MONITORING REPORT

Fourth periodic verification (version 1, November 26, 2012)

PROJECT: Project aimed at N_2O emissions reduction by installation of secondary catalyst inside ammonia oxidation reactors at 3 nitric acid production plants NA2, NA3 and NA4 of Azomures SA, company situated in Targu Mures, Romania

Prepared by:

VERTIS FINANCE

Monitoring periods

Line NA2

 Project campaign 3

 FROM:
 14/10/2011

 TO:
 19/11/2012

 ERUs
 402,534

Line NA3

Line NA4

TO: ERUs

Project campaign 4 FROM:

 Project campaign 3

 FROM:
 21/07/2011

 TO:
 07/10/2012

 ERUs
 786,603

Line NA3 Project campaign 4 FROM: 08/10/2012 TO: 19/11/2012 ERUs 70,519

Fourth monitoring period start and end:

15/08/2012 19/11/2012

133,550

July 21, 2011 - November 19, 2012

Fourth monitoring period ERUs in total:

1,393,206

MONITORING REPORT

PROJECT: Project aimed at N₂O emissions reduction by installation of secondary catalyst inside ammonia oxidation reactors at 3 nitric acid production plants NA2, NA3 and NA4 of Azomures SA, company situated in Targu Mures, Romania

LINE: Line 2

MONITORING PERIOD:

FROM:	14/10/2011
TO:	19/11/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	4
2.		DESCRIPTION OF THE PROJECT ACTIVITY	5
3.		BASELINE SETTING	6
	3.1 3.1	MEASUREMENT PROCEDURE FOR N ₂ O CONCENTRATION AND TAIL GAS VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	7 7
	3.1	2 TAIL GAS FLOW, TEMPERATURE AND PRESSURE	8
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	8
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	9
	3.4	HISTORIC CAMPAIGN LENGTH	9
	3.5	REGULATORY BASELINE EMISSIONS FACTOR	9
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	10 10
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	10
	4.2	MINIMUM PROJECT EMISSION FACTOR	10
	4.3	PROJECT CAMPAIGN LENGTH	11
	4.4	LEAKAGE	11
	4.5	EMISSION REDUCTIONS	11
5.		MONITORING PLAN	12
	5.1	MAIN AIR FLOW	12
	5.2	SECONDARY AIR FLOW	12
	5.3	CASING PROTECTION AIR FLOW	13
	5.4	REACTOR SIEVES TEMPERATURE	14
	5.5	CONSUMED LIQUID AMMONIA FLOW	14
	5.6	FLOW OF PRODUCED NITRIC ACID	15
	5.7	TEMPERATURE OF PRODUCED NITRIC ACID	15
	5.8	DENSITY OF PRODUCED NITRIC ACID	16
	5.9	TAIL GASES FLOW, TAIL GASES PRESSURE, TAIL GASES TEMPERATURE	16
	5.10	OXIDATION REACTOR PRESSURE	17
	5.11	N ₂ O CONCENTRATION	17
6.		QAL 2 CALIBRATION ADJUSTMENTS	19

	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITROUS OXIDE CONCENTRATION IN STACK GAS	20
7.		EMISSION REDUCTION CALCULATIONS	21
LR	SIOF	CHARIS	
C ′	1 Base	line campaign length	22
119		TARIES	
	Emis		4
Τ2	2 Histor	ric campaigns	21
Т З	Basel	line campaign length	21
Τ4	Basel	line emission factor	24
Т 5	5 Proje	ct emission factor	25

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 2 of Azomures nitric acid plant and quantity of emission reduction generated during the third project campaign on the line.

Total quantity of emission reductions generated during the period from 14/10/2011 through 19/11/2012 on Line 2 is **402 534 ERUs**.

EMISSIO				
Baseline Emission Factor	EF BL		11.16 kg	N2O/tHNO3
Project Campaign Emission Factor	EF_P		1.51 kg	N2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	:	207 983 t⊦	- INO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG		134 322 t⊦	INO3
Nitric Acid Produced in the Project Campaign	NAP_P		134 557 t⊦	INO3
GWP	GWP		310 tC	CO2e/tN2O
Emission Reduction	ER		402 534 tC	COe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000				
Abatement Ratio			87.1%	
		D		
EMISSION RED		K 0011	0040	
Year	2010	2011	2012	
Date From		14 Oct 2011	01 Jan 3	2012
Date To		31 Dec 2011	19 Nov 2	2012
Nitric Acid Production		27 947	106	611
Emission Reduction		83 604	318	930

T 1 Emission reduction calculations

Baseline emission factor established for the Line 2 is $11.16 \text{ kgN}_2\text{O}/\text{tHNO}_3$. The baseline was carried out from 13/07/2007 through 20/10/2008.

The secondary catalyst on Line 2 was installed on 27/10/2008. Project emission factor during the third project campaign, which started on 14/10/2011 and went through 19/11/2012, is $1.51 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 134 557 tonnes of nitric acid was produced.

 $ER_YR = ER * NAP_P_YR / NAP_P$

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from Joint Implementation project aimed at N2O emissions reduction by installation of secondary catalyst inside ammonia oxidation reactors at 3 nitric acid production plants NA2, NA3 and NA4 of Azomures SA company, situated at Târgu Mures, Romania.

Azomures has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of all 3 nitric acid plants.

This monitoring report contains information on Line 2 emission reductions including information on baseline emission factor setting for the Line 2.

The separate treatment of the three nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirement set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for Line 2 has been established on a line-specific basis. Campaign used for baseline measurements on the Line 2 has been carried out from 13/07/2007 through 20/10/2008. Nitric acid production during this campaign did not exceed the historic nitric acid production established as an average production during previous historic campaigns.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

 $BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$

The line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been calculated based on the 2008 QAL2 report in its sections 7.5 (also in table 10.5) where separate UNC values for N2O concentration and tail gas flow are defined. The NA4 QAL2 test report does not contain calculation of total AMS UNC value, only separate UNC values for N2O concentration and tail gas flow. Total AMS UNC is therefore calculated as $UNC = \sqrt{(2.88^2 + 1.83^2)}$. Total UNC is then 3.41%.

The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$

where:

Variable EF _{BL} BE _{BC}	Definition Baseline N_2O emissions factor ($tN_2O/tHNO_3$) Total N_2O emissions during the baseline campaign (tN_2O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

• the impulse line is the same as the NOx outlet line

• the circuit is the same as for measuring NOx outlet concentration, including up to the pressure reducing valve outlet.

• the gas for the N₂O analyzer is taken from here through a water discharge cooler. The analyzer is produced by Environement S.A., France and is based on non-dispersive infrared absorption principle; it is placed in the same cabinet as the NOx analyzer. The N2O concentration measurement range is between 0 – 2000 ppm.

• the outlet analyzer signal is of 4 - 20 mA, proportional to the value of the concentration. This signal is transmitted through an electric cable at the plant's central control panel. The electric cable is approx. 100 m long.

the device that converts the 4 – 20 mA signal in nitrogen oxides concentration is a ISU – MMC- 24C digital indicator produced by Infostar Pascani. The device has 16 inlet circuits of 4 – 20 mA. The readings are digitally displayed and are recorded every 2 seconds. Data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

3.1.2 Tail gas flow, temperature and pressure

• the measuring point is located on the expansion turbine outlet pipe towards the discharge nozzle; Pytot type sensor with multiple holes; operating conditions: absolute p = 2.5 bar, t = 80° C

• pneumatic connection line (12 mm diameter and approx. 1 m long hoses) between the sensor and the electric switch box where the Dp cell is located; pneumatic connection line (6 mm diameter and approx. 2 m long hose) between the sensor and the electric switch box where the absolute pressure measuring cell is located

• measuring device: Dp differential transducer, produced by ABB, measuring range between 0 – 30 mbar; absolute pressure transducer produced by Endress&Hauser,

measuring range between 0 – 0.3 bar; Pt100 thermal resistance with built-in adapter, measuring range between 0 - 200° C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

It is business-as-usual in Azomures to change composition of oxidation catalysts installed between campaigns, so the composition during historic and the baseline campaigns is varying.

Reason for switching from Heraeus to Johnson Matthey supplier of primary catalysts for plant NA2 between baseline campaign and third project campaign was of financial nature. Type of the catalyst and its composition (just minor change in the composition caused by slightly different ratio between 3 main precious metal components) remained the same, just the supplier has changed. This change had no impact on N2O formation underneath the primary catalysts and in the tail gas. Use of this type of primary catalysts is the industry standard.

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 4 campaigns), has been used as a cap on the length of the baseline campaign.

3.5 Regulatory baseline emissions factor

There are no regulatory limits of N2O whether defined as mass or concentration limits existent in Romania and there are no limits defined in the Azomures IPPC permit. Project thus uses baseline emission factor as measured during the baseline campaign.

4. PROJECT EMISSIONS

During the third project campaign on Line 2 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on a continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

b) Calculate the sample standard deviation (s)

c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)

d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

PEn = VSG * NCSG *
$$10^{-9}$$
 * OH (tN₂O)

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

Because this campaign was third project campaign on Line 2 there has been no minimum average emission factor established yet for this campaign. This factor will be established after 10th project campaign.

4.3 Project Campaign Length

Project campaign production of nitric acid 134 557 tHNO3 was lower than the nameplate capacity of the plant. Project campaign length was shorter than the historic campaign length and also shorter than the baseline campaign length and thus the baseline campaign length in terms of the N2O concentration measurements has been shortened for calculation of the baseline emission factor and the emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor ($tN_2O/tHNO_3$)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)

5. MONITORING PLAN

5.1 Main air flow

• the measuring point is located on the compressor air discharge pipe

- diaphragm type sensor with ring-like chambers
- operating conditions: p = 2.5 3 bars, $t = 150^{\circ}C$

• pneumatic signal transmission between the sensor and the transducer through 2 impulse pipes, approx. 10 m long

• measuring device: Fischer Roesmount differential electronic transducer, having a measuring range between 0 - 45.24 mbar; output signal: analogue 4 - 20 mA

• signal transmission: electric wires, approx. 30 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.2 Secondary air flow

• the measuring point is located on the air compressor discharge pipe

- diaphragm type sensor with ring-like chambers
- operating conditions: p = 2.5 3 bars, t = 150°C

• pneumatic signal transmission between the sensor and the transducer through 2 impulse pipes, approx. 15 m long

• measuring device: Fischer Roesmount differential electronic transducer, having a measuring range between 0 – 500 mm H2O; output signal: analogue 4 – 20 mA

• signal transmission: electric wires, approx. 50 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.3 Casing protection air flow

• the measuring point is located on the air duct to the reactors casing, ramifications from the compressor discharge pipe

• diaphragm type sensor with ring-like chambers

• operating conditions: p = 2.5 – 3 bars, t = 150°C

• pneumatic signal transmission between the sensor and the transducer through 2 impulse pipes, approx. 10 m long

• measuring device: FEPA Birlad differential electronic transducer, having a measuring range between 0 – 1500 mm H2O; output signal: analogue 4 – 20 mA

• signal transmission: electric wires, approx. 60 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.4 Reactor sieves temperature

• the measuring point is located on the oxidation reactor; sensor; PtRh-Pt thermocouple, operating conditions: $t = 800 - 1000^{\circ}C$

• electric signal transmission between the sensor and the transducer: PtRh-Pt correction cable, approx. 50 m long

- digital indicator measuring device; measuring range between 0 – 1000°C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 6 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.5 Consumed liquid ammonia flow

• the measuring point is located on the ammonia evaporator inlet pipe; Coriolis type sensor; operating conditions: p = 12 bar, $t = 8 - 10^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 90 m long

- measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between 0 – 20 t/h; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 10 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.6 Flow of produced nitric acid

• the measuring point is located on the column 4 outlet pipe towards the nitric acid storehouse; electromagnetic sensor; operating conditions: p = 2.5 bar, $t = 40^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 100 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between 0 – 100 t/h; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.7 Temperature of produced nitric acid

• the measuring point is located on the column 4 outlet pipe towards the nitric acid storehouse; Coriolis type sensor; operating conditions: p = 2.5 bar, $t = 40^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 100 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between -50 - 200 °C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this

database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.8 Density of produced nitric acid

• the measuring point is located on the column 4 outlet pipe towards the nitric acid storehouse; Coriolis type sensor; operating conditions: p = 2.5 bar, $t = 40^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 100 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between 1.2 - 1.4 kg/l; analogue output signal 4 - 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.9 Tail gases flow, tail gases pressure, tail gases temperature

• the measuring point is located on the expansion turbine outlet pipe towards the discharge nozzle; Pytot type sensor with multiple holes; operating conditions: absolute p = 2.5 bar, $t = 80^{\circ}C$

• pneumatic connection line (12 mm diameter and approx. 1 m long hoses) between the sensor and the electric switch box where the Dp cell is located; pneumatic connection line (6 mm diameter and approx. 2 m long hose) between the sensor and the electric switch box where the absolute pressure measuring cell is located

• measuring device: Dp differential transducer, produced by ABB, measuring range between 0 – 30 mbar; absolute pressure transducer produced by Endress&Hauser, measuring range between 0 – 0.3 bar; Pt100 thermal resistance with built-in adapter, measuring range between 0 - 200°C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 - 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.10 Oxidation reactor pressure

• the measuring point is located on the air compressor discharge pipe; sensor type: capsule for electronic transducer; operating conditions: absolute p = 3.5 bar, $t = 200^{\circ}C$

• pneumatic connection line between the sensor and the transducer; pneumatic connection line of 8 mm diameter and approx. 10 m long

• measuring device: Foxboro transducer, measuring range between 0 – 5 bar; absolute pressure transducer produced by Endress&Hauser, measuring range between 0 – 0.3 bar; Pt100 thermal resistance with built-in adapter, measuring range between 0 - 200° C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 50 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.11 N₂O concentration

• the impulse line is the same as the NOx outlet line

• the circuit is the same as for measuring NOx outlet concentration, including up to the pressure reducing valve outlet.

