MONITORING REPORT

JI0077 - CMM utilisation on the coal mine Shcheglovskaya-Glubokaya of the State Holding Joint-Stock Company "GOAO Shakhtoupravlenye Donbass"

Monitoring Report 02 Monitoring period 01/01/2008 to 31/03/2010

Version 1a 15 April 2010

CONTENTS

- A. General project activity and monitoring information
- B. Key monitoring activities
- C. Quality assurance and quality control measures
- D. Calculation of GHG emission reductions

<u>Annexes</u>

Annex 1: References

Annex 2: Technical drawing

Annex 3: Energy and material flowchart including metering positions

SECTION A. General project activity information

A.1 Title of the project activity:

CMM utilisation on the coal mine Shcheglovskaya-Glubokaya of the State Holding Joint-Stock Company "GOAO Shakhtoupravlenye Donbass"

A.2. JI registration number:

JI0077

A.3. Short description of the project activity:

In this project CMM, which has been sucked out of the active coal mine "Shcheglovskaya-Glubokaya", has been utilised in upgraded previous coal boilers, a ventilation air heater, a flare, a cogeneration unit and an emergency generator. The methane has been burned to less harmful CO_2 . The units have generated heat and power which have displaced conventionally produced heat and power and gained an additional amount of CO_2 reductions.

Unit	period	CH₄ [m³/period]	Heat and power generated [MWh]
Winter boilers (No 3 and 4)	01/01/2008-31/03/2010	8,811,461	64,538
Summer boilers	01/01/2008-31/03/2010	625,950	4,585
Ventilation Air Heater	01/01/2008-31/03/2010	950,161	9,326
Flare	01/01/2008-31/03/2010	1,872,097	n.a.
Cogeneration unit	01/01/2008-31/03/2010	476,192	3,887
Emergency generator	01/01/2008-31/03/2010	1,292,231	4,636
Total	2008-2010	14,028,091	n.a.

Table-1 Amount of methane utilised for heat and power generation

A.4. Monitoring period:

Start date01/01/2008, winter boilers and ventilation air heater
13/04/2008, summer boiler
12/05/2008, emergency generator
19/04/2009, flare
30/09/2009, cogeneration unitEnd date31/03/2010, all units

Start day and end day included.

A.5. Methodology applied to the project activity (incl. version number):

A.5.1. Baseline methodology:

The approved consolidated methodology ACM0008 / Version 03 "Consolidated baseline methodology for coal bed methane and coal mine methane capture and use for power (electrical or motive) and heat and/or destruction by flaring") has been used to identify the baseline scenario of the proposed JI project [ACM0008].

According to ACM0008 the methodological "Tool to determine project emissions from flaring gases containing methane", EB 28 Meeting report, Annex 13, has been taken for the determination of the project emissions from flaring. In difference to the flaring tool, a combustion efficiency of 99.5%, according to the IPCC guidelines, has been taken into account instead of the default value of 90% as given in the flaring tool.

A.5.2. Monitoring methodology:

A monitoring plan provided by the "Approved consolidated baseline methodology ACM0008", Version 03, Sectoral Scope: 8 and 10, EB28 is applied to the project [ACM0008]. According to ACM0008 the methodological "Tool to determine project emissions from flaring gases containing methane", EB 28 Meeting report, Annex 13, has been taken for the determination of the project emissions from flaring. In difference to the flaring tool, a combustion efficiency of 99.5%, according to the IPCC guidelines, has been taken into account instead of the default value of 90% as given in the flaring tool.

Applicability requirements for the monitoring plan of the ACM008 methodology are identical to respective requirements of the baseline setting.

A.6. Status of implementation including time table for major project parts:

The project is approved as JI-project since 08/12/2009. (http://ji.unfccc.int/JI_Projects/DeterAndVerif/Verification/FinDet.html)

Units: two identical upgraded previously coal fired boilers				
Manufacturer: Biysk Boiler Plant				
Type: DKV-10-13				
Serial Numbers (not visible): 11781 (No 3),	12645 (No 4)			
Inventar Numbers (visible): 227654 (No 3),	227652 (No 4)			
Capacity: 3-7 Gcal/h (approx. 7,6 MW)				
Efficiency heat generation: 90%				
Activity Inventar Nummer 227652 (No 4)	Status			
year of construction	1967			
last major overhaul	2008 - Ukrteploservis			
Last inspection 2007 - Derzhpromnaglyad				
Upgrade, initial operation, first tests Summer 2006				
Start of operation	October 2006			

Table-2 Status of Implementation

Planned installation date [PDD]	10/2006
Activity Inventar Nummer 227654 (No 3)	Status
year of construction	1967
Last inspection	2008 - Derzhpromnaglyad
Upgrade, initial operation, first tests	Summer 2007
Start of operation	October 2007
Planned installation date [PDD]	10/2006

The identical third boiler Nr. 1 was not in use during the monitoring period.

Units: two identical upgraded previously coal fired boilers					
Manufacturer: Biysk Boiler Plant	Manufacturer: Biysk Boiler Plant				
Type: E-1,0-0,9G-3					
Serial Numbers					
Inventar Numbers (visible): 227656, 2276	57				
Capacity: 1 t/h Steam (approx. 0.7 MW)					
Efficiency heat generation: 89%					
Activity Inventar Nummer 227656	Status				
year of construction					
last major overhaul	2008 - Ukrteploservis				
Last inspection	2007 - Derzhpromnaglyad				
Upgrade, initial operation, first tests	Summer 2006				
Start of operation	Summer 2006				
Planned installation date [PDD]	06/2006				
Activity Inventar Nummer 227657	Status				
year of construction					
Last inspection	2008 - Derzhpromnaglyad				
Upgrade, initial operation, first tests Summer 2006					
Start of operation	Summer 2006				
Planned installation date [PDD]	06/2006				

Unit: ventilation air heater (VAH)	
Manufacturer: Kamensk Plant	
Type: WGS 1.0	
Serial Number: 3, 4, 8, 10	
Capacity: four modules a 1 MW	
Efficiency heat generation: 98.5%	
Activity	Status
year of construction	1997-1999
Last inspection	2007 - Derzhpromnaglyad
Upgrade, initial operation, first test	Summer 2006
Start of operation	01/11/2006
Planned installation date [PDD]	11/2006

The ventilation air heater consists of four identical modules, three of which can be in operation simultaneously due to due to restrictions from the ventilation shaft. So a maximum of 3 MW heat capacity results.

