65	10	20,0	861

	Antonios yra- ets, maetin y seacolymy action rinns on users y 2007 paol. %			2502831114	Фактичный аналбуток ресовоти кулаля у 2007 році		tion pages			Класофікаційні параметри				
History season allors		x281	esepr.	1942, Y	line sin A'.N	706.1	Juni- oletta A ⁴ , %	Cipes S'L %	Bossers W., N	Ceptusia maximus siafirma simposity R ₀ %	Тофициная плантич вого цан- 29 У, ния	Basig adv- ant pro- net saley- soil case V ^{ad} 91	Barra Series Series Series Quarter Based B	
Донецька область	-			33790,3	38,6	34598,6	35.3	13	7,0			28,5	834	
A MATICA ARCIN										1				
The guildenese (Missuesenpoing			1	19249,1	42,1	22276,0	39,8	2,4	7,1			31,1	\$29	
Resideopsociesaria Mangusenposis			1	14541,2	34,1	12328,6	35,3	2.1	6.8			34,0	843	
WHILE THEIR	11													
exelentine-over stations				16282,4	40,4	19933.0	38.8	2.4	6,9			26,1	828	
		1	Д	270,2	45.9	365,0	40,5	2.4	13.0	0.50	0	41,2	770	
			705	1058,3	48,5	2265,0	41,9	2,4	8.9	0,69	8	41.6	795	
			5	\$758,2	41.7	7768,6	40.7	2.7	7,4	0,85	13	39,9	922	
			- 53	6302.3	35,1	6403.0	34.7	2.6	5,6	2,42	0	10.0	854	
			Δ.	1863,4	43.9	2240,0	40,6	1.0	6.3	3,73	0	6.5	817	
NEWSYRINE REPORTER		1. C		17507,9	37.0	15565,6	37,5	2,1	7,1	-		31.5	\$41	
		r	-	657,0	37,2	870,0	35,0	1,2		8,92	17	39.9	836	
		ж		7133,9	36,6	6867.6	36,0	2.8	6,0 7,3	8,99	25	35,3	845	
		K.		9064,9	37.1	7003,0	39,3	1,5	7,0	1,24	17	28.2	836	
	_	TIC		652,1	.39,8	\$25,0	36,4	3,4	6,7	1,66	10	20,2	8647	
уганська область		distant'		25208,7	36,7	27075,0	37,7	2,1	6,5			18.6	819	
many wear					1									
Retragenticogant Moorgenampiony Vepulsia	-			19387,6	37,1	20185,0	37,2	1,9	7,2			13,7	8075	
Headle publicional Many improve Yoponia		S 8		5821,1	35.0	6890,0	39,3	2,6	5,5			33,1	8531	

page 84

Annex 5

REFERENCE OF THE STATE STATISTICS SERVICE OF UKRAINE "ACTUAL EXPENSES OF ELECTRICITY FOR PRODUCTION OF ONE TON OF NON-AGGLOMERATED COAL"⁶⁸

ДЕРЖАВНА СЛУЖБА СТАТИСТИКИ УКРАЇНИ (Держетат України)

вул. Шота Руставелі, З. м. Кнів, 01601 тел. (044) 287-24-22, факс (044) 235-37-39, телетайн 132-168, E-mail: office@ukrstat.gov.ua, www.ukrstat.gov.ua

	Nº 15/1-20	10100	-	
				ідповідальністю ний центр КТФ»
		01030 м. Ки	їв, вул. Б. Хмель	ницького, 16/22
На Ва повноважень витрат елект неагломерова	надає наявну роенергії на в	статистичну із	формацію щ	у межах своїх одо фактичних ілля кам'яного
Факти	чні витрати елек кам'яно	строенергії на ви эго неагломеров		
Факти				ї тонни вугілля кВт.г/т 2011
Факти Україна	кам'янс	ого неагломеров	аного*.	кВтл∕т

⁶⁸ <u>http://ji.unfccc.int/UserManagement/FileStorage/NMPXTGSA7E4C095DHRJYUWLOI8Z3V1</u>

This template shall not be altered. It shall be completed without modifying/adding headings or logo, format or font.

page 85

Annex 6

Organization:	"RS-ARPI" LLC
Country of registration:	Ukraine
EDRPOU code:	34436016
KVED types of economic activities:	first is the main: 51.90.0 – Other wholesale trade services 51.55.0 – Wholesale of chemical products 45.45.0 – Other building completion 51.19.0 – Agents involved in the sale of a variety of goods 52.12.0 – Other retail sale in non-specialized stores 74.87.0 – Other business activities n.e.c.

ADDITIONAL INFORMATION ON THE PROJECT PARTICIPANTS

Organization:	ProEffect OÜ
Country of registration:	Estonia
Date of registration:	18/06/2004

- - - - -