• the gas for the N2O analyzer is taken from here through a water discharge cooler. The analyzer is produced by Environement S.A., France and is based on non-dispersive infrared

absorption principle; it is placed in the same cabinet as the NOx analyzer. The N2O concentration measurement range is between 0 - 2000 ppm.

• the outlet analyzer signal is of 4 - 20 mA, proportional to the value of the concentration. This signal is transmitted through an electric cable at the plant's central control panel. The electric cable is approx. 100 m long.

the device that converts the 4 – 20 mA signal in nitrogen oxides concentration is a ISU – MMC- 24C digital indicator produced by Infostar Pascani. The device has 16 inlet circuits of 4 – 20 mA. The readings are digitally displayed and are recorded every 2 seconds. Data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

QAL2 test providing regression lines and the combined uncertainty as further used in the model was performed in February 25 28, 2008 by company Airtec holding the ISO 17025 accreditation. During AST tests in August 3 - 6, 2009 and October 28, 2010 done by company SGS holding the ISO 17025 accreditation the NA4 measurements passed the test.

Measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of linearity are determined by statistical analysis according to the guideline and the linearity assumptions are further used in the Calibration Report establishing linear regression lines.

The general formula of the regression line, established in the EN14181 and used in the Calibration Report is:

Y= a + bX

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression line b is the slope of the regression line

After a comparative test the laboratory issued the old and new regression lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression lines:

Xo=Xn=X

where :

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

 $Yn = An + (Bn/Bo)^{*}(Yo-Ao)$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS in "Nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

The measurement system captures and logs normalized stack volume flow in an integrated manner, calculating the final figure from the mA signal of the endpoints by itself, as opposing to storing just temperature and pressure and deriving the volume flow later. Therefore, the volume flow values can be used as input for QAL2 recalibration transformation without denormalization and the need for temperature, pressure, and duct cross-section area. The normalized calibrated stack gas flow rates are further fed into the emission calculation model for processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitrous oxide concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in ppm (parts per million). After QAL2 re-calibration, the values are converted to mgN2O/Nm3 (mg N2O per normalized cubic meter) to make it fit into the formulas set out in the methodology.

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 4 previous campaigns. Average production in campaigns preceding the baseline campaign was 260 782 tHNO3 and time duration was on average 401 days. Table contains also information on suppliers of primary catalysts for Line 2 (4 burners). As shown in the table, it is usual practice in Azomures to use primary catalysts from two suppliers.

T 2 Historic campaigns

Line	AzoMures-2	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	-	-	-	-	n/a	N/A	N/A
	2 t HNO3	241 277	11 Sep 2001	15 Jun 2003	642	376	Engelhart-Cal	N/A *
	3 t HNO3	250 030	19 Jun 2003	01 Aug 2004	409	611	OMG AG	N/A *
	4 t HNO3	319 467	20 Aug 2004	14 Feb 2006	543	588	Umicore Degussa	N/A *
	5 t HNO3	232 352	03 Apr 2006	21 May 2007	413	563	Umicore Degussa	N/A *
Average HNO3 production	t HNO3	260 782			401	650	* Confidential, but a	vailable for verification
Project Campaigns	BL t HNO3	207 983	13 Jul 2007	20 Oct 2008	465	447	Heraous	N/A *
_	PL t HNO3	134 557	14 Oct 2011	19 Nov 2012	402	335	Johnson Matthey	N/A *

Table The project campaign production value of 134 557 tHNO3 was lower than historic nitric acid production set at level of 260 782 tHNO3.

T 3 and Chart C 1 define the length of the baseline campaign set according to the historic campaign length. Baseline campaign measurements was carried out from 13/07/2007 through 20/10/2008. During baseline campaign, a total of 207 983 tHNO3 was produced, NCSG measurements are taken into account until the production of 134 322 tHNO3 was reached.

The project campaign production value of 134 557 tHNO3 was lower than historic nitric acid production set at level of 260 782 tHNO3.

T 3 Baseline campaign length

AzoMures-2	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 May 21	2007 Jul 13	2008 May 07	2008 Oct 20	2008 Oct 21
Baseline Factor kgN2O/tHNO3	-	-	11.16	11.16	11.16
Production tHNO3		-	134 322	207 983	-
Per Day Production tHNO3	649.7				
Baseline less Historic Production	(52 799.0)				
Baseline less Historic Days	(81.3)				

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 2 using the method as defined in the CDM methodology AM0034 and in the PDD. Baseline measurement was carried out from 13/07/2007 through 20/10/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 640°C occurred. Calculated baseline N2O emissions were 1,194 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 3.360%. As a result we have arrived to the baseline emission factor of $11.16 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Table T5 shows the calculation of the project emission factor on Line 2 during the project campaign. Project campaign started on 14/10/2011 and went through 19/11/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

 $PEn = VSG * NCSG * 10-9 * OH (tN_2O)$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 640°C occurred.

By dividing total mass o N2O emissions by the nitric acid production (capped by nameplate capacity 725 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.51 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

This emission factor has been used in further calculation of emission reductions. Neither moving average emission factor nor minimum emission factor was established, since it was the first project campaign.

MONITORING REPORT

Ï	2	
ļ		101.2

	٩.	
	7	1
	5	4
		1
	C	J
	0	0
	÷	-
	c	
	7	1
	ç	,
	2	-
	U	ŋ,
	U	n
	-	
	C	-
	c	
	7	١
	-	-
	6	h
	z	2
	2	
	-	
	-	I h
	ų	ν
	U	D
	ň	ń
		ž
1	1	1
•	c	۲
	1	•
- 6	17	-

			RASI	ELINE EMISSION E	ACTOR				
	Parameter	Operating Hours	Nitric Acid Production	N 2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxidation Pressure
	Code Unit	но Ч	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	°, C	ОР КРа
Elimination of extreme values									
Lower limit Upper Limit			0 60.00	0 5 000	0 200 000	0 18 000	0 20.00	- 50 1 200	0 1 000
Raw Data Measured Range									
Count as % of Dataset		8 132 80%	10 112 100%	5 961 59%	10 109 100%	10100 100%	10 108 <i>100%</i>	10 107 100%	9 299 92%
Minimum Maximum			- 40.70	3 4 321	576 130 424	- 16424	0	(26) 876	- 403
Mean Standard Deviation Total			20.57 9.36 207 983	2 481 1 244	102 619 31 897	9743 9743 3817	0.16	735 280	309 309 140
N2O Emissions (VSG * NCSG * OH) Emission Factor		2 070 9.62	t N2O kgN2O / tHNO3						
Permitted Range									
Minimum Maximum						7 800 12 000	0 0.13	800 880	0 400
Data within the permitted range									
Count as % of Operating Hours		5 750 71%		2 987 37%	5 750 71%				
Minimum				9	1				
Maximum Mean				4 321 2 552	130 424 113 928				
Standard Deviation				947	8 069				
N2O Emissions (VSG * NCSG * OH) Emission Factor		2 364 10.98	t N2O kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval Lower bound				695	98 112				
Upper bound				4 408	129 744				
Count				2 942	5 7 26				
as % of Operating Hours Minimum				36% 1 176	70% 99 844				
Maximum Mean Standard Deviation				4 321 2 585 914	129 653 114 289 4 903				
					-				
N2O Emissions (VSG * NCSG * OH) Emission Factor (EF_BL)		2 402 11.16	t N2O kgN2O / tHNO3						

24

 \mathbf{D}

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	٩	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	oT °c	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 60.00	0 5 000	0 200 000	0 18 000	0 20.00	50 1 200	0 1 000
saw Data Measured Rance									
Count as % of Dataset		5 797 61%	9 531 100%	7 513 79%	9 532 100%	617 6%	6 556 69%	9 532 100%	6 595 69%
Minimum				0	1		0	(31)	1
Maximum Mean			29.73 14.12	1 359 262	115 825 70 018	12 521 2 183	19.89 0.31	858 258	410 325
Standard Deviation Total			11.41 134 557	185	42 862	4 459	1.24	403	117
N2O Emissions (VSG * NCSG * OH) Emission Factor		106 0.79	t N2O kgN2O / tHNO3						
)ata within the confidence interval									
i5% Confidence interval Lower bound Upper bound				- 100 624	- 13 991 154 027				
Count				5 660	5 787				
as % of Operating Hours Minimum				98% 0	100% 12 925				
Maximum Mean				610 321	115 825 103 779				
Standard Deviation				- 96 - 7	5 869				
N2O Emissions (VSG * NCSG * OH) Actual Proiect Emission Factor (EF PActual)		193 1.44	t N2O kgN2O / tHNO3						
Abatement Ratio		87.1%							
Joving Average Emission Factor Correction		Actual Factors	<u>Moving Average F</u>	tule					
	- c	0.93	0.93						
	101	1.44	1.51						
	4			_					
Project Emission Factor (EF_P) Abstement Batio		1.51 86 5%	kgN2O/tHNO3						
		a/ 0:00							

© 2008, Vertis Finance

25

MONITORING REPORT

PROJECT: Project aimed at N₂O emissions reduction by installation of secondary catalyst inside ammonia oxidation reactors at 3 nitric acid production plants NA2, NA3 and NA4 of Azomures SA, company situated in Targu Mures, Romania

LINE: Line 3

MONITORING PERIOD:

FROM:	21/07/2011
TO:	07/10/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	4
2.		DESCRIPTION OF THE PROJECT ACTIVITY	5
3.		BASELINE SETTING	6
	3.1 3.1	MEASUREMENT PROCEDURE FOR N ₂ O CONCENTRATION AND TAIL GAS VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	7 7
	3.1	2 TAIL GAS FLOW, TEMPERATURE AND PRESSURE	8
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	8
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	9
	3.4	HISTORIC CAMPAIGN LENGTH	9
	3.5	REGULATORY BASELINE EMISSIONS FACTOR	9
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	10 10
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	10
	4.2	MINIMUM PROJECT EMISSION FACTOR	10
	4.3	PROJECT CAMPAIGN LENGTH	11
	4.4	LEAKAGE	11
	4.5	EMISSION REDUCTIONS	11
5.		MONITORING PLAN	12
	5.1	MAIN AIR FLOW	12
	5.2	SECONDARY AIR FLOW	12
	5.3	CASING PROTECTION AIR FLOW	13
	5.4	REACTOR SIEVES TEMPERATURE	14
	5.5	CONSUMED LIQUID AMMONIA FLOW	14
	5.6	FLOW OF PRODUCED NITRIC ACID	15
	5.7	TEMPERATURE OF PRODUCED NITRIC ACID	15
	5.8	DENSITY OF PRODUCED NITRIC ACID	16
	5.9	TAIL GASES FLOW, TAIL GASES PRESSURE, TAIL GASES TEMPERATURE	16
	5.10	OXIDATION REACTOR PRESSURE	17
	5.11	N ₂ O CONCENTRATION	17
6.		QAL 2 CALIBRATION ADJUSTMENTS	19

6.1	APPLIED PRINCIPLE	19
6.2	STACK GAS VOLUME FLOW	20
6.3	NITROUS OXIDE CONCENTRATION IN STACK GAS	20
	EMISSION REDUCTION CALCULATIONS	21
	CHARIS	
l Base	line campaign length	22
Emiss	sion reduction calculations	4
2 Histor	ric campaigns	21
Basel	ine campaign length	21
Basel	ine emission factor	24
5 Proje	ct emission factor	25
	6.1 6.2 6.3 5T OF 1 Base 2 Histor 3 Basel 5 Proje	 6.1 APPLIED PRINCIPLE 6.2 STACK GAS VOLUME FLOW 6.3 NITROUS OXIDE CONCENTRATION IN STACK GAS EMISSION REDUCTION CALCULATIONS ST OF CHARTS I Baseline campaign length ST OF TABLES Emission reduction calculations Historic campaigns Baseline campaign length Baseline campaign length Baseline campaign length Baseline emission factor Froject emission factor

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 3 of Azomures nitric acid plant and quantity of emission reduction generated during the third project campaign on the line.