Unit: Flare			
Manufacturer: Pro2 Anlagentechnik Gmbl	4		
Type: KGU 5/8			
Serial Number:142401			
Capacity: 10 MW			
Efficiency methane generation: 99.5%			
Combustion temperature: 850°C			
Activity	Status		
Year of construction	2008		
Last inspection 2009 – AS Wärmetechnik GmbH			
Start of operation	29/05/2009		
Planned installation date [PDD]	03/2009		

Unit: cogeneration unit					
Manufacturer: Pro2 Anlagentechnik G	mbH using a gas engine from Deutz AG				
Type: NC620K16					
Serial Number: 146401					
Capacity: 3.750 MW firing, 1.35 MW _{el} ,	0.93 MW _{th}				
Activity	Status				
Year of construction	2000				
Last major overhaul	2009				
Last inspection none					
Start of operation 29/10/2009					
Planned installation date [PDD]	06/2009				

Unit: emergency generator				
Manufacturer: Pervomaysk Diesel Factory	1			
Туре: BGZHCHN 25-34-I (БГЖЧН 25-34-I)			
Serial Number:				
Capacity: approc. 1.111 MW firing, 0.4 MV	V _{el}			
Activity	Status			
Year of construction				
Last major overhaul				
Last inspection				
Start of operation 07/2006				
Planned installation date [PDD]	07/2006			

A.7. Intended deviations or revisions to the registered PDD:

The installation of the second flare is delayed due to the Global Financial Crisis.

A.8. Intended deviations or revisions to the registered monitoring plan:

For the winter boilers and the VAH mainly handwritten data stored in utilisation journals and Excel sheets are available. An electronically measurement system has been installed first in December 2009 - January 2010 and started operation at 03/03/2010.

All boiler and data are recorded manually in a 1 hour cycle in a boiler operation journal. The boiler and VAH data in the Excel sheets are stored in a 6 h cycle.

The heat produced by the project has not been measured but calculated using the utilised methane amount.

The electronically measuring and data storing monitoring system as described in the PDD has not been installed for the two summer boilers and the emergency power generation during the monitoring period. The heat produced by the summer boilers and the power amount produced by the emergency power generation have not been measured but calculated using the utilised methane amount.

The monitoring procedures applied during the monitoring period are described in Annex 3.

A.9. Changes since last verification:

A flare including an electronically monitoring system according to the PDD has been installed in March 2009 and put in operation in May 2009.

A cogeneration unit including an electronically monitoring system according to the PDD has been installed and put in operation in October 2009.

An electronically monitoring system according to the PDD has been installed for the monitoring of the winter boilers and the VAH in December 2009 and put in operation in March 2009. The summer boilers and the emergency power generator have been equipped with the same measurement systems as the winter boilers and the VAH. Handwritten data monitoring started at 13/04/2008 for the summer boilers and at 12/05/2008 for the emergency power generator.

A.10. Person(s) responsible for the preparation and submission of the monitoring report:

Coal Mine Shcheglovskaya-Glubokaya

• Viktor Ivanovich Orlov, Chief Engineer

Eco-Alliance OOO

- Vladimir Kasyanov, Managing Director
- Olga Samus, Consultant

Carbon-TF B.V

- Adam Hadulla, Director Business Development
- Karl Wöste, Senior Consultant

SECTION B. Key monitoring activities

B.1. Monitoring equipment:

B.1.2. Table providing information on the equipment used (incl. manufacturer, type, serial number, date of installation, date of last calibration, information to specific uncertainty, need for changes and replacements):

Table-4 Monitoring equipment, the striked-through equipment belongs to boiler 1 which was not in use during the monitoring period

ID	Data	Method	Manufacturer	Classification	Serial number	Uncertainty level of data	Frequency of Measurement	Instal- lation
1	CMM amount to boilers ¹⁾ Method 1	Pitot tube / pressure and pressure differ- rence meters	none	calculation	none	low	Every 6 hours (two times per shift)	11/2007
1a	Gas velocity	Pitot-Static Tube	n.n.	n. n.	070	low	Every 6 hours (two times per shift)	11/2007
1b	Pressure difference	Inclined tube manometer, water filled	Mikromanometr MMN-240	TU-25-01- 277-70	4471	low	Every 6 hours (two times per shift)	11/2007
1c	Pressure	Mercury filled U-Tube	n. n.	n. n.	none	low	Every 6 hours (two times per shift)	11/2007
1d	Temperature	Thermometer	n. n.	n. n.	none	low	Every 6 hours (two times per shift)	11/2007

Monitoring Report Nr. 01 - Shcheglovskaya-Glubokaya

1e	Barometric Pressure	Barometer	Gidrometrpribor	MD-49-2	31020	low	Every 6 hours (two times per shift)	11/2007
2	CH ₄ concentration	Infrared measurement	GVT	Gas analyser TP 2301	Nr. 481 TU 25-05-1141-71 Nr. 6560 TU 25-05.1141-71	low	Continuous record period in journals 12 h, in Excel sheets 6 h	1978 1983
3	NMHC concentration	lab analysis	n. n.	n. n.	n. n.	low	yearly	n. n.
4	CMM amount to ventilation air heater / emergency power generation ²⁾ Method 1	Pitot tube / pressure difference pick-up	none	none	none	low	record period in electronical system 2 times per day (one time per shift)	11/2007
4a	Gas velocity	Pitot-Static Tube	n. n.	n. n.	071	low	Every 6 hours (two times per shift)	11/2007
4b	Pressure difference	Inclined tube manometer, water filled	Mikromanometr MMN-240	TU-25-01- 277-71	2909	low	Every 6 hours (two times per shift)	11/2007
4c	Pressure	Mercury filled U-Tube	n. n.	n. n.	none	low	Every 6 hours (two times per shift)	11/2007
4d	Temperature	Thermometer	n. n.	n. n.	none	low	Every 6 hours (two times per shift)	11/2007
5	CMM amount to boilers Method 2	Standard orifice and pressure differrence meter	ECO-Alliance OOO	calculation	none	low	Continuous record period 15 min.	03/2010

Monitoring Report Nr. 01 - Shcheglovskaya-Glubokaya

Gas flow Standard orifice Himpe AG Annular chamber Continuous 10/2009 5a none low standard orifice record period 15 DIN 19205 min. Pressure difference 5b Siemens SITRANS P AZB/X1110847 Continuous 10/2009 Pressure low PED:SEP DS difference transmitter record period 15 III min. 7MF1564 Siemens SITRANS P AZB/X1110844 10/2009 5c Pressure Pressure transmitter low Continuous Serie Z record period 15 7MF1564 min. 5d Resistance Siemens dTRANS TO1 08400007 low Continuous 10/2009 Temperature thermometer Тур record period 15 90.2820/10 min. CH_4 ULTRAMAT F-Nr-N1-WN-952 03/2010 5e Infrared meter SIEMENS low Continuous concentration 23 record period 15 min. 6 CMM amount Standard orifice and ECO-Alliance calculation 03/2010 low Continuous none pressure difference to VAH 000 record period 15 meter Method 2 min. Gas flow Standard orifice Himpe AG Annular chamber low Continuous 10/2009 6a none standard orifice record period 15 DIN 19205 min. Pressure difference Siemens SITRANS P AZB/X1110849 10/2009 6b Pressure low Continuous PED:SEP DS difference transmitter record period 15 III min. 7MF1564