Total quantity of emission reductions generated during the period from 21/07/2011 through 07/10/2012 on Line 3 is **786 603 ERUs**.

EMIO				
EMISS	SION REDUCTION			
Baseline Emission Factor	EF_BL		12.32 kgN2O/	tHNO3
Project Campaign Emission Factor	EF_P		2.13 kgN2O/	tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	21	5 669 tHNO3	
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCS0	G 21	5 669 tHNO3	
Nitric Acid Produced in the Project Campaign	NAP_P	24	8 868 tHNO3	
GWP	GWP		310 tCO2e/t	N2O
Emission Reduction	ER	78	6603 tCOe	
ER=(EF_BL-EF_P)*NAP_P*GWP/1000				
Abatement Ratio			83.9%	
EMISSION R	EDUCTION PER YE	AR		
Year	2010	2011	2012	
Date From		21 Jul 2011	01 Jan 2012	
Date To		31 Dec 2011	07 Oct 2012	
Nitric Acid Production		118 646	130 222	

T 1 Emission reduction calculations

Baseline emission factor established for the Line 3 is $12.32 \text{ kgN}_2\text{O}/\text{tHNO}_3$. The baseline was carried out from 02/03/2007 through 14/07/2008.

375 007

411 596

The secondary catalyst on Line 3 was installed on 18/07/2008. Project emission factor during the third project campaign, which started on 21/07/2011 and went through 07/10/2012, is 2.13 kgN₂O/tHNO₃.

During the project campaign 248 868 tonnes of nitric acid was produced.

Emission Reduction

 $ER_YR = ER * NAP_P_YR / NAP_P$

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from Joint Implementation project aimed at N2O emissions reduction by installation of secondary catalyst inside ammonia oxidation reactors at 3 nitric acid production plants NA2, NA3 and NA4 of Azomures SA company, situated at Târgu Mures, Romania.

Azomures has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of all 3 nitric acid plants.

This monitoring report contains information on Line 3 emission reductions including information on baseline emission factor setting for the Line 3.

The separate treatment of the three nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirement set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for Line 3 has been established on a line-specific basis. Campaign used for baseline measurements on the Line 3 has been carried out from 02/03/2007 through 14/07/2008. Nitric acid production during this campaign did not exceed the historic nitric acid production established as an average production during previous historic campaigns.

 N_2O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

 $BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$

The line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been calculated based on the 2008 QAL2 report in its sections 7.5 (also in table 10.5) where separate UNC values for N2O concentration and tail gas flow are defined. The NA4 QAL2 test report does not contain calculation of total AMS UNC value, only separate UNC values for N2O concentration and tail gas flow. Total AMS UNC is therefore calculated as $UNC = \sqrt{(2.88^2 + 1.83^2)}$. Total UNC is then 3.41%.

The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$

where:

Variable EF _{BL} BE _{BC}	Definition Baseline N_2O emissions factor ($tN_2O/tHNO_3$) Total N_2O emissions during the baseline campaign (tN_2O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

• the impulse line is the same as the NOx outlet line

• the circuit is the same as for measuring NOx outlet concentration, including up to the pressure reducing valve outlet.

• the gas for the N₂O analyzer is taken from here through a water discharge cooler. The analyzer is produced by Environement S.A., France and is based on non-dispersive infrared absorption principle; it is placed in the same cabinet as the NOx analyzer. The N2O concentration measurement range is between 0 – 2000 ppm.

• the outlet analyzer signal is of 4 - 20 mA, proportional to the value of the concentration. This signal is transmitted through an electric cable at the plant's central control panel. The electric cable is approx. 100 m long.

the device that converts the 4 – 20 mA signal in nitrogen oxides concentration is a ISU – MMC- 24C digital indicator produced by Infostar Pascani. The device has 16 inlet circuits of 4 – 20 mA. The readings are digitally displayed and are recorded every 2 seconds. Data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

3.1.2 Tail gas flow, temperature and pressure

• the measuring point is located on the expansion turbine outlet pipe towards the discharge nozzle; Pytot type sensor with multiple holes; operating conditions: absolute p = 2.5 bar, t = 80° C

• pneumatic connection line (12 mm diameter and approx. 1 m long hoses) between the sensor and the electric switch box where the Dp cell is located; pneumatic connection line (6 mm diameter and approx. 2 m long hose) between the sensor and the electric switch box where the absolute pressure measuring cell is located

• measuring device: Dp differential transducer, produced by ABB, measuring range between 0 – 30 mbar; absolute pressure transducer produced by Endress&Hauser,

measuring range between 0 – 0.3 bar; Pt100 thermal resistance with built-in adapter, measuring range between 0 - 200° C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

Supplier of primary catalysts for plant NA3 between baseline campaign and third project campaign remained same as well as its composition.

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 4 campaigns), has been used as a cap on the length of the baseline campaign.

3.5 Regulatory baseline emissions factor

There are no regulatory limits of N2O whether defined as mass or concentration limits existent in Romania and there are no limits defined in the Azomures IPPC permit. Project thus uses baseline emission factor as measured during the baseline campaign.

4. PROJECT EMISSIONS

During the third project campaign on Line 3 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on a continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

b) Calculate the sample standard deviation (s)

c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)

d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

PEn = VSG * NCSG *
$$10^{-9}$$
 * OH (tN₂O)

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

Because this campaign was third project campaign on Line 3 there has been no minimum average emission factor established yet for this campaign. This factor will be established after 10th project campaign.

4.3 Project Campaign Length

Project campaign length was longer than the campaign length normal and thus all N2O values measured during the project campaign were used for calculation of the emission factor.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $\text{EF}_{ma,n}$ and EF_n)

5. MONITORING PLAN

5.1 Main air flow

• the measuring point is located on the compressor air discharge pipe

- diaphragm type sensor with ring-like chambers
- operating conditions: p = 2.5 3 bars, $t = 150^{\circ}C$

• pneumatic signal transmission between the sensor and the transducer through 2 impulse pipes, approx. 10 m long

• measuring device: Fischer Roesmount differential electronic transducer, having a measuring range between 0 - 45.24 mbar; output signal: analogue 4 - 20 mA

• signal transmission: electric wires, approx. 30 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.2 Secondary air flow

• the measuring point is located on the air compressor discharge pipe

- diaphragm type sensor with ring-like chambers
- operating conditions: p = 2.5 3 bars, t = 150°C

• pneumatic signal transmission between the sensor and the transducer through 2 impulse pipes, approx. 15 m long

• measuring device: Fischer Roesmount differential electronic transducer, having a measuring range between 0 – 500 mm H2O; output signal: analogue 4 – 20 mA

• signal transmission: electric wires, approx. 50 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.3 Casing protection air flow

• the measuring point is located on the air duct to the reactors casing, ramifications from the compressor discharge pipe

• diaphragm type sensor with ring-like chambers

• operating conditions: p = 2.5 – 3 bars, t = 150°C

• pneumatic signal transmission between the sensor and the transducer through 2 impulse pipes, approx. 10 m long

• measuring device: FEPA Birlad differential electronic transducer, having a measuring range between 0 – 1500 mm H2O; output signal: analogue 4 – 20 mA

• signal transmission: electric wires, approx. 60 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.4 Reactor sieves temperature

• the measuring point is located on the oxidation reactor; sensor; PtRh-Pt thermocouple, operating conditions: t = $800 - 1000^{\circ}C$

• electric signal transmission between the sensor and the transducer: PtRh-Pt correction cable, approx. 50 m long

- digital indicator measuring device; measuring range between 0 – 1000°C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 6 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.5 Consumed liquid ammonia flow

• the measuring point is located on the ammonia evaporator inlet pipe; Coriolis type sensor; operating conditions: p = 12 bar, $t = 8 - 10^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 90 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between 0 – 20 t/h; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 10 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.6 Flow of produced nitric acid

• the measuring point is located on the column 4 outlet pipe towards the nitric acid storehouse; electromagnetic sensor; operating conditions: p = 2.5 bar, $t = 40^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 100 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between 0 – 100 t/h; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.7 Temperature of produced nitric acid

• the measuring point is located on the column 4 outlet pipe towards the nitric acid storehouse; Coriolis type sensor; operating conditions: p = 2.5 bar, $t = 40^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 100 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between -50 - 200 °C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this

database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.8 Density of produced nitric acid

• the measuring point is located on the column 4 outlet pipe towards the nitric acid storehouse; Coriolis type sensor; operating conditions: p = 2.5 bar, $t = 40^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 100 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between 1.2 - 1.4 kg/l; analogue output signal 4 - 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.9 Tail gases flow, tail gases pressure, tail gases temperature

• the measuring point is located on the expansion turbine outlet pipe towards the discharge nozzle; Pytot type sensor with multiple holes; operating conditions: absolute p = 2.5 bar, $t = 80^{\circ}C$

• pneumatic connection line (12 mm diameter and approx. 1 m long hoses) between the sensor and the electric switch box where the Dp cell is located; pneumatic connection line (6 mm diameter and approx. 2 m long hose) between the sensor and the electric switch box where the absolute pressure measuring cell is located

• measuring device: Dp differential transducer, produced by ABB, measuring range between 0 – 30 mbar; absolute pressure transducer produced by Endress&Hauser, measuring range between 0 – 0.3 bar; Pt100 thermal resistance with built-in adapter, measuring range between 0 - 200°C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 - 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.10 Oxidation reactor pressure

• the measuring point is located on the air compressor discharge pipe; sensor type: capsule for electronic transducer; operating conditions: absolute p = 3.5 bar, $t = 200^{\circ}C$

• pneumatic connection line between the sensor and the transducer; pneumatic connection line of 8 mm diameter and approx. 10 m long

• measuring device: Foxboro transducer, measuring range between 0 – 5 bar; absolute pressure transducer produced by Endress&Hauser, measuring range between 0 – 0.3 bar; Pt100 thermal resistance with built-in adapter, measuring range between 0 - 200° C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 50 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.11 N₂O concentration

• the impulse line is the same as the NOx outlet line

• the circuit is the same as for measuring NOx outlet concentration, including up to the pressure reducing valve outlet.

• the gas for the N2O analyzer is taken from here through a water discharge cooler. The analyzer is produced by Environement S.A., France and is based on non-dispersive infrared

absorption principle; it is placed in the same cabinet as the NOx analyzer. The N2O concentration measurement range is between 0 - 2000 ppm.

• the outlet analyzer signal is of 4 - 20 mA, proportional to the value of the concentration. This signal is transmitted through an electric cable at the plant's central control panel. The electric cable is approx. 100 m long.

the device that converts the 4 – 20 mA signal in nitrogen oxides concentration is a ISU – MMC- 24C digital indicator produced by Infostar Pascani. The device has 16 inlet circuits of 4 – 20 mA. The readings are digitally displayed and are recorded every 2 seconds. Data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

QAL2 test providing regression lines and the combined uncertainty as further used in the model was performed in February 25 28, 2008 by company Airtec holding the ISO 17025 accreditation. During AST tests in August 3 - 6, 2009 and October 28, 2010 done by company SGS holding the ISO 17025 accreditation the NA4 measurements passed the test.

Measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of linearity are determined by statistical analysis according to the guideline and the linearity assumptions are further used in the Calibration Report establishing linear regression lines.