Monitoring Report Nr. 01 - Shcheglovskaya-Glubokaya

SITRANS P AZB/X1110845 Siemens Continuous 10/2009 6c Pressure Pressure transmitter low Serie Z record period 15 7MF1564 min. Resistance 08400004 Temperature Siemens dTRANS TO1 low Continuous 10/2008 6d Typ 707015 thermometer record period 15 min. 7 CMM amount Standard orifice and Pro2 calculation low Continuous 03/2009 none pressure differrence Anlagentechnik to flare record period 15 GmbH meter min. Himpe AG annular chamber 03/2009 7a Gas flow Standard orifice low Continuous none standard orifice record period 15 changed at DIN 19205 13/11/2009 min. Pressure difference C3149127001001 Honeywell STD-3000 Continuous 03/2009 7b Pressure low difference transmitter record period 15 min. Noeding EX812126966 Pressure transmitter P 121 low Continuous 03/2009 7c Pressure E02-311 record period 15 min. Resistance JUMO GmbH PT-100 DIN 03/2009 7d Temperature 45710508 low Continuous thermometer record period 15 min. CH₄ Pro 2 Anlagen-BINOS 100 03/2009 7e Infrared meter 120482003017 low Continuous concentration technik GmbH record period 15 min.

Monitoring Report Nr. 01 - Shcheglovskaya-Glubokaya

8	CMM amount to cogenera- tion unit	Standard orifice and pressure difference meter	Pro2 Anlagentechnik GmbH	calculation	none	low	Continuous record period 15 min.	10/2009
8a	Gas flow	Standard orifice	Himpe AG	annular chamber standard orifice DIN 19205	none	low	Continuous record period 15 min.	10/2009
8b	Pressure difference	Pressure difference transmitter	Honeywell	STD-3000	C3059154001002	low	Continuous record period 15 min.	10/2009
8c	Pressure	Pressure transmitter	Noeding	P 121	EX812127132	low	Continuous record period 15 min.	10/2009
8d	Temperature	Resistance thermometer	JUMO GmbH	PT-100 DIN	00515988	low	Continuous record period 15 min.	10/2009
9	Flame temperature of the flare	Thermo couple	Herth GmbH	DIN 43733, Type S, PtRh-Pt	45710508	low	Continuous record period 15 min.	03/2009
10	Power production	Electricity meter	NZR		475072	low	Continuous, cumulative value Read period monthly	10/2009
11	Heat production winter boilers	Calculation	ECO-Alliance OOO	none	none	low	Continuous record period 15 min.	03/2010

Monitoring Report Nr. 01 - Shcheglovskaya-Glubokaya

11a	Inlet	Resistance	AOZT «TERA»	TSP U 1-3	09456	low	Continuous	10/2009
	temperature one measurement for all three boilers 1,3,4	thermometer		PT-100			record period 15 min.	
11.4	Heat production boiler 4	Heat meter	ECO-Alliance OOO	calculation	none	low	Continuous record period 15 min.	03/2010
11.4a	Water flow Boiler 4	Standard orifice	Lvivpribor	DM3583M	19	low	Continuous record period 15 min.	10/2009
11.4b	Pressure difference	Pressure difference transmitter	Lvivpribor	KSD-023	9056848	low	Continuous record period 15 min.	10/2009
11.4c	Outlet temperature Boiler 4	Resistance thermometer	AOZT «TERA»	TSP U 1-3 PT-100	09444	low	Continuous record period 15 min.	10/2009
11.3	Heat production boiler 3	Heat meter	ECO-Alliance OOO	calculation	none	low	Continuous record period 15 min.	10/2009
11.3a	Water flow Boiler 3	Standard orifice	Lvivpribor	DM3583M	71329	low	Continuous record period 15 min.	10/2009
11.3b	Pressure difference	Pressure difference transmitter	Lvivpribor	KSD-023	4014777	low	Continuous record period 15 min.	10/2009

Monitoring Report Nr. 01 - Shcheglovskaya-Glubokaya

page 13

11.3c	Outlet temperature Boiler 3	Resistance thermometer	AOZT «TERA»	TSP U 1-3 PT-100	09448	low	Continuous record period 15 min.	10/2009
11.1	Heat production boiler 1	Heat meter	ECO-Alliance OOO	calculation	none	low	Continuous record period 15 min.	10/2009
11.1a	Water flow ³⁾ Boiler 1	Standard orifice	Lvivpribor	DM3583M	n.n.	low	Continuous record period 15 min.	10/2009
11.1b	Pressure ³⁾ difference	Pressure difference transmitter	Lvivpribor	KSD 023	8087123	low	Continuous record period 15 min.	10/2009
11.1c	Outlet- ³⁾ temperature Boiler 1	Resistance thermometer	AOZT «TERA»	TSP U 1-3 PT-100	09451	low	Continuous record period 15 min.	10/2009

The CMM amount measurement system is utilised for the winter boilers in the winter period and moved to summer boilers in the summer period
 The CMM amount measurement system is utilised for the VAH in the winter period and moved to the emergency power generator in the summer period
 The equipment for Boiler 1 is installed, but the boiler was not in use during the monitoring period

B.1.3. Calibration procedures:

Table-5 Monitoring equipment, the striked-through equipment belongs to boiler 1 which was not in use during the monitoring period

ID	Data	Uncertainty level of data (high/medium/l ow)	Calibration procedure	Last calibration	Calibrator
1	CMM amount to boiler, Method 1	5.3% **)	Calculation	none	none
1a	Gas velocity Pitot-Tube		Calibration made using procedures of Donbasvugle- avtomatyka.	29/10/2007	Donbassugle- avtomatyka
1b	Pressure difference	0.33% of FSV*)	Calibration made using procedures of Donbasvugle- avtomatyka.	29/10/2007	Donbassugle- avtomatyka
1c	Pressure	0.25% of FSV*)	none	none	none
1d	Temperature	2.5% of FSV*)	none	none	none
1e	Barometric Pressure	1.0% of FSV*)	Calibration made using procedures of Donbasvugle- avtomatyka.	29/10/2007	Donbassugle- avtomatika
2	CH ₄ concentration	2.5% of FSV*)	Calibration made using procedures of Donbasvugle- avtomatyka.	III quarter 2008	Donbasvugle- avtomatyka OOO
3	NMHC concentration	unknown	The approved laboratory is responsible for regular recalibrations of the system.	unknown	unknown
4	CMM amount to boiler, Method 1	5.3% **)	Calculation	none	none
4a	Gas velocity Pitot-Tube		Calibration made using procedures of Donbasvugle- avtomatyka.	29/10/2007	Donbassugle- avtomatyka
4b	Pressure difference	0.33% of FSV*)	Calibration made using procedures of Donbasvugle- avtomatyka.	29/10/2007	Donbassugle- avtomatyka
4c	Pressure	0.25% of FSV*)	none	none	none
4d	Temperature	2.5% of FSV*)	none	none	none

5	CMM amount to boilers		Calculation	none	none
	Method 2				
5a	Gas flow	0.74 % DIN EN ISO 5167-T.1-4	none		none
5b	Pressure difference	0.075 % of FSV*)	Calibration made using procedu- res of Sumystandartmetrology		Sumystandart- metrology
5c	Pressure	0.5% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology		Sumystandart- metrology
5d	Temperature	2.5% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology		Sumystandart- metrology
5e	CH ₄ concentration	1.0 % of FSV*)	Calibration made using procedu- res of Sumystandartmetrology Calibrations made using procedu- es of Eco-Alliance OOO every two weeks		Sumystandart- metrology Eco-Alliance OOO
6	CMM amount to VAH		Calculation	none	none
	Method 2				
6a	Gas flow	0.54 % DIN EN ISO 5167-T.1-4	none		none
6b	Pressure difference	0.075 % of FSV*)	Calibration made using procedu- res of Sumystandartmetrology		Sumystandart- metrology
6c	Pressure	0.5% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology		Sumystandart- metrology
6d	Temperature	2.5% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology		Sumystandart- metrology
7	CMM amount to flare		Calculation	none	none
7a	Gas flow	0.56%, disc 1 0.75%, disc 2	none	none	none
		DIN EN ISO 5167-T.1-4			
7b	Pressure difference	0.0375% of FSV*)	Calibration made using procedures of manufacturer.	2008	Honeywell
7c	Pressure	0.2% of FSV*)	Calibration made using procedures of manufacturer.	2008	Noeding/Pro2

7d	Temperature	DIN EN 60 751, Class B	Calibration made using procedures of manufacturer.	2008	JUMO / Pro2
		0.3+0.005T [K]	r · · · · · · · · · · · · · · · · · · ·		
		% of FSV*)			
7e	CH ₄ concentration	0.5%	Calibration made using procedu- res of Sumystandartmetrology Calibrations made using procedu- es of Eco-Alliance OOO every two weeks		Sumystandart- metrology Eco-Alliance OOO
8	CMM amount to cogenera- tion unit		Calculation	none	none
8a	Gas flow	0.56 % DIN EN ISO 5167-T.1-4	none	none	none
8b	Pressure difference	0.0375% of FSV*)	Calibration made using procedures of manufacturer.	2008	Honeywell
8c	Pressure	0.2% of FSV*)	Calibration made using procedures of manufacturer.	2008	Noeding/Pro2
8d	Temperature	DIN EN 60 751, Class B 0.3+0.005T [K] % of FSV*)	Calibration made using procedures of manufacturer.	2008	JUMO / Pro2
9	Flame temperature of the flare	DIN 43733, Class 2 0°C - 600°C +/-1.5 K 600°C - 1600°C +/- 0.25%	Calibration made using procedures of manufacturer. No recalibration, thermocouple is supposed to be changed at least one time per year, according to the flaring tool	2008	Herth
10	Power production				
11	Heat production winter boilers		calculation	none	none
11.1	Heat- ³⁾ roduction boiler 1		Calculation	none	none
11.3	Heat production boiler 3		Calculation	none	none
11.4	Heat production boiler 4		Calculation	none	none

page 17

11a	Inlet temperature one measurement for all thre boilers	2.5% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology		Sumystandart- metrology
11.1e	Outlet- ³⁾ emperature boiler 1	2.5% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology		Sumystandart- metrology
11.3c	Outlet temperature boiler 3	2.5% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology		Sumystandart- metrology
11.4c	Outlet temperature boiler 4	2.5% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology		Sumystandart- metrology
11.1a	Water flow- ³⁾ oiler 1	1.5% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology	14/10/2009	Sumystandart- metrology
11.3a	Water flow boiler 3	1.5% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology	12/10/2009	Sumystandart- metrology
11.4a	Water flow boiler 4	1.5% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology	12/10/2009	Sumystandart- metrology
11.1b	Pressure- ³⁾ ifference boiler-1	1.0% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology	14/10/2009	Sumystandart- metrology
11.3b	Pressure difference boiler 3	1.0% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology	12/10/2009	Sumystandart- metrology
11.4b	Pressure difference boiler 4	1.0% of FSV*)	Calibration made using procedu- res of Sumystandartmetrology	12/10/2009	Sumystandart- metrology

*) FSV – Full Scale Value
**) according to propagation of uncertainty
3) The equipment for Boiler 1 is installed, but the boiler was not in use during the monitoring period

B.1.4. Involvement of Third Parties:

- The lab analysis for the determination of the NMHC concentration has been done by MAKNII
- The calibration of CH₄-concentration has been done by DTOV Donbasvugleavtomatyka.
- Eco-Alliance OOO supported the coal mine with the collecting of the monitoring data.
- Emissions-Trader ET GmbH has supervised the data for plausibility and completeness.