The general formula of the regression line, established in the EN14181 and used in the Calibration Report is:

Y= a + bX

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression line b is the slope of the regression line

After a comparative test the laboratory issued the old and new regression lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression lines:

Xo=Xn=X

where :

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

 $Yn = An + (Bn/Bo)^{*}(Yo-Ao)$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS in "Nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

The measurement system captures and logs normalized stack volume flow in an integrated manner, calculating the final figure from the mA signal of the endpoints by itself, as opposing to storing just temperature and pressure and deriving the volume flow later. Therefore, the volume flow values can be used as input for QAL2 recalibration transformation without denormalization and the need for temperature, pressure, and duct cross-section area. The normalized calibrated stack gas flow rates are further fed into the emission calculation model for processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitrous oxide concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in ppm (parts per million). After QAL2 re-calibration, the values are converted to mgN2O/Nm3 (mg N2O per normalized cubic meter) to make it fit into the formulas set out in the methodology.

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 4 previous campaigns. Average production in campaigns preceding the baseline campaign was 286 940 tHNO3 and time duration was on average 383 days. Table contains also information on suppliers of primary catalysts for Line 3 (4 burners). As shown in the table, it is usual practice in Azomures to use primary catalysts from two suppliers.

T 2 Historic campaigns

Line	AzoMures-3	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	-	-	-	-	n/a	0 N/A	1
	2 t HNO3	210 275	12 Oct 2001	27 Oct 2002	380	553	Engelhart-Cal N/A	*
	3 t HNO3	325 002	08 Nov 2002	13 Apr 2004	522	623	Engelhart-Cal N/A	*
	4 t HNO3	349 459	20 Apr 2004	02 Oct 2005	530	659	Engelhart-Cal N/A	*
	5 t HNO3	263 025	19 Oct 2005	16 Feb 2007	485	542	Johnson Matthey N/A	*
Average HNO3 production	t HNO3	286 940			383	748	* Confidential, but availa	ble for verification
Project Campaigns	BL t HNO3	215 669	02 Mar 2007	14 Jul 2008	500	432	Johnson Matthey N/A	*
_	PL t HNO3	248 868	21 Jul 2011	07 Oct 2012	445	559	Johnson Matthey N/A	*

Table The project campaign production value of 248 868 tHNO3 was lower than historic nitric acid production set at level of 286 940 tHNO3.

T 3 and Chart C 1 define the length of the baseline campaign set according to the historic campaign length. Baseline campaign measurements was carried out from 02/03/2007 through 14/07/2008. During baseline campaign, a total of 215 669 tHNO3 was produced, NCSG measurements are taken into account until the production of 215 669 tHNO3 was reached.

The project campaign production value of 248 868 tHNO3 was lower than historic nitric acid production set at level of 286 940 tHNO3.

T 3 Baseline campaign length

Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
2007 Feb 16	2007 Mar 02	2008 Jul 14	2008 Jul 14	2008 Jul 15
-	-	12.32	12.32	12.32
	-	215 669	215 669	-
748.4				
(71 271.0)				
(95.2)				
	Historic Campaings End 2007 Feb 16 - 748.4 (71 271.0) (95.2)	Historic Campaings End Start of Baseline Measurement 2007 Feb 16 2007 Mar 02 748.4 (71 271.0) (95.2)	Historic Campaings End 2007 Feb 16 - 748.4 (71 271.0) (95.2) Start of Baseline Measurement NCSG 2008 Jul 14 - 12.32 - 215 669	Historic Campaings End Start of Baseline Measurement End of Baseline Measurement NCSG End of Baseline Measurement 2007 Feb 16 2007 Mar 02 2008 Jul 14 2008 Jul 14 - - 12.32 12.32 - 215 669 215 669 748.4 (71 271.0) (95.2)

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 3 using the method as defined in the CDM methodology AM0034 and in the PDD. Baseline measurement was carried out from 02/03/2007 through 14/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 640°C occurred. Calculated baseline N2O emissions were 1,194 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 3.185%. As a result we have arrived to the baseline emission factor of $12.32 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Table T5 shows the calculation of the project emission factor on Line 3 during the project campaign. Project campaign started on 21/07/2011 and went through 07/10/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

 $PEn = VSG * NCSG * 10-9 * OH (tN_2O)$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 640°C occurred.

By dividing total mass o N2O emissions by the nitric acid production (capped by nameplate capacity 725 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.13 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

This emission factor has been used in further calculation of emission reductions. Neither moving average emission factor nor minimum emission factor was established, since it was the first project campaign.

MONITORING REPORT

Ï	12	
ļ		101.2

	٩.	
	7	1
	5	4
	2	1
	C	J
	0	0
	÷	-
	c	
	7	1
	ç	,
	2	-
	U	ŋ,
	U	n
	-	
	C	-
	c	
	7	١
	-	-
	6	h
	z	2
	2	
	-	
	-	I h
	ų	ν
	u	D
	ň	ń
		ž
1	1	1
•	c	۲
	1	•
- 6	17	-

			BASR		ACTOR				
	Parameter	Operating Hours	Nitric Acid Production	N 2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxidation Pressure
	Code Unit	н ч	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	°, O	0P kPa
Elimination of extreme values									
Lower limit Upper Limit			0 60.00	100 5 000	20 000 200 000	0 18 000	0 20.00	- 50 1 200	0 1 000
Raw Data Measured Range									
Count as % of Dataset		8 624 72%	7 388 62%	6 243 52%	6 482 54%	11915 99%	11 174 93%	11 989 100%	11 431 95%
Minimum			0.10	161	20 263	, , , , , , , , , , , , , , , , , , ,	- 0	(31)	
Maximum Mean			40.54 29.19	4 321 3 902	136 304 95 572	15445 7882	19.94 8.53	864 623	400 104
Standard Deviation Total			4.80 215 669	462	15 376	4881	4.22	356	117
N2O Emissions (VSG * NCSG * OH) Emission Factor		3 216 14.44	t N2O kgN2O / tHNO3						
Permitted Range									
Maximum						8 000 12 500	0 11.50	800 860	0 260
Data within the permitted range									
Count		8 291		6 877	6 924				
as % of Operating Hours Minimum		96%		80% 271	80% -				
Maximum				4 321	415 934				
Mean Standard Deviation				3 286 1 163	93 138 21 931				
N2O Emissions (VSG * NCSG * OH) Emilssion Factor		2 640 11.85	t N2O kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval Lower bound				1 007	50 153				
Upper bound				5 565	136 122				
Count				6 636	6 468				
as % of Operating Hours Minimum				77% 1 028	75% 50 192				
Maximum Mean				4 321 3 374	135 386 94 322				
Standard Deviation				1 086	14 628				
N2O Emissions (VSG * NCSG * OH) Emission Factor (EF_BL)		2 745 12.32	t N2O kgN2O / tHNO3						

24

 \geq

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
ă	arameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxidation Pressure
	Code Unit	H٥	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	Ratio AIFR %	от °c	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 60.00	100 5 000	20 000 200 000	0 18 000	0 20.00	50 1 200	0 1 000
₹aw Data Measured Range									
Count as % of Dataset		8 307 78%	8 830 83%	8 305 78%	8 353 78%	10 678 100%	9 640 90%	10 678 100%	10 128 95%
Minimum			0.10	100	21 721		ı	(31)	1
Maximum			46.04	3 341	125 003	12 934	18.80	862	268
wean Standard Deviation Total			28.18 11.55 248 868	191 191	112 / 96 8 354	9 014 4 835	9.32 3.53	392 429	93
N2O Emissions (VSG * NCSG * OH) Emission Factor		487 1.96	t N2O kgN2O / tHNO3						
)ata within the confidence interval									
95% Confidence interval Lower bound Upper bound				145 895	96 423 129 170				
Count				8 076	7 980				
as % of Operating Hours Minimum				97% 163	96% 96 431				
Maximum				895	125 003				
Mean Standard Deviation				725 184	4 768				
N2O Emissions (VSG * NCSG * OH)		493	t N2O						
Actual Project Emission Factor (EF_PActual) Abatement Ratio		1.98 83.9%	kgN20 / tHNO3						
Moving Average Emission Factor Correction		Actual Factors	Moving Average E	0.10	_				
	` -	1 45	1 46						
	- 0	2.94 2.94	2.94						
	ς	1.98	2.13						
	4	•							
Project Emission Factor (EE_D)		2 13	ka N2O / †HNO3						
		82.8%							

© 2008, Vertis Finance

25

MONITORING REPORT

PROJECT: Project aimed at N₂O emissions reduction by installation of secondary catalyst inside ammonia oxidation reactors at 3 nitric acid production plants NA2, NA3 and NA4 of Azomures SA, company situated in Targu Mures, Romania

LINE: Line 3

MONITORING PERIOD:

FROM:	08/10/2012
TO:	19/11/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	4
2.		DESCRIPTION OF THE PROJECT ACTIVITY	5
3.		BASELINE SETTING	6
	3.1 3.1	MEASUREMENT PROCEDURE FOR N ₂ O CONCENTRATION AND TAIL GAS VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	7 7
	3.1	2 TAIL GAS FLOW, TEMPERATURE AND PRESSURE	8
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	8
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	9
	3.4	HISTORIC CAMPAIGN LENGTH	9
	3.5	REGULATORY BASELINE EMISSIONS FACTOR	9
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	10 10
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	10
	4.2	MINIMUM PROJECT EMISSION FACTOR	10
	4.3	PROJECT CAMPAIGN LENGTH	11
	4.4	LEAKAGE	11
	4.5	EMISSION REDUCTIONS	11
5.		MONITORING PLAN	12
	5.1	MAIN AIR FLOW	12
	5.2	SECONDARY AIR FLOW	12
	5.3	CASING PROTECTION AIR FLOW	13
	5.4	REACTOR SIEVES TEMPERATURE	14
	5.5	CONSUMED LIQUID AMMONIA FLOW	14
	5.6	FLOW OF PRODUCED NITRIC ACID	15
	5.7	TEMPERATURE OF PRODUCED NITRIC ACID	15
	5.8	DENSITY OF PRODUCED NITRIC ACID	16
	5.9	TAIL GASES FLOW, TAIL GASES PRESSURE, TAIL GASES TEMPERATURE	16
	5.10	OXIDATION REACTOR PRESSURE	17
	5.11	N ₂ O CONCENTRATION	17
6.		QAL 2 CALIBRATION ADJUSTMENTS	19

	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITROUS OXIDE CONCENTRATION IN STACK GAS	20
7.		EMISSION REDUCTION CALCULATIONS	21
LR	SIOF	CHARIS	
C ′	1 Base	line campaign length	22
119		TARIES	
	Emis		4
Τ2	2 Histor	ric campaigns	21
Т З	Basel	line campaign length	21
Τ4	Basel	line emission factor	24
Т 5	5 Proje	ct emission factor	25

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 3 of Azomures nitric acid plant and quantity of emission reduction generated during the fourth project campaign on the line.

Total quantity of emission reductions generated during the period from 08/10/2012 through 19/11/2012 on Line 3 is **70 519 ERUs**.

EN	AISSION REDUCTION	
Baseline Emission Factor	EF_BL	9.40 kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	1.95 kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	215 669 tHNO3
Nitric Acid Produced in the NCSG Baseline Campaig	NAP_BL_NCSG	30 097 tHNO3
Nitric Acid Produced in the Project Campaign	NAP P	30 571 tHNO3
GWP	GWP	310 tCO2e/tN2O
Emission Reduction	ER	70 519 tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000		
Abatement Ratio		84.6%
EMISSIO	N REDUCTION PER YEAR	
Year	2010 20	011 2012
Date From		08 Oct 2012
Date To		19 Nov 2012
Nitric Acid Production		30 571
Emission Reduction		70 519

T 1 Emission reduction calculations

Baseline emission factor established for the Line 3 is $9.40 \text{ kgN}_2\text{O}/\text{tHNO}_3$. The baseline was carried out from 02/03/2007 through 14/07/2008.

The secondary catalyst on Line 3 was installed on 18/07/2008. Project emission factor during the fourth project campaign, which started on 08/10/2012 and went through 19/11/2012, is $1.95 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 30 571 tonnes of nitric acid was produced.

ER_YR = ER * NAP_P_YR / NAP_P

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from Joint Implementation project aimed at N2O emissions reduction by installation of secondary catalyst inside ammonia oxidation reactors at 3 nitric acid production plants NA2, NA3 and NA4 of Azomures SA company, situated at Târgu Mures, Romania.

Azomures has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of all 3 nitric acid plants.

This monitoring report contains information on Line 3 emission reductions including information on baseline emission factor setting for the Line 3.

The separate treatment of the three nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirement set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for Line 3 has been established on a line-specific basis. Campaign used for baseline measurements on the Line 3 has been carried out from 02/03/2007 through 14/07/2008. Nitric acid production during this campaign did not exceed the historic nitric acid production established as an average production during previous historic campaigns.