B.2. Data collection (accumulated data for the whole monitoring period):

B.2.1. List of fixed default values:

Table-6 List of ex-ante fixed values

ID number	Data variable	Source of data	Data unit	Comment
P8, B49 CEF _{ELEC,PJ}	Carbon emission factor of CONS _{ELEC,PJ}	official data of Ukrainian power grid	tCO _{2eq} /MWh	SenterNovem data taken instead of not available Ukrainian data, according to information given in the PDD: 2008: 0.695 2009: 0.680 2010: 0.666 2011: 0.651 2012: 0.636
P13 Eff _{FL}	Flare combustion efficiency	IPCC, Methodological "Tool to deter- mine project emissions from flaring gases containing methane"	t CH₄	Set to: 99.5 % for: T _{Flame} > 850°C [PDD, IPCC] 90% for: 500°C < T _{Flame} < 850°C [AM_Tool_07] 0% for: T _{Flame} < 500°C [AM_Tool_07]
P16 Eff _{ELEC}	Efficiency of methane destruction / oxidation in power plant	ACM0008 / IPCC	%	set at 99.5% (IPCC)
P19 Eff _{HEAT}	Efficiency of methane destruction / oxidation in heat plant	ACM0008 / IPCC	%	set at 99.5% (IPCC)
P23, B19 CEF _{CH4}	Carbon emission factor for combusted methane	ACM0008 / IPCC	t CO ₂ eq/t CH ₄	set at 2.75 t CO ₂ eq/t CH ₄
P28, B18 GWP _{CH4}	Global warming potential of methane	ACM0008 / IPCC	t CO ₂ eq/t CH ₄	set at 21
B55 EF _{CO2,Coal}	CO ₂ emission factor of fuel used for captive power or heat	IPCC 2006 1 Introduction Table 1.2	tCO ₂ /MWh	Set to 0.3406 tCO ₂ /MWh Using the value for "Other Bituminous Coal" of 94,600 kg CO ₂ /TJ

page 19

B57	Energy efficiency of heat	Boiler pass	%	73.5 % old coal boiler
Eff _{heat}	plant	-		90.0 % upgraded boiler
				(measured value)
		VAH pass		98.5 % ventilation air
				heater

B.2.2. List of variables:

Table-7 List of variables

ID number	Data variable	Source of data	Data unit	Comment
P1 PE _v	Project emissions in year y	monitored data	t CO _{2eq}	calculated using formulae from the PDD
P2 PE _{ME}	Project emissions from energy use to capture and use methane	monitored data	t CO _{2eq}	calculated using formulae from the PDD
P3 PE _{MD}	Project emissions from methane destroyed	monitored data	t CO _{2eq}	calculated using formulae from the PDD
P4 PE _{UM}	Project emissions from uncombusted methane	monitored data	t CO _{2eq}	calculated using formulae from the PDD
P5 CONS _{ELEC,PJ}	Additional electricity consumption by project	monitored data	MWh	calculated using operation hours of the flares
P11 MD _{FL}	Methane destroyed by flaring	monitored data	t CH ₄	calculated using formulae from the PDD
P12 MM _{FL}	Methane sent to flare	monitored data	t CH ₄	calculated using formulae from the PDD
P14 MD _{ELEC}	Methane destroyed by power generation	monitored data	t CH ₄	calculated using formulae from the PDD
P15 MM _{ELEC}	Methane sent to power plant	monitored data	t CH₄	calculated using formulae from the PDD
P17 MD _{HEAT}	Methane destroyed by heat generation	monitored data	t CH ₄	calculated using formulae from the PDD
P18 MM _{HEAT}	Methane sent to heat generation	flow meter	t CH₄	handwritten journals
P24 CEF _{NMHC}	Carbon emission factor for combusted non methane hydrocarbons (various)	lab analysis	-	Calculated if applicable
Р25 РС _{СН4}	Concentration of methane in extracted gas	IR measurement	%	handwritten journals
P26 PC _{NMHC}	NMHC concentration in coal mine gas	lab analysis	%	Used to check if more than 1% of emissions and to calculate r
P27 r	Relative proportion of NMHC compared to methane	lab analysis	%	Calculated if applicable, based on the lab analysis.
B1 BE _v	Baseline emissions in year y	monitored data	t CO _{2eq}	calculated using formulae from the PDD

B3	Baseline emissions from	monitored	t CO _{2eq}	calculated using
BE _{MR,y}	release of methane into the	data		formulae from the PDD
	atmosphere in year y that is			
	avoided by the project activity			
B4	Baseline emissions from the	monitored	t CO _{2eq}	calculated using
BE _{Use,y}	production of power, heat or	data		formulae from the PDD
-	supply to gas grid replaced			
	by the project activity in year			
	y y			
B14	CMM captured and	flow meter	t CH₄	equal to P17,MD _{HEAT}
CMM _{PJ,y}	destroyed in the project			
	activity in year y			
B46	electricity generation by	monitored	MWh	
GENy	project	data		
B47	Heat generation by project	monitored	MWh	calculated using P17
HEATy		data		and B57, method 1
-				measured, method 2
PE _{Flare}	Project emissions from flaring	monitored	t CO _{2eq}	Calculated using
		data		formula from the flaring
				Tool (AM Tool 07)

B.2.3. Data concerning GHG emissions by sources of the project activity

Table-8 GHG emissions by sources of the project activity

ID number	Data variable	Source of data	Data unit	Comment
P12 MM _{FL}	Methane sent to flare	monitored data	t CH ₄	calculated using formulae from the PDD
P15 MM _{ELEC}	Methane sent to power plant	monitored data	t CH ₄	calculated using formulae from the PDD
P18 MM _{HEAT}	Methane sent to heat generation, consisting of: Methane sent to boilers Methane sent to VAH	Sum of flow meters	t CH₄	handwritten journals, electronic records
P25 PC _{CH4}	Concentration of methane in extracted gas	IR measurement	%	handwritten journals, electronic records

page 21

B.2.4. Data concerning GHG emissions by sources of the baseline

Table-9 GHG emissions by sources of the baseline

ID	Data variable	Source of	Data unit	Comment
number		data		
B14 CMM _{PJ,y}	CMM captured and destroyed in the project activity in year y	Sum of flow meters	t CH₄	sum of boilers, VAH, flare and cogeneration
B47 HEAT _y	Heat generation by project	monitored data	MWh	sum of heat generated by boilers + VAH
B46 GENy	electricity generation by project	monitored data	MWh	

B.2.5. Data concerning leakage

Not applicable.

B.2.6. Data concerning environmental impacts

Not applicable.

B.3. Data processing and archiving (incl. software used):

Method 1 for boilers, VAH and emergency power generator:

Handwritten journals, Microsoft Excel Sheets.

Method 2 for boilers and VAH and regular monitoring for flare and cogeneration:

The data are collected, processed and stored using a Siemens SIMATIC PLC S7 system and Siemens WINCC programming software. All data is stored in the internal memory about 2 GB. One time per hour the data are sent via GPS to an Internet-based Server data base. The server provider ensures regular back ups and archiving. Further on the data is stored and archived by Eco-Alliance OOO. The data can be read any time from the internet data base by authorised personnel. The utilised methane amount is automatically calculated and stored in the PLC. As all input data are stored, the automatically calculation can by checked in retrospect any time.

For plausibility checks and potential data back up the data logged in the hand written journals of the suction system can be taken.

B.4. Special event log:

No special events.

SECTION C. Quality assurance and quality control measures

C.1. Documented procedures and management plan:

C.1.1. Roles and responsibilities:

The general project management is implemented by the Technical Director of Shakhtoupravlenye Donbass, the Holding Company of the Shcheglovskaya-Glubokaya Coal Mine, through supervision and coordination of activities of his subordinates, such as deputy director on surface degasification, heat technician, and heads of safety engineering departments.

Daily a group of mechanics and electricians who are responsible for the measures and maintenance of all technological equipment and measuring instruments are present on-site. There are two shifts, 12 h each. For every shift there is one person on-duty responsible for the proper operation and keeping of the journals.

Overview calculations about the methane amount utilised are made on a monthly and yearly basis and notified in the journal. The monitoring system is supervised by the administration of the coal mine under the existing control and reporting system. The general supervision of the new electronically monitoring system is executed by Eco-Alliance OOO, who is consultant for the coal mine

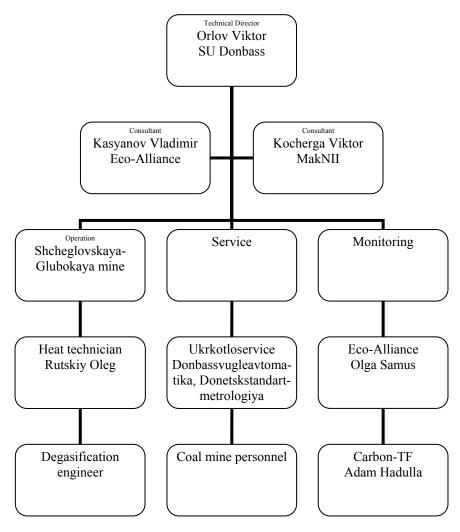


Figure 1 – Organigram

C.1.2. Trainings:

The employees responsible for the monitoring control have been trained on-the-job during the installation of the system.

The responsible personnel of Eco-Alliance has been trained on the handling with CMM-utilisation units and the applied monitoring systems, during an eight week long practical course in Germany in the autumn of 2005 and a two-week practical course in August/September 2008. In this courses which has been carried out by A-TEC Anlagentechnik GmbH, a Joint-Venture participant of Eco-Alliance, also the basic principles of emissions trading and the background of the monitoring has been explained. A-TEC Anlagentechnik GmbH is already running several CMM utilisation plants and monitoring systems in Germany.

These trained personnel is the basis of a team of engineers, which should establish a specialised service team in the Ukraine and instruct further operating and monitoring personnel, as well for this project.

C.2. Involvement of Third Parties:

- MakNII Institute, the "State Makeyevka Institute for Research and Education for Safe Work in the Coal Mining Industry", a subsidiary of the "Ukrainian Ministry for Fuel and Energy", has been involved for the lab analysis (NMHC) of the CMM.
- Ukrkotloservis has been involved for the service of the boiler.
- Donbasvugleavtomatyka OOO has been involved for the regular calibrations and service of the measurement and control equipment of the boilers and VAH.

C.3. Internal audits and control measures:

The results of the upgraded boiler have been compared with the coal boilers. The data are plausible, no major deviations have been found. The efficiency of the upgraded boiler has been measured and has been found to be better than that for the coal boilers.

During the efficiency measurements the heat produced by the boiler has been measured and verified. The measurements confirm the plausibility of the flow and concentration measurement units and the calculation method for the produced heat amount (see Section D, Table-10, B47).

QM procedure:

- The data are recorded in journals by the coal mine personnel
- The journals are checked daily by the chief heat technician
- And cross-checked monthly by Eco Alliance OOO
- Eco Alliance prepares monthly reports which are checked by Carbon-TF B.V.
- The paper data are stored at the coal mine.
- Electronic data are stored at Eco-Alliance and Carbon-TF.
- Back-ups are made regularly by Eco-Alliance and Carbon-TF.
- Carbon-TF prepares the monitoring report, which is checked by Eco-Alliance and the coal mine.

C.4. Troubleshooting procedures:

The general troubleshooting for the boiler and the VAH hasn't changed. In case of disturbance the gas supply to the boiler is shut down by a quick acting valve and the CMM supplied by the degasification system of the coal mine is blown to the atmosphere.

SECTION D. Calculation of GHG emission reductions

D.1. Table providing the formulas used:

Table-10 Formulae used taken from the PDD.

ID number	Data variable	Formula
P1 PE _v	Project emissions in year y	$PE_{y} = PE_{ME} + PE_{MD} + PE_{UM}$
P3 PE _{MD}	Project emissions from methane destroyed	$PE_{MD} = (MD_{FL} + MD_{ELEC} + MD_{HEAT}) x (CEF_{CH4} + r x CEF_{NMHC})$
P4 PE _{UM}	Project emissions from uncombusted methane	$PE_{UM} = GWP_{CH4} x [MM_{ELEC} x (1 - Eff_{ELEC}) + MM_{HEAT} x (1 - Eff_{HEAT})] + PE_{Flare}$
P5, CONS _{ELEC}	Additional electricity consumption by the project	$CONS_{ELEC} = h_{FL} \times P_M \times Eff_M / 1000$
P18 MM _{HEAT}	Methane sent to heat generation	$MM_{HEAT} = MM_{HEAT,BOILERS} + MM_{HEAT,VAH}$
P27 r	Relative proportion of NMHC compared to methane	$r = PC_{NMHC} / PC_{CH4}$
B1 BE _v	Baseline emissions in year y	$BE_y = BE_{MR,y} + BE_{Use,y}$
B3 BE _{MR,y}	Baseline emissions from release of methane into the atmosphere in year y that is avoided by the project activity	$BE_{MR,y} = CMM_{PJ,y} \times GWP_{CH4}$
B4 BE _{Use,y}	Baseline emissions from the production of power, heat or supply to gas grid replaced by the project activity in year y	$BE_{Useyy} = GEN_y x EF_{ELEC} + (HEAT_y / Eff_{HEAT,coal}) x$ EF_{HEAT}
B14 CMM _{PJ,y}	CMM captured and destroyed in the project activity in year y	$CMM_{PJ,y} = (MD_{FL} + MD_{ELEC} + MD_{HEAT})$
B46 GEN _v	Electricity generation by project	$GEN_{y} = GEN_{CHP} + (MD_{EPG} \times Eff_{EPG} \times HV_{CH4})$
B47 HEAT _y	Heat generation by project	$HEAT_{v} = (MD_{HEAT,BOILER} \times Eff_{HEAT,boiler,CMM} + MD_{HEAT,VAH} \times Eff_{HEAT,VAH}) \times HV_{CH4}$
ER	Emission reductions	$ER_{y} = BE_{y} - PE_{y}$
PE _{Flare}	Project emissions from flaring	$PE_{flare,y} = \sum_{h=1}^{8760} TM_{RG,h} x (1 - \eta_{flare,h}) x \frac{GWP_{CH4}}{1000}$

D.2. Description and consideration of measurement uncertainties and error propagation:

Obvious errors in the journals have been corrected by Emission-Trader ET GmbH during the supervision of the documents. Corrected data are marked red.