 N_2O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

 $BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$

The line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been calculated based on the 2008 QAL2 report in its sections 7.5 (also in table 10.5) where separate UNC values for N2O concentration and tail gas flow are defined. The NA4 QAL2 test report does not contain calculation of total AMS UNC value, only separate UNC values for N2O concentration and tail gas flow. Total AMS UNC is therefore calculated as $UNC = \sqrt{(2.88^2 + 1.83^2)}$. Total UNC is then 3.41%.

The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$

where:

Variable EF _{BL} BE _{BC}	Definition Baseline N_2O emissions factor ($tN_2O/tHNO_3$) Total N_2O emissions during the baseline campaign (tN_2O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

• the impulse line is the same as the NOx outlet line

• the circuit is the same as for measuring NOx outlet concentration, including up to the pressure reducing valve outlet.

• the gas for the N₂O analyzer is taken from here through a water discharge cooler. The analyzer is produced by Environement S.A., France and is based on non-dispersive infrared absorption principle; it is placed in the same cabinet as the NOx analyzer. The N2O concentration measurement range is between 0 – 2000 ppm.

• the outlet analyzer signal is of 4 - 20 mA, proportional to the value of the concentration. This signal is transmitted through an electric cable at the plant's central control panel. The electric cable is approx. 100 m long.

the device that converts the 4 – 20 mA signal in nitrogen oxides concentration is a ISU – MMC- 24C digital indicator produced by Infostar Pascani. The device has 16 inlet circuits of 4 – 20 mA. The readings are digitally displayed and are recorded every 2 seconds. Data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

3.1.2 Tail gas flow, temperature and pressure

• the measuring point is located on the expansion turbine outlet pipe towards the discharge nozzle; Pytot type sensor with multiple holes; operating conditions: absolute p = 2.5 bar, t = 80° C

• pneumatic connection line (12 mm diameter and approx. 1 m long hoses) between the sensor and the electric switch box where the Dp cell is located; pneumatic connection line (6 mm diameter and approx. 2 m long hose) between the sensor and the electric switch box where the absolute pressure measuring cell is located

• measuring device: Dp differential transducer, produced by ABB, measuring range between 0 – 30 mbar; absolute pressure transducer produced by Endress&Hauser,

measuring range between 0 – 0.3 bar; Pt100 thermal resistance with built-in adapter, measuring range between 0 - 200° C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

It is business-as-usual in Azomures to change composition of oxidation catalysts installed between campaigns, so the composition during historic and the baseline campaigns is varying.

Supplier of primary catalysts for plant NA4 between baseline campaign and fourth project campaign remained same as well as its composition. Use of this type of primary catalysts is the industry standard.

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 4 campaigns), has been used as a cap on the length of the baseline campaign.

3.5 Regulatory baseline emissions factor

There are no regulatory limits of N2O whether defined as mass or concentration limits existent in Romania and there are no limits defined in the Azomures IPPC permit. Project thus uses baseline emission factor as measured during the baseline campaign.

4. PROJECT EMISSIONS

During the fourth project campaign on Line 3 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on a continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

PEn = VSG * NCSG *
$$10^{-9}$$
 * OH (tN₂O)

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN_2O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

Because this campaign was fourth project campaign on Line 3 there has been no minimum average emission factor established yet for this campaign. This factor will be established after 10th project campaign.

4.3 Project Campaign Length

Project campaign production of nitric acid 30 571 tHNO3 was lower than the nameplate capacity of the plant. Project campaign length was shorter than the historic campaign length and also shorter than the baseline campaign length and thus the baseline campaign length in terms of the N2O concentration measurements has been shortened for calculation of the baseline emission factor and the emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF _{ma,n} and EF _n)

5. MONITORING PLAN

5.1 Main air flow

• the measuring point is located on the compressor air discharge pipe

- diaphragm type sensor with ring-like chambers
- operating conditions: p = 2.5 3 bars, $t = 150^{\circ}C$

• pneumatic signal transmission between the sensor and the transducer through 2 impulse pipes, approx. 10 m long

• measuring device: Fischer Rosemount differential electronic transducer, having a measuring range between 0 – 45.24 mbar; output signal: analogue 4 – 20 mA

• signal transmission: electric wires, approx. 30 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.2 Secondary air flow

• the measuring point is located on the air compressor discharge pipe

- diaphragm type sensor with ring-like chambers
- operating conditions: p = 2.5 3 bars, t = 150°C

• pneumatic signal transmission between the sensor and the transducer through 2 impulse pipes, approx. 15 m long

• measuring device: Fischer Rosemount differential electronic transducer, having a measuring range between 0 – 500 mm H2O; output signal: analogue 4 – 20 mA

• signal transmission: electric wires, approx. 50 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.3 Casing protection air flow

• the measuring point is located on the air duct to the reactors casing, ramifications from the compressor discharge pipe

• diaphragm type sensor with ring-like chambers

• operating conditions: p = 2.5 – 3 bars, t = 150°C

• pneumatic signal transmission between the sensor and the transducer through 2 impulse pipes, approx. 10 m long

• measuring device: FEPA Birlad differential electronic transducer, having a measuring range between 0 – 1500 mm H2O; output signal: analogue 4 – 20 mA

• signal transmission: electric wires, approx. 60 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.4 Reactor sieves temperature

• the measuring point is located on the oxidation reactor; sensor; PtRh-Pt thermocouple, operating conditions: $t = 800 - 1000^{\circ}C$

• electric signal transmission between the sensor and the transducer: PtRh-Pt correction cable, approx. 50 m long

- digital indicator measuring device; measuring range between 0 – 1000°C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 6 m long, analogue signal 4 - 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.5 Consumed liquid ammonia flow

• the measuring point is located on the ammonia evaporator inlet pipe; Coriolis type sensor; operating conditions: p = 12 bar, t = 8 - 10°C

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 90 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between 0 – 20 t/h; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 10 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.6 Flow of produced nitric acid

• the measuring point is located on the column 4 outlet pipe towards the nitric acid storehouse; electromagnetic sensor; operating conditions: p = 2.5 bar, $t = 40^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 100 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between 0 – 100 t/h; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.7 Temperature of produced nitric acid

• the measuring point is located on the column 4 outlet pipe towards the nitric acid storehouse; Coriolis type sensor; operating conditions: p = 2.5 bar, $t = 40^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 100 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between -50 - 200 °C; analogue output signal 4 - 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this

database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.8 Density of produced nitric acid

• the measuring point is located on the column 4 outlet pipe towards the nitric acid storehouse; Coriolis type sensor; operating conditions: p = 2.5 bar, $t = 40^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 100 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between 1.2 - 1.4 kg/l; analogue output signal 4 - 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.9 Tail gases flow, tail gases pressure, tail gases temperature

• the measuring point is located on the expansion turbine outlet pipe towards the discharge nozzle; Pytot type sensor with multiple holes; operating conditions: absolute p = 2.5 bar, $t = 80^{\circ}C$

• pneumatic connection line (12 mm diameter and approx. 1 m long hoses) between the sensor and the electric switch box where the Dp cell is located; pneumatic connection line (6 mm diameter and approx. 2 m long hose) between the sensor and the electric switch box where the absolute pressure measuring cell is located

• measuring device: Dp differential transducer, produced by ABB, measuring range between 0 – 30 mbar; absolute pressure transducer produced by Endress&Hauser, measuring range between 0 – 0.3 bar; Pt100 thermal resistance with built-in adapter, measuring range between 0 - 200°C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 - 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.10 Oxidation reactor pressure

• the measuring point is located on the air compressor discharge pipe; sensor type: capsule for electronic transducer; operating conditions: absolute p = 3.5 bar, $t = 200^{\circ}C$

• pneumatic connection line between the sensor and the transducer; pneumatic connection line of 8 mm diameter and approx. 10 m long

• measuring device: Foxboro transducer, measuring range between 0 – 5 bar; absolute pressure transducer produced by Endress&Hauser, measuring range between 0 – 0.3 bar; Pt100 thermal resistance with built-in adapter, measuring range between 0 - 200° C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 50 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.11 N₂O concentration

• the impulse line is the same as the NOx outlet line

• the circuit is the same as for measuring NOx outlet concentration, including up to the pressure reducing valve outlet.

• the gas for the N2O analyzer is taken from here through a water discharge cooler. The analyzer is produced by Environement S.A., France and is based on non-dispersive infrared

absorption principle; it is placed in the same cabinet as the NOx analyzer. The N2O concentration measurement range is between 0 – 2000 ppm.

• the outlet analyzer signal is of 4 - 20 mA, proportional to the value of the concentration. This signal is transmitted through an electric cable at the plant's central control panel. The electric cable is approx. 100 m long.

the device that converts the 4 – 20 mA signal in nitrogen oxides concentration is a ISU – MMC- 24C digital indicator produced by Infostar Pascani. The device has 16 inlet circuits of 4 – 20 mA. The readings are digitally displayed and are recorded every 2 seconds. Data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

QAL2 test providing regression lines and the combined uncertainty as further used in the model was performed in February 25 28, 2008 by company Airtec holding the ISO 17025 accreditation. During AST tests in August 3 - 6, 2009 and October 28, 2010 done by company SGS holding the ISO 17025 accreditation the NA4 measurements passed the test.

Measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of linearity are determined by statistical analysis according to the guideline and the linearity assumptions are further used in the Calibration Report establishing linear regression lines.

The general formula of the regression line, established in the EN14181 and used in the Calibration Report is:

Y= a + bX

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression line b is the slope of the regression line

After a comparative test the laboratory issued the old and new regression lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression lines:

Xo=Xn=X

where :

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

 $Yn = An + (Bn/Bo)^{*}(Yo-Ao)$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS in "Nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

The measurement system captures and logs normalized stack volume flow in an integrated manner, calculating the final figure from the mA signal of the endpoints by itself, as opposing to storing just temperature and pressure and deriving the volume flow later. Therefore, the volume flow values can be used as input for QAL2 recalibration transformation without denormalization and the need for temperature, pressure, and duct cross-section area. The normalized calibrated stack gas flow rates are further fed into the emission calculation model for processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitrous oxide concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in ppm (parts per million). After QAL2 re-calibration, the values are converted to mgN2O/Nm3 (mg N2O per normalized cubic meter) to make it fit into the formulas set out in the methodology.

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 4 previous campaigns. Average production in campaigns preceding the baseline campaign was 286 940 tHNO3 and time duration was on average 383 days. Table contains also information on suppliers of primary catalysts for Line 3 (4 burners). As shown in the table, it is usual practice in Azomures to use primary catalysts from two suppliers.

T 2 Historic campaigns

Line	AzoMures-3	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	-		-	-	n/a	0 N/A	
	2 t HNO3	210 275	12 Oct 2001	27 Oct 2002	380	553	Engelhart-Cal N/A *	
	3 t HNO3	325 002	08 Nov 2002	13 Apr 2004	522	623	Engelhart-Cal N/A *	
	4 t HNO3	349 459	20 Apr 2004	02 Oct 2005	530	659	Engelhart-Cal N/A *	
	5 t HNO3	263 025	19 Oct 2005	16 Feb 2007	485	542	Johnson Matthey N/A *	
Average HNO3 production	t HNO3	286 940			383	748	* Confidential, but availabl	e for verification
Project Campaigns	BL t HNO3	215 669	02 Mar 2007	14 Jul 2008	500	432	Johnson Matthey N/A *	
_	PL t HNO3	30 571	08 Oct 2012	19 Nov 2012	42	725	Johnson Matthey N/A *	

Table The project campaign production value of 30 571 tHNO3 was lower than historic nitric acid production set at level of 286 940 tHNO3.

T 3 and Chart C 1 define the length of the baseline campaign set according to the historic campaign length. Baseline campaign measurements was carried out from 02/03/2007 through 14/07/2008. During baseline campaign, a total of 215 669 tHNO3 was produced, NCSG measurements are taken into account until the production of 30 097 tHNO3 was reached.

The project campaign production value of 30 571 tHNO3 was lower than historic nitric acid production set at level of 286 940 tHNO3.

T 3 Baseline campaign length

AzoMures-3	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Feb 16	2007 Mar 02	2007 Jul 09	2008 Jul 14	2008 Jul 15
Baseline Factor kgN2O/tHNO3	-		9.40	9.40	9.40
Production tHNO3		-	30 097	215 669	-
Per Day Production tHNO3	748.4				
Baseline less Historic Production	(71 271.0)				
Baseline less Historic Days	(95.2)				

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 3 using the method as defined in the CDM methodology AM0034 and in the PDD. Baseline measurement was carried out from 02/03/2007 through 14/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 640°C occurred. Calculated baseline N2O emissions were 1,194 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 3.185%. As a result we have arrived to the baseline emission factor of $9.40 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Table T5 shows the calculation of the project emission factor on Line 3 during the project campaign. Project campaign started on 08/10/2012 and went through 19/11/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

 $PEn = VSG * NCSG * 10-9 * OH (tN_2O)$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 640°C occurred.