In addition to the uncertainty of the measuring meters, the hand reading of the meters causes additional uncertainties. A total of 12 random errors and 6 systematic errors resulting from the uncertainties of the measurement equipment as well as hand readings and handling of the data have been named and discussed, see <Possible sources of error.pdf> for detailed information. For each of the both monitoring methods a resulting uncertainty has been determined and subtracted from the results.

page 25

Table-11 Resulting uncertainties for Method 1 and Method 2

Monitoring Method	Period	Uncertainty
Method 1	01/01/2008 to 02/03/2010	5.3%
Method 2	since 03/03/2010	1.0%

D.3. GHG emission reductions (referring to B.2. of this document):

D.3.1. Project emissions:

period	project emissions [t CO _{2eq}]	
01/01/2008-31/12/2008	11,324	
01/01/2009-31/12/2009	12,780	
01/01/2010-31/03/2010	4,488	
Total 2008-2010	28,592	

D.3.2. Baseline emissions:

period	baseline emissions [t CO _{2eq}]	
01/01/2008-31/12/2008	97,844	
01/01/2009-31/12/2009	105,807	
01/01/2010-31/03/2010	38,700	
Total 2008-2010	242,351	

D.3.3. Leakage:

Not applicable.

D.3.4. Summary of the emissions reductions during the monitoring period:

Period	Emission reductions [t CO _{2eq}]	
01/01/2008-31/12/2008	86,519	
01/01/2009-31/12/2009	93,027	
01/01/2010-31/03/2010	34,213	
Total 2008-2010	213,759	

page 26

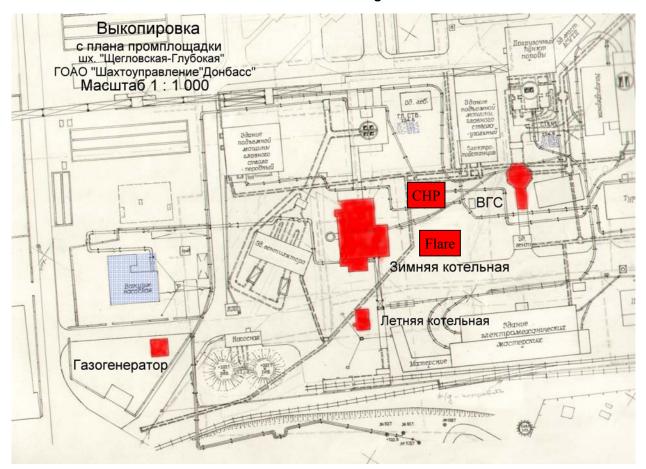
The total GHG emission reduction for the monitoring period 01/01/2008-31/03/2010 is 213,759 t CO_{2eq} .

This monitoring report has been prepared by Carbon-TF B.V. Responsible person: Adam Hadulla

Venio, 13/04/2010

page 27

Annex 1


REFERENCES

- Project Design Document; Version 07, dated 2009-08-06
- Final Determination Report for the project: JI0077 CMM utilisation on the coal mine Shcheglovskaya-Glubokaya of the State Holding Joint-Stock Company "GOAO Shakhtoupravlenye Donbass" Report No: 2008-1321 Rev 02, by DNV Det Norske Veritas, dated 2009-08-07
- Letter of Approval, Nr. M000015, issued on 2008-03-26 by the Ukraine (host party)
- Letter of Approval, Nr. 2008JI04, issued on 2008-04-22 by the Kingdom of the Netherlands (investor party)
- supporting evidence documents provided by the coal mine

page 28

<u>Annex 2</u>

Technical drawing

Figure-1 Installation scheme – Coal Mine Shcheglovskaya-Glubokaya

Вакуум насосная – Gas pumps

Газогенератор - Location of the emergency power generator unit

Зимняя котельная - boilers – four large boilers, two of which have been upgraded with a CMM burner system

Летняя котельная - summer boilers – planned but not realised

BΓC – Location of the ventilation air heater

page 29

Annex 3

Energy and material flowchart including metering positions

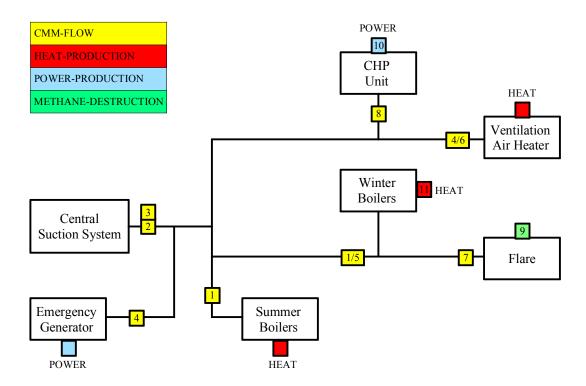


Figure -2 Installation scheme and positioning of the meters

The hand recorded measuring system (1) has been utilised rotationally on winter and summer boilers.

The hand recorded measuring system (4) has been utilised rotationally on VAH and Emergency Power Generator.

A3.1 Monitoring plan applied

The monitoring plan applied during the monitoring period provides mainly handwritten data. In the beginning of the monitoring period the data have been read manually from the electronic devices and hand written in Journals and Excel sheets. This method is the most common practice in Ukraine.

The flare and the cogeneration unit have been equipped with an adequate electronically monitoring system from beginning of the operation.

The electronic monitoring equipment for the winter boilers and the VAH has been installed first in October-December 2009 and put operation in March 2010 at the end of the monitoring period.

The summer boilers and the emergency power generator have not been equipped with an electronically monitoring system until the end of the monitoring period. Only hand written data are available.

A3.2 Monitoring procedures:

The boiler data (temperatures, pressures etc.) are recorded manually in a 1 h cycle in a boiler operation journal. These boiler operation data are recorded for safety reasons and proper operation of the boiler. These journals are stored and the data are available for the monitoring period.

In the same manner VAH data are recorded.