By dividing total mass o N2O emissions by the nitric acid production (capped by nameplate capacity 725 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.95 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

This emission factor has been used in further calculation of emission reductions. Neither moving average emission factor nor minimum emission factor was established, since it was the first project campaign.

MONITORING REPORT

Star Institute 1	147
See V	E.
1 - 20 1	G.
- 1	10.
	22

	٩.	
	7	1
	5	4
	2	1
	C	J
	0	0
	÷	-
	c	
	7	
	ç	,
	7	-
	U	ŋ,
	U	n
	-	
	C	
	c	
	7	١
	-	-
	6	h
	z	2
	2	
	-	
	-	I h
	ų	ν
	U	D
	ň	ń
		ž
1	1	1
•	c	۲
	1	•
- 6	17	-

Parameter Internation Parameter Production Nutric Add Non- traine Nutric Add Non- Nutric Add Nutric Add Nutric Add Nutric Add Nutric Add Non- Non- Non- Non- Non- Non- Non- Non-			BASE	I INE EMISSION E	ACTOR				
Code OH MAP MAP MCSS Limination of extreme values Lower limit 0 100 100 Lower limit Lower limit 0 5000 5000 5000 Lower limit Cont 8524 7388 965 738	Parameter Operati	ing Hours	Nitric Acid Production	N 20 Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxidation Pressure
Elimination of extreme values 0 0 00 000 <th>Code Unit</th> <th>он h</th> <th>NAP t/h</th> <th>NCSG mg N2O/Nm3</th> <th>VSG Nm3/h</th> <th>AFR Nm3/h</th> <th>AIFR %</th> <th>от °С</th> <th>OP kPa</th>	Code Unit	он h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	от °С	OP kPa
Dower limit 0 000 0									
Raw Data Measured Range 8.24 7.38 86 87 73 86 73 86 73 86 73 86 73 86 73 86 73 <t< td=""><td></td><td></td><td>0 60.00</td><td>100 5 000</td><td>20 000 200 000</td><td>0 18 000</td><td>0 20.00</td><td>- 50 1 200</td><td>0 1 000</td></t<>			0 60.00	100 5 000	20 000 200 000	0 18 000	0 20.00	- 50 1 200	0 1 000
Count 824 738 898 Minimum 72% 62% 73 Maximum 40.54 42 Maximum 40.54 42 Maximum 215.669 35 Standard Deviation 215.669 36 Standard Deviation 215.669 36 Nacion 3511th20 215.669 Standard Deviation 215.669 36 Colat 3511th20 215.669 Maximum 3511th20 215.669 Permitted Fange 35.1th20 217.80 Maximum Maximum 35.1th20 217.80 Maximum Maximum 35.1th20 217.20 Maximum Maximum 8.27 96% 217.20 Standard Deviation S.67 96% 227.27 232 Maximum Maximum 8.27 232 232 Standard Deviation S.67 96% 232 Maximum Maximum 8.37									
Minimum 0.10 19 Maximum 29.19 26 Maximum 29.19 26 Maximum 29.19 26 Standard Deviation 215.669 357 Total 215.669 357 Nazimum 215.669 357 Nazimum 215.669 357 Nazimum 256 2669 Permited Range 3511 1120 Maximum Maximum 96% 213 Maximum 8.21 96% 8.21 Maximum 8.37 40/20 / HNO3 235 Standard Deviation 8.37 40/20 / HNO3 237 Data within the permitted range 8.37 40/20 / HNO3 237 Data within the confidence interval 8.37 40/20 / HNO3 237 Data within the confidence interval 8.37 40/20 / HNO3 237 Data within the confidence interval 8.37 40/20 / HNO3 237 Data within the confidence interval 9.37 10.37 <td></td> <td>8 624 72%</td> <td>7 388 62%</td> <td>890 7%</td> <td>6 482 54%</td> <td>11915 99%</td> <td>11 174 93%</td> <td>11 989 100%</td> <td>11 431 9<i>5</i>%</td>		8 624 72%	7 388 62%	890 7%	6 482 54%	11915 99%	11 174 93%	11 989 100%	11 431 9 <i>5</i> %
Maxmum 20:34 4.32 Maxmum 20:35 40:35 Standard Deviation 215.669 35 Total 215.669 35 N2O Emissions (VSG * NCSG * OH) 3511 1N20 Permitted Tange 3512 1003 Nimmum 215.76 40/20 / 1H003 Permitted Fange 352 353 Minimum 355 353 Maximum 355 353 Maximum 355 353 Maximum 355 353 Maximum 355 355 Maximum 355 355 Maximum 353 353 Maximum 353 355 Maximum 353 355 Maximum 353 357 Maximum 353 355 Maximum 353 355 Maximum 353 353 Maximum 353 355 Maximum 353 353			0.10	181	20 263		'	(31)	,
Standard Deviation 4.80 35 Total 215.669 36 Total 215.669 36 N2O Emissions (VSG * NCSG * OH) 3511 1N20 Permitted Range 3511 1N20 Permitted Range 3512 11400 Mainimu 3514 1100 Mainimu 96% 92 Maximu 96% 92 Maximu 96% 96 Maximu 96% 96 Maximu 96 96 Maximu 96 96 Maximu 96% 117 Data within the permitted range 826 Maximu 96 96 Maximu 96 96 Maximu 96 117 Data w			40.54 29.19	4 321 4 260	136 304 95 572	15445 7882	19.94 8.53	864 623	400 104
N2O Emissions (VSG * NCSG * OH) 3511 11.020 Emission Factor 15.76 kgN2O / tHNO3 Permitted Range 8.291 98 Minimum 8.291 98 Maximum 8.291 98 Data within the permitted range 8.291 98 Maximum 96% 8.291 98 Maximum 8.291 96% 8.232 Maximum 8.251 8.37 8.07 Name 1.47 1.470 1.47 Maximum 1.416 1.420 1.432 Maximum 1.420 1.432 1.432 Maximum 1.422 1.420 1.432			4.80 215 669	351	15 376	4881	4.22	356	117
Permitted Range 8.291 98 Minimum Maximum 98% 119 Data within the permitted range 8.291 98 Count 8.291 98 Count 8.291 98 Count 8.291 98 Maximum 96% 117 Minimum 96% 117 Maximum 96% 117 Maximum 96% 117 Maximum 95% 117 Maximum 95% 11865 Maximum 117 232 Maximum 120 1365 Maximum 1365 117 Maximum 1005 100 Standard Deviation 100 100 Maximum 1005 1005 Maxinum 1005 Mean </td <td></td> <td>3 511 1 15.76</td> <td>t N2O kaN2O / tHNO3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		3 511 1 15.76	t N2O kaN2O / tHNO3						
Minimum 8 291 98 Maximum 8 291 98 Data within the permitted range 96% 119 Count 8 291 98 Count 8 291 98 Maximum 96% 119 Maximum 8 291 98 Maximum 96% 119 Maximum 8 291 98 Maximum 8 37 1470 Maximum 8 37 8 200 Maximum 1028 Minimum 1028 Maximum 1028									
Maximum 8291 98 Data within the permitted range 8291 98 Count 82 96% 113 Count 82 96% 114 Count 82 96% 114 Asimum 82 96% 114 Maximum 83 147 Maximum 232 232 Standard Deviation 147 147 N2O Emission Factor 8.37 8/00/00 Data within the confidence interval 8.37 8/00/00 Desta within the confidence interval 8.37 8/00/00 Lower bound 9.37 8/00/00 1028 Data within the confidence interval 1028 1028 Lower bound 000 1028 1028 Maximum 1028 1028 1028						8 000	0	800	0
Data within the permitted range 8 291 98 Count 8 291 98 Count 96% 119 Animuum 96% 119 Minimuum 96% 123 Maximuum 4 32 Maximuum 2 323 Maximum 2 325 Standard Deviation 1 477 N2O Emissions (VSG * NCSG * OH) 8.37 8/0/20 / 14NO3 Data within the confidence interval 8.37 8/0/20 / 14NO3 Data within the confidence interval 8.37 8/0/20 / 14NO3 Data within the confidence interval 8.37 8/0/20 / 14NO3 Define within the confidence interval 8.37 8/0/20 / 14NO3 Define within the confidence interval 8.37 8/0/20 / 14NO3 Define within the confidence interval 8.37 8/0/20 / 14NO3 Define within the confidence interval 9.50 9/0 Lower bound Upper bound 0.00 10.02 Maximum Maximum 1.02 10.02 Maximum Maximum 1.						12 500	11.50	860	260
Count 8 291 98 as % of Operating Hours 96% 824 Minimum 825 82 Maximum 837 96% 82 Maximum 837 96% 82 Maximum 432 83 432 Mean 1470 1470 1470 Standard Deviation 1365 1/20 1470 N2O Emission (VSG * NCSG * OH) 8.37 80/20 / tHN03 232 Data within the confidence interval 8.37 80/20 / tHN03 520 Detata within the confidence interval 5.00 100 075 Upper bound 5.00 5.00 100 075 Maximum 0.00 0.00 075 075 Maximum 0.00 0.00 0.00 075 Maximum 1.00 1.00 0.00 0.00 Maximum 1.00 1.00 0.00 0.00 Maximum 1.00 1.00 0.00 0.00 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
as % of Operating Hours 96% at 119 as % of Operating Hours 2322 Mainum Mean N2D Emissions (VSG * NCSG * OH) 8.37 kgN2O / tHN03 232 2322 2322 232 232 232 232 232 232		8 291		982	6 924				
Maximum 432 Mean 2322 Standard Deviation 147 Standard Deviation 1365 N2O Emission Factor 8.37 Emission Factor 8.37 Bata within the confidence interval 8.37 Data within the confidence interval 8.37 Lower bound 5.200 Upper bound 5.200 Maximum 1.025		90%		11% 824	80% -				
Mean 132 Standard Deviation 1470 Standard Deviation 137 Standard Deviation 137 Remission Factor 8.37 Emission Factor 8.37 Data within the confidence interval 95% Confidence interval 95% Confidence interval 5.200 Upper bound 5.200 Noper bound 5.200 Maximum 1.025				4 321	415 934				
N2O Emissions (VSG * NCSG * OH) 1865 t N2O Emission Factor 8.37 kgN2O / tHNO3 Emission Factor 8.37 kgN2O / tHNO3 Data within the confidence interval 556 Upper bound 556 Upper bound 556 Count 556 Northours 1028 Maximum 1028 Ma				2 322 1 470	93 138 21 931				
N2O Emission Factor 1865 tN2O Emission Factor 8.37 kgN2O / tHNO3 Data within the confidence interval 8.37 kgN2O / tHNO3 Data within the confidence interval 5.260 Upper bound 5.260 Upper bound 6.200 Nome 0.001 As % of Operating Hours 10.020 Maximum 10.020 Maan 2.033 N2O Emissions (VSG * NCSG * OH) 2.093				-					
Data within the confidence interval 560 95% Confidence interval 500 Lower bound 500 Upper bound 500 Count 833 as % of Operating Hours 1002 Maximum 1002 Maximum 257 Standard Deviation 2093 1 N20		1 865 1 8.37 1	t N2O kgN2O / tHNO3						
95% Confidence interval Lower bound Upper bound Count as % of Operating Hours Minimum Maximum Maximum Standard Deviation N20 Emissions (VSG * NCSG * OH) 2093 1 N20									
Count 83 as % of Operating Hours 109 Minimum 1002 Maximum 1002 Maximum 1002 Maximum 1002 Maximum 1002 Mean 1002 N20 Emissions (VSG * NCSG * OH) 2 093				560 5 203	50 153 136 122				
as % of Operating Hours 10? Minimum 1022 Maximum 232 Standard Deviation 257 Standard Deviation 1459 N2O Emissions (VSG * NCSG * OH) 2 093 1 N2O				835	6 468				
Maximum Maximum Standard Deviation 257 N2O Emissions (VSG * NCSG * OH) 2093 1 N2O N2O Emissions (VSG * NCSG * OH) 2093 1 N2O				10%	75% 50.100				
Mean 257 Standard Deviation 1456 N20 Emissions (VSG * OH) 2 093				4 321	135 386				
NZO Emissions (VSG * NCSG * OH) 2 093 1 NZO				2 573 1 456	94 322 14 628				
		2 093	1020						
Emission Factor (EF_BL) 9.40 kgN20 / tHN03		9.40	kgN20 / tHN03						