The monitoring system includes:

- Measurement of the gas speed in the main gas supply pipe
- Measurement of pressure and temperature of the gas and barometric pressure for flow correction
- CH₄ concentration

Two sets of measurement units have been installed, one for the winter boilers and summer boilers and one for the VAH and emergency power generator. The first system (1) has been utilised rotationally on summer and winter boilers. The second system (4) has been utilised rotationally on VAH in the winter period and the emergency power generator in the summer. The operation times are given in Tables 15 and 16.

Date	Sys	tem 1
01/01/2008, 00:00 - 13/04/2008, 7:00	Winter Boiler	
13/04/2008, 13:00 – 07/10/2008, 7:00		Summer Boiler
07/10/2008, 13:00 – 20/04/2009, 7:00	Winter Boiler	
20/04/2009, 13:00 – 14/10/2009, 1:00		Summer Boiler
14/10/2009, 07:00 - 02/03/2010, 24:00	Winter Boiler	
Electronically system on winter boilers working since 03/03/2010, 0:00		


Table-15 Operation intervals for CMM flow measuring System 1

Table-16 Operation intervals for CMM flow measuring System 4

Date	System 4		
01/01/2008, 00:00 – 26/02/2008, 7:00	Ventilation Air Heater		
12/05/2008, 13:00 – 20/11/2008, 7:00		Emergency Power Generator	
25/11/2008, 13:00 – 10/03/2009, 7:00	Ventilation Air Heater		
11/03/2009, 13:00 – 01/10/2009, 7:00		Emergency Power Generator	
07/12/2009, 13:00 – 02/03/2010, 24:00	Ventilation Air Heater		
Electronically system on ventilation air heater working since 03/03/2010, 0:00			

All data concerning the CMM, which is fed into the boilers and the VAH are read manually from the electronic devices, but stored electronically in Excel sheets. The data are collected two times per shift (every 6 hours) by the shift personnel and recorded manually in a CMM journal. One time per week the hand written data in the CMM journal are checked by the heat technician of the coal mine and transferred into Excel sheets.

The gas flow is determined using a Pitot-Static Tube measuring dynamic gas pressure according to the Bernoulli Law.

In this tube the measured dynamic pressure, the pressure difference between the stagnation pressure and the static pressure, is proportional to the velocity of the gas.

$$V = \sqrt{\frac{2 * (p_t - p_s)}{\rho}}$$

With known diameter of the pipe the volume flow is given.

$$\dot{V} = v * \frac{d^2 * \pi}{4}$$

The flow is corrected to standard state conditions using measurements of gas pressure and temperature and the barometric pressure.

All needed formulae are included in the Excel sheets, so only raw data have to be transferred to the sheets.

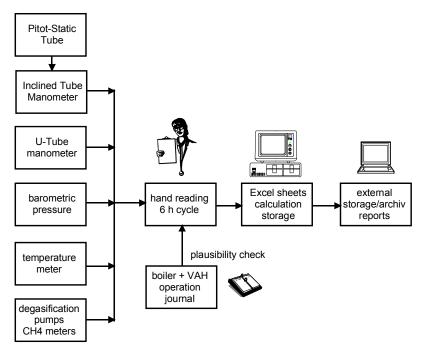
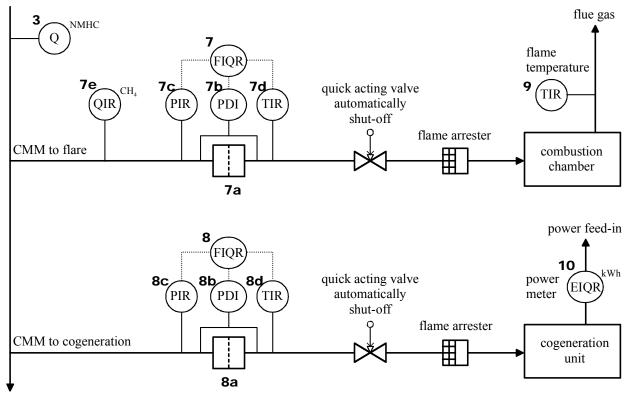



Figure-3 data flow scheme – Method 1

page 32

CMM from central suction system

Figure -4 Installation scheme and positioning of the meters, flare and CHP

Electronically system

The flare and the cogeneration unit have been equipped with an adequate electronically monitoring system. The monitoring plan applied during the monitoring period is according to the monitoring plan.

Flare

During the first period from 20/12/2008 17:00 to 27/01/2009 12:00 the automatically data storage system in the flare was not working. In this period the data have been hand read from the display of the flare and hand recorded in a journal. The data from this journal has been transferred to excel sheets by Carbon-TF.

The automatically system has started operation at 27/01/2009 12:15.

The standard orifice for CMM flow measurement has been changed on 11/11/2009. An orifice with an bigger diameter has been built in.

Emergency Power Cogeneration unit

The power amount of the emergency power generator has not been counted. The electricity production has been recalculated using the methane amount consummated by the unit and the power efficiency as given in the PDD.

 $\begin{array}{ll} GEN = \dot{V}_{CH4} \times Eff_{ELEC} \times HV_{CH4} \\ \text{with} \\ \text{GEN} & \text{Electricity produced by the project [kWh]} \end{array}$

page 33

VCH4Methane amount utilised by the cogeneration unit [m³ at standard state conditions]Effefficiency of power generation, set to 36% as given in the PDDHVheating value of methane [9.965 kWh/m³ m³ at standard state conditions]

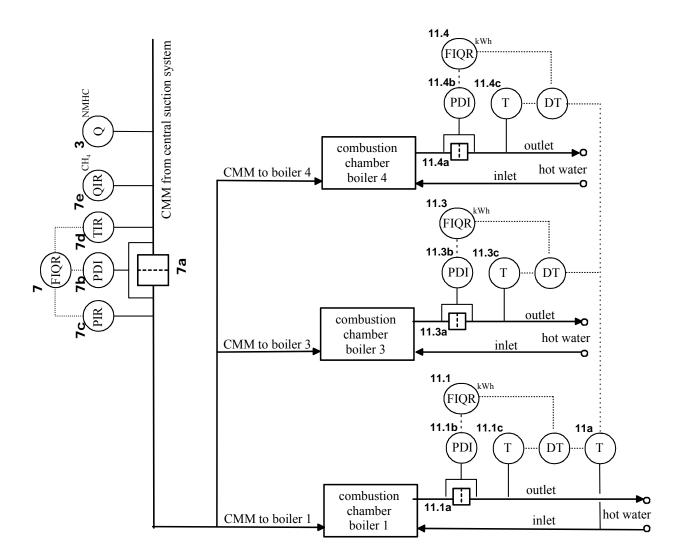


Figure -5 Installation scheme and positioning of the meters, winter boilers 1, 3 and 4 Boiler 1 was not in operation during the monitoring period