24

 \mathbf{D}

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
	arameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxidation Pressure
	Code	но	NAP	NCSG	SSV	AFR	Ratio AIFR	ΟT	Q
	Unit	Ч	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	ပံ	kPa
Elimination of extreme values									
Lower limit Upper Limit			0 60.00	100 5 000	20 000 200 000	0 18 000	0 - 20.00	50 1 200	0 1 000
₹aw Data Measured Range									
Count		668	911	906	906	1 008	915	1 008	912
as % of Dataset		89%	%06	806	%06	100%	91%	100%	91%
Minimum			0.61	102	27 782	35	0	(31)	0 0 10
Maximum			36.89	680	117 773	12 233	12.49	839	258
Mean Standard Deviation			3.67	4.50 34	4 830	3 559	1.10	255	247
Total			30 774	,					
N2O Emissions (VSG * NCSG * OH)		44	t N2O						
		2							
Jaka Wittini ure confidence interval 35% Confidence interval									
bower bound				363	104 584				
Upper bound				498	123 519				
				878	805				
as % of Operating Hours				98%	100%				
Minimum				363	110 900				
Maximum				483	117 773				
Mean Standard Deviation				432 26	114 418 1 306				
				27	-				
N2O Emissions (VSG * NCSG * OH) Actual Project Emission Factor (FF PActual)		44 1 45	t N2O kgN2O / tHNO3						
Abatement Ratio		84.6%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average F	tule					
	Ļ	1.45	1.45						
	0 0	2.94	2.94						
	• •	1.98	21.2						
	4	. .	CA.I						
Duritot Emiorica Fotton (EC D)		1 06							
Project Emission Factor (Er_F) Abatement Ratio		79.2%	KGNZU / THNU3						

© 2008, Vertis Finance

25

MONITORING REPORT

PROJECT: Project aimed at N₂O emissions reduction by installation of secondary catalyst inside ammonia oxidation reactors at 3 nitric acid production plants NA2, NA3 and NA4 of Azomures SA, company situated in Targu Mures, Romania

LINE: Line 4

MONITORING PERIOD:

FROM:	15/08/2012
TO:	19/11/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	4
2.		DESCRIPTION OF THE PROJECT ACTIVITY	5
3.		BASELINE SETTING	6
	3.1 3.1	MEASUREMENT PROCEDURE FOR N ₂ O CONCENTRATION AND TAIL GAS VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	7 7
	3.1	2 TAIL GAS FLOW, TEMPERATURE AND PRESSURE	8
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	8
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	9
	3.4	HISTORIC CAMPAIGN LENGTH	9
	3.5	REGULATORY BASELINE EMISSIONS FACTOR	9
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	10 10
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	10
	4.2	MINIMUM PROJECT EMISSION FACTOR	10
	4.3	PROJECT CAMPAIGN LENGTH	11
	4.4	LEAKAGE	11
	4.5	EMISSION REDUCTIONS	11
5.		MONITORING PLAN	12
	5.1	MAIN AIR FLOW	12
	5.2	SECONDARY AIR FLOW	12
	5.3	CASING PROTECTION AIR FLOW	13
	5.4	REACTOR SIEVES TEMPERATURE	14
	5.5	CONSUMED LIQUID AMMONIA FLOW	14
	5.6	FLOW OF PRODUCED NITRIC ACID	15
	5.7	TEMPERATURE OF PRODUCED NITRIC ACID	15
	5.8	DENSITY OF PRODUCED NITRIC ACID	16
	5.9	TAIL GASES FLOW, TAIL GASES PRESSURE, TAIL GASES TEMPERATURE	16
	5.10	OXIDATION REACTOR PRESSURE	17
	5.11	N ₂ O CONCENTRATION	17
6.		QAL 2 CALIBRATION ADJUSTMENTS	19

	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITROUS OXIDE CONCENTRATION IN STACK GAS	20
7.		EMISSION REDUCTION CALCULATIONS	21
LR	SIOF	CHARIS	
C ′	1 Base	line campaign length	22
119		TARIES	
	Emis		4
Τ2	2 Histor	ric campaigns	21
Т З	Basel	line campaign length	21
Τ4	Basel	line emission factor	24
Т 5	5 Proje	ct emission factor	25

133 550

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 4 of Azomures nitric acid plant and quantity of emission reduction generated during the fourth project campaign on the line.

Total quantity of emission reductions generated during the period from 15/08/2012 through 19/11/2012 on Line 4 is **133 550 ERUs**.

EMIS	SION REDUCTION			
Baseline Emission Factor	EF BL		7.50	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P		1.51	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP BL		213 874	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG		78 517	tHNO3
Nitric Acid Produced in the Project Campaign	NAP_P		72 000	tHNO3
GWP	GWP		310	tCO2e/tN2O
Emission Reduction	ER		133 550	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000				
Abatement Ratio			87.9%	
EMIQUION				
EMISSION	REDUCTION PER YEAR			
Year	2010	2011	201	2
Date From			15 Au	g 2012
Date To			19 No	v 2012
Nitric Acid Production			7	2 000

T 1 Emission reduction calculations

Baseline emission factor established for the Line 4 is $7.50 \text{ kgN}_2\text{O}/\text{tHNO}_3$. The baseline was carried outusing overlapping technique. The first part of the basline is the interval from 10/03/2008 to 10/08/2008, and it is completed by the second part from 06/04/2007 to 10/03/2008, thus adding up to a comparable campaign.

The secondary catalyst on Line 4 was installed on 11/08/2008. Project emission factor during the fourth project campaign, which started on 15/08/2012 and went through 19/11/2012, is $1.51 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 72 000 tonnes of nitric acid was produced.

Emission Reduction

 $ER_YR = ER * NAP_P_YR / NAP_P$

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from Joint Implementation project aimed at N2O emissions reduction by installation of secondary catalyst inside ammonia oxidation reactors at 3 nitric acid production plants NA2, NA3 and NA4 of Azomures SA company, situated at Târgu Mures, Romania.

Azomures has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of all 3 nitric acid plants.

This monitoring report contains information on Line 4 emission reductions including information on baseline emission factor setting for the Line 4.

The separate treatment of the three nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirement set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for Line 4 has been established on a line-specific basis. Campaign used for baseline measurements on the Line 4 has been carried out using overlapping technique. The first part of the basline is the interval from 10/03/2008 to 10/08/2008, and it is completed by the second part from 06/04/2007 to 10/03/2008, thus adding up to a comparable campaign. Nitric acid production during this campaign did not exceed the historic nitric acid production established as an average production during previous historic campaigns.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been calculated based on the 2008 QAL2 report in its sections 7.5 (also in table 10.5) where separate UNC values for N2O concentration and tail gas flow are defined. The NA4 QAL2 test report does not contain calculation of total AMS UNC value, only separate UNC values for N2O concentration and tail gas flow. Total AMS UNC is therefore calculated as $UNC = \sqrt{(2.88^2 + 1.83^2)}$. Total UNC is then 3.41%.

The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$

where:

Variable	Definition
EF _{BL}	Baseline N_2O emissions factor ($tN_2O/tHNO_3$)
BE _{BC}	Total N_2O emissions during the baseline campaign (t N_2O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

• the impulse line is the same as the NOx outlet line

• the circuit is the same as for measuring NOx outlet concentration, including up to the pressure reducing valve outlet.

• the gas for the N₂O analyzer is taken from here through a water discharge cooler. The analyzer is produced by Environement S.A., France and is based on non-dispersive infrared absorption principle; it is placed in the same cabinet as the NOx analyzer. The N2O concentration measurement range is between 0 – 2000 ppm.

• the outlet analyzer signal is of 4 - 20 mA, proportional to the value of the concentration. This signal is transmitted through an electric cable at the plant's central control panel. The electric cable is approx. 100 m long.

the device that converts the 4 – 20 mA signal in nitrogen oxides concentration is a ISU – MMC- 24C digital indicator produced by Infostar Pascani. The device has 16 inlet circuits of 4 – 20 mA. The readings are digitally displayed and are recorded every 2 seconds. Data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

3.1.2 Tail gas flow, temperature and pressure

• the measuring point is located on the expansion turbine outlet pipe towards the discharge nozzle; Pytot type sensor with multiple holes; operating conditions: absolute p = 2.5 bar, t = 80° C

• pneumatic connection line (12 mm diameter and approx. 1 m long hoses) between the sensor and the electric switch box where the Dp cell is located; pneumatic connection line (6 mm diameter and approx. 2 m long hose) between the sensor and the electric switch box where the absolute pressure measuring cell is located

• measuring device: Dp differential transducer, produced by ABB, measuring range between 0 – 30 mbar; absolute pressure transducer produced by Endress&Hauser,

measuring range between 0 – 0.3 bar; Pt100 thermal resistance with built-in adapter, measuring range between 0 - 200° C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

It is business-as-usual in Azomures to change composition of oxidation catalysts installed between campaigns, so the composition during historic and the baseline campaigns is varying.

Supplier of primary catalysts for plant NA4 between baseline campaign and fourth project campaign remained same as well as its composition. Use of this type of primary catalysts is the industry standard.

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 4 campaigns), has been used as a cap on the length of the baseline campaign.

3.5 Regulatory baseline emissions factor

There are no regulatory limits of N2O whether defined as mass or concentration limits existent in Romania and there are no limits defined in the Azomures IPPC permit. Project thus uses baseline emission factor as measured during the baseline campaign.

4. PROJECT EMISSIONS

During the fourth project campaign on Line 4 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on a continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

PEn = VSG * NCSG *
$$10^{-9}$$
 * OH (tN₂O)

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

Because this campaign was fourth project campaign on Line 4 there has been no minimum average emission factor established yet for this campaign. This factor will be established after 10th project campaign.

4.3 Project Campaign Length

Project campaign production of nitric acid 78 538 tHNO3 was lower than the nameplate capacity of the plant. Project campaign length was shorter than the historic campaign length and also shorter than the baseline campaign length and thus the baseline campaign length in terms of the N2O concentration measurements has been shortened for calculation of the baseline emission factor and the emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)

5. MONITORING PLAN

5.1 Main air flow

• the measuring point is located on the compressor air discharge pipe

- diaphragm type sensor with ring-like chambers
- operating conditions: p = 2.5 3 bars, $t = 150^{\circ}C$

• pneumatic signal transmission between the sensor and the transducer through 2 impulse pipes, approx. 10 m long

• measuring device: Fischer Roesmount differential electronic transducer, having a measuring range between 0 – 45.24 mbar; output signal: analogue 4 – 20 mA

• signal transmission: electric wires, approx. 30 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.2 Secondary air flow

• the measuring point is located on the air compressor discharge pipe

- diaphragm type sensor with ring-like chambers
- operating conditions: p = 2.5 3 bars, t = 150°C

• pneumatic signal transmission between the sensor and the transducer through 2 impulse pipes, approx. 15 m long

• measuring device: Fischer Roesmount differential electronic transducer, having a measuring range between 0 – 500 mm H2O; output signal: analogue 4 – 20 mA

• signal transmission: electric wires, approx. 50 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.3 Casing protection air flow

• the measuring point is located on the air duct to the reactors casing, ramifications from the compressor discharge pipe

• diaphragm type sensor with ring-like chambers

• operating conditions: p = 2.5 – 3 bars, t = 150°C

• pneumatic signal transmission between the sensor and the transducer through 2 impulse pipes, approx. 10 m long

• measuring device: FEPA Birlad differential electronic transducer, having a measuring range between 0 – 1500 mm H2O; output signal: analogue 4 – 20 mA

• signal transmission: electric wires, approx. 60 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.4 Reactor sieves temperature

• the measuring point is located on the oxidation reactor; sensor; PtRh-Pt thermocouple, operating conditions: $t = 800 - 1000^{\circ}C$

• electric signal transmission between the sensor and the transducer: PtRh-Pt correction cable, approx. 50 m long

- digital indicator measuring device; measuring range between 0 – 1000°C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 6 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.5 Consumed liquid ammonia flow

• the measuring point is located on the ammonia evaporator inlet pipe; Coriolis type sensor; operating conditions: p = 12 bar, $t = 8 - 10^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 90 m long

- measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between 0 – 20 t/h; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 10 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.6 Flow of produced nitric acid

• the measuring point is located on the column 4 outlet pipe towards the nitric acid storehouse; electromagnetic sensor; operating conditions: p = 2.5 bar, $t = 40^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 100 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between 0 – 100 t/h; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.7 Temperature of produced nitric acid

• the measuring point is located on the column 4 outlet pipe towards the nitric acid storehouse; Coriolis type sensor; operating conditions: p = 2.5 bar, $t = 40^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 100 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between -50 - 200 °C; analogue output signal 4 - 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this

database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.8 Density of produced nitric acid

• the measuring point is located on the column 4 outlet pipe towards the nitric acid storehouse; Coriolis type sensor; operating conditions: p = 2.5 bar, $t = 40^{\circ}C$

• electric signal transmission between the sensor and the transducer: 2-wire cable, approx. 100 m long

• measuring device: DZL363 flowmeter adapter produced by Endress&Hauser; measuring range between 1.2 - 1.4 kg/l; analogue output signal 4 - 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.9 Tail gases flow, tail gases pressure, tail gases temperature

• the measuring point is located on the expansion turbine outlet pipe towards the discharge nozzle; Pytot type sensor with multiple holes; operating conditions: absolute p = 2.5 bar, $t = 80^{\circ}C$

• pneumatic connection line (12 mm diameter and approx. 1 m long hoses) between the sensor and the electric switch box where the Dp cell is located; pneumatic connection line (6 mm diameter and approx. 2 m long hose) between the sensor and the electric switch box where the absolute pressure measuring cell is located

• measuring device: Dp differential transducer, produced by ABB, measuring range between 0 – 30 mbar; absolute pressure transducer produced by Endress&Hauser, measuring range between 0 – 0.3 bar; Pt100 thermal resistance with built-in adapter, measuring range between 0 - 200°C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 5 m long, analogue signal 4 - 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.10 Oxidation reactor pressure

• the measuring point is located on the air compressor discharge pipe; sensor type: capsule for electronic transducer; operating conditions: absolute p = 3.5 bar, $t = 200^{\circ}C$

• pneumatic connection line between the sensor and the transducer; pneumatic connection line of 8 mm diameter and approx. 10 m long

• measuring device: Foxboro transducer, measuring range between 0 – 5 bar; absolute pressure transducer produced by Endress&Hauser, measuring range between 0 – 0.3 bar; Pt100 thermal resistance with built-in adapter, measuring range between 0 - 200° C; analogue output signal 4 – 20 mA

• signal transmission: electric wires, approx. 50 m long, analogue signal 4 – 20 mA

• signal conversion device: ISU 24M digital indicator; placed inside the control panel; converts the analogue signal into digital signal; recording period: 2 seconds.

• data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in a database on the computer's hard disk. From this database data are afterwards processed in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

5.11 N₂O concentration

• the impulse line is the same as the NOx outlet line

• the circuit is the same as for measuring NOx outlet concentration, including up to the pressure reducing valve outlet.

• the gas for the N2O analyzer is taken from here through a water discharge cooler. The analyzer is produced by Environement S.A., France and is based on non-dispersive infrared

absorption principle; it is placed in the same cabinet as the NOx analyzer. The N2O concentration measurement range is between 0 - 2000 ppm.

• the outlet analyzer signal is of 4 - 20 mA, proportional to the value of the concentration. This signal is transmitted through an electric cable at the plant's central control panel. The electric cable is approx. 100 m long.

the device that converts the 4 – 20 mA signal in nitrogen oxides concentration is a ISU – MMC- 24C digital indicator produced by Infostar Pascani. The device has 16 inlet circuits of 4 – 20 mA. The readings are digitally displayed and are recorded every 2 seconds. Data recorded into the "data logger" are transmitted through an optic fiber network to a computer designated particularly for this type of monitoring. This computer is located in the Instrumentation Plant. Data are stored in order to obtain all data necessary for the project. The entire database is periodically saved on graphic and magnetic support as an Excel file.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

QAL2 test providing regression lines and the combined uncertainty as further used in the model was performed in February 25 28, 2008 by company Airtec holding the ISO 17025 accreditation. During AST tests in August 3 - 6, 2009 and October 28, 2010 done by company SGS holding the ISO 17025 accreditation the NA4 measurements passed the test.

Measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of linearity are determined by statistical analysis according to the guideline and the linearity assumptions are further used in the Calibration Report establishing linear regression lines.

The general formula of the regression line, established in the EN14181 and used in the Calibration Report is:

Y= a + bX

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression line b is the slope of the regression line

After a comparative test the laboratory issued the old and new regression lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression lines:

Xo=Xn=X

where :

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

 $Yn = An + (Bn/Bo)^{*}(Yo-Ao)$

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS in "Nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

The measurement system captures and logs normalized stack volume flow in an integrated manner, calculating the final figure from the mA signal of the endpoints by itself, as opposing to storing just temperature and pressure and deriving the volume flow later. Therefore, the volume flow values can be used as input for QAL2 recalibration transformation without denormalization and the need for temperature, pressure, and duct cross-section area. The normalized calibrated stack gas flow rates are further fed into the emission calculation model for processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitrous oxide concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in ppm (parts per million). After QAL2 re-calibration, the values are converted to mgN2O/Nm3 (mg N2O per normalized cubic meter) to make it fit into the formulas set out in the methodology.

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 4 previous campaigns. Average production in campaigns preceding the baseline campaign was 275 871 tHNO3 and time duration was on average 408 days. Table contains also information on suppliers of primary catalysts for Line 4 (4 burners). As shown in the table, it is usual practice in Azomures to use primary catalysts from two suppliers.

T 2 Historic campaigns	gns
------------------------	-----

Line	AzoMures-4	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historia Compaigne	4.411002					2/2	NI/A	NI/A
Historic Campaigns				-	-	11/a	IN/A	N/A
	2 t HNO3	237 767	08 Dec 2000	16 Apr 2002	494	481	Engelnart-Cal	N/A ^
	3 t HNO3	271 545	21 May 2002	20 Nov 2003	548	496	Engelhart-Cal	N/A *
	4 t HNO3	308 263	27 Nov 2003	06 Feb 2005	437	705	Engelhart-Cal	N/A *
	5 t HNO3	285 908	23 Feb 2005	05 Sep 2006	559	511	Heraeus	N/A *
Average HNO3 production	t HNO3	275 871			408	677	* Confidential, but a	vailable for verification
Project Campaigns	BL t HNO3	213 874	06 Apr 2007	10 Aug 2008	492	435	Heraeus	N/A *
	PL t HNO3	72 000	15 Aug 2012	19 Nov 2012	96	750	Heraeus	N/A *

Table The project campaign production value of 78 538 tHNO3 was lower than historic nitric acid production set at level of 275 871 tHNO3.

T 3 and Chart C 1 define the length of the baseline campaign set according to the historic campaign length. Baseline campaign measurements was carried out using overlapping technique. The first part of the basline is the interval from 10/03/2008 to 10/08/2008, and it is completed by the second part from 06/04/2007 to 10/03/2008, thus adding up to a comparable campaign. During baseline campaign, a total of 213 874 tHNO3 was produced, NCSG measurements are taken into account until the production of 78 517 tHNO3 was reached.

The project campaign production value of 78 538 tHNO3 was lower than historic nitric acid production set at level of 275 871 tHNO3.

T 3 Baseline campaign length

Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
2006 Sep 05	2007 Apr 06	2008 Jul 08	2008 Aug 10	2008 Aug 11
-		7.50	7.50	7.50
	-	78 517	213 874	-
676.8				
(61 996.8)				
(91.6)				
	Campaings End 2006 Sep 05 676.8 (61 996.8) (91.6)	Campaings End Measurement 2006 Sep 05 2007 Apr 06 676.8 676.8 (61 996.8) (91.6)	Campaings End Measurement Measurement NCSG 2006 Sep 05 2007 Apr 06 2008 Jul 08 - - 7.50 676.8 (61 996.8) (91.6)	Campaings End Measurement Measurement NCSG Measurement 2006 Sep 05 2007 Apr 06 2008 Jul 08 2008 Aug 10 - - 7.50 7.50 676.8 - 78 517 213 874 (91.6) - - -

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 4 using the method as defined in the CDM methodology AM0034 and in the PDD. Baseline measurement was carried out using overlapping technique. The first part of the basline is the interval from 10/03/2008 to 10/08/2008, and it is completed by the second part from 06/04/2007 to 10/03/2008, thus adding up to a comparable campaign.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 640°C occurred. Calculated baseline N2O emissions were 1,194 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 3.412%. As a result we have arrived to the baseline emission factor of 7.50 kgN₂O/tHNO₃.

Table T5 shows the calculation of the project emission factor on Line 4 during the project campaign. Project campaign started on 15/08/2012 and went through 19/11/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 640°C occurred.

By dividing total mass o N2O emissions by the nitric acid production (capped by nameplate capacity 725 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.51 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

This emission factor has been used in further calculation of emission reductions. Neither moving average emission factor nor minimum emission factor was established, since it was the first project campaign.

MONITORING REPORT

Ï	12	
ļ		きょう

- 7)
	-
	J
	D
ú	-
- 7	0
	-
	л
	n
- 1	
- 7	Ì
	-
	11
	-
- 1	
-	1
	Ψ
- (n
ì	÷
	2
5	÷

			BASF	INE EMISSION F	ACTOR				
	Parameter	Operating Hours	Nitric Acid Production	N 2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxidation Pressure
	Code Unit	но Ч	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	от °C	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 60.00	100 5 000	20 000 200 000	0 18 000	0 20.00	- 50 1 200	0 1 000
Raw Data Measured Range									
Count as % of Dataset		8 186 69%	7 063 60%	2 473 21%	7 986 68%	11803 100%	10 639 9 <i>0</i> %	11 809 100%	10 866 9 <i>2</i> %
Minimum			0.19	108	22 057	-	- 07	(25)	
Maximum Mean			30.28	2 101	132 / 38 94 338	14 34 / 8 396	9.20	804 628	149
Standard Deviation Total			5.57 213 874	402	20 732	4 887	3.36	338	143
N2O Emissions (VSG * NCSG * OH) Emission Factor		1 622 7.33	t N2O kgN2O / tHNO3						
Permitted Rande									
						8 000	0	800	180
Maximum						13 800	11.50	860	300
Data within the permitted range									
Count		4 682 E7%		2 272	4 682				
as % or Operating Hours Minimum		0/ IC		248 248	57 % 64 742				
Maximum				4 071	689 625				
Mean Standard Deviation				2 110 382	98 624 26 454				
				200	5000				
N2O Emissions (VSG * NCSG * OH) Emission Factor		1 703 7.69	t N2O kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval				1 361	AG 77A				
Upper bound				2 858	150 474				
Count				2 208	4 650				
as % of Operating Hours				27% 1 381	57% 64 742				
Maximite				1001	150 376				
Mean Standard Deviation				2 086 2 086 2 60	97 244 12 186				
N2O Emissions (VSG * NCSG * OH) Emission Factor (EF_BL)		1 660 7.50	t N2O kgN2O / tHNO3						

24

 \mathbf{D}

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
1	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxidation Pressure
	Code Unit	но ч	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	Katio AIFR %	от °c	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 60.00	100 5 000	20 000 200 000	0 18 000	0 - 20.00	50 1 200	0 1 000
Raw Data Measured Range									
Count Count Count		1 944 940/	1 985	1 940	1 964	2 294	2 164	2 304	2 048
as % of Dataset Minimum		84%	80%	84% 105	85% 23 060	%00L	94%	100%	89%
Maximum			54.93	663	131 557	- 14 675	19.06	765	- 288
Mean Standard Deviation			39.57 5.38	301 66	122 116 7 746	10 621 4 471	9.67 2.54	565 318	257 56
Total			78 538						
N2O Emissions (VSG * NCSG * OH) Emission Factor		72 0.91	t N2O kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval Lower bound Upper bound				172 431	106 934 137 298				
				010					
count as % of Operating Hours				979	966 1				
Minimum				173	109 048 131 667				
Mean				299	122 779				
Standard Deviation				20	4 554				
N2O Emissions (VSG * NCSG * OH) Artial Braidat Emission Factor (FE BActual)		71 74	t N20 45N20 / +HNO3						
Abatement Ratio		87.9%	00000 0000 Bu						
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule					
	, ب	1.48	1.48						
	чю	2.22 1.45	1.72						
	4	0.91	1.51						
Project Emission Factor (EF_P)		1.51	kgN2O / tHNO3						
Abatement Ratio		79.8%							

© 2008, Vertis Finance

25