Monitoring report of GHGs emission reduction

JI PROJECT:

« IMPLEMENTATION OF ARC-FURNACE STEELMAKING AT MAGNITOGORSK IRON AND STEEL WORKS »

Monitoring period: 01.01.2010 - 31.12.2010

Version 1.4. (Final after verification)

Data of development of this version: 29 March 2011.

CONTENTS

Section A.	General information on the project	p. 3
Section B.	Monitoring system of GHGs emission reduction	p. 5
Section C.	Adjustments and deviations from the monitoring plan presented in PDD	p. 21
Section D.	Calculation of GHGs emission reduction	p. 25
Appendix 1	Color legend for calculation tables	p. 64
Appendix 2	List of abbreviations	p. 65
Appendix 3	Response to the Further Action Request(s) in the Verification report issued for the previous monitoring period	p. 66

A. General information on the project

A.1. Introduction

The aim of report is representation of the monitoring results and results of calculation of Emission Reduction Units (ERUs) generated by the JI project "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works" for the period from January 01, 2010 to December 31, 2010.

The considered project has been approved in Russian Federation (RF) as host Party by the Order of Ministry of Economic Development of RF # 709 of December 30, 2010.

The Declaration of Approval from State of the Netherlands, acting through the Ministry of Economic Affairs, Agriculture and Innovation and its implementing agency "NL Agency", being the Designated Focal Point for Joint Implementation (JI) in The Netherlands has been received for the project by 8th March 2011.

Thereby the project has been approved both by host Party and Party involved in the JI project, other than the host Party. Technical implementation of the project took place in 2003-2006.

A.2. Brief description of the project

The proposed Joint Implementation project envisages a complex resource-saving effect from the transition to the technology of production of profiled steel in the electric arc furnaces (EAF) and its teeming in the continuous casting machines (CCM) instead of production of the same steel and profiled billet in the openhearth plant and blooming mill plant.

Electric steelmaking process in EAFP and further teeming in CCM is a resource-saving technology, which allows at the same output rate to save the carbon-containing materials and fuels – coking coal, coke, pig iron, natural gas compared to the conventional OHFP process with ingots teeming. It is assumed that production of profiled steel billet in the project and the baseline is equivalent and corresponds to the actual steel production according to the monitoring data.

A.3. Emission reduction during monitoring period

Current report takes into account CO_2 emission reduction generated during 2010. Detailed calculations are in the section D.

The actual generation of ERUs for the period of 1st January 2010 to 31st December 2010 is 758 323 tonnes CO_{2eg.}

In accordance with PDD, version 1.5 of January 31, 2011 the expected volume of ERUs for the period of 1^{st} January 2010 to 31^{st} December 2010 is 1 097 296 tonnes CO_{2eq} .

The volume of actually generated ERUs in 2010 turned out to be less than calculated in the PDD because of lesser output of profiled steel billet than it was planned. As well the specific CO_2 emissions from production of pig iron have decreased.

A.4. Contact information on project participants

Company:	OJSC "Magnitogorsk Iron and Steel Works"
Street:	Kirova
Building:	93
City:	Magnitogorsk
State/region	-
Zip code:	455000
Country:	Russia
Phone:	+7 (3519) 24-78-98
Fax:	+7 (3519) 24-71-40
e-mail:	mit@mmk.ru
website:	www.mmk.ru
Representative:	
Position:	Manager of environmental and regional programs
Title:	Mr.
Family name:	Mitchin
Name:	Andrey Mikhailovich
Department:	Department for relations with state authorities and markets protection

Contact person of project owner:

Contact person of consultant of project owner and developer of this monitoring report:

Company:	CTF Consulting, LLC
Street:	Baltschug
Building:	7
City:	Moscow
State/region	-
Zip code:	115035
Country:	Russia
Phone:	+7 (495) 984-59-51
Fax:	+7 (495) 984-59-52
e-mail:	konstantin.myachin@carbontradefinance.com
website:	http://www.carbontradefinance.com/
Representative:	
Position:	Carbon projects manager
Title:	
Family name:	Myachin
Name:	Konstantin Yurevich
Department:	-

B. Monitoring system of GHGs emission reduction

B.1 Information on the collection and archiving of information on the environmental impacts of the project

In accordance with requirements of Articles 14, 22 the Federal Law on environmental protection # 7-FZ OJSC "MMK" has the approved Maximum Permissible Emissions (MPE) document. This document is approved by Chelyabinsk Regional Department of Technological and Environmental Surveillance of Rostechnadzor. This decision is valid for one year. Under this decision the harmful emission permit is issued. This permit quantified impacts to atmosphere by OJSC "MMK".

For confirmation of MPE the air emissions were estimated by OJSC "Magnitogorsk GIPROMEZ" in accordance with Russian "Guidelines for calculation of industrial emissions of air pollutants" (OND-86)¹. These estimations were based on OJSC "MMK" Emission Inventory and Emission Sources Report done by Federal State Unitary Enterprise "All-Russian Institute for Carbon Chemistry" in Yekaterinburg (2008). This report was approved according to the established procedure.

Laboratory for Control of Air Quality of OJSC "MMK" performs environmental monitoring according to the monitoring schedule.

According to the provisions of Russian environmental law (Federal Law №7-FZ of 10.01.2002 "On Environmental Protection"), environmental experts and managers of polluting enterprises must have qualifications in environmental protection and environmental safety. Functions of the Department of environmental protection are ensuring compliance with environmental quality standards, obtaining government permits for emissions and discharges of hazardous substances, disposal of waste.

In accordance with referred above Federal Law OJSC "MMK" has the approved Maximum Permissible Discharge of Sewage document (MPDS) and Permissible Norm of Producing and Placement of Wastes document (PNPPW). In these documents procedure of collecting and archiving of information on the environmental impacts is defined.

There is a monitoring plan in MPDS document, which is defined the monitoring parameters, frequency of measurement for each parameter and responsible personnel. Monitoring plan is approved by OJSC "MMK". In PNPPW document list and quantity of produced wastes, frequency of producing, places of storage and responsible personnel are defined. This document is approved by OJSC "MMK".

Considering the above we can conclude that OJSC "MMK" conduct the periodic monitoring of the environment impacts. The enterprise also has an environmental management system certified by ISO 14001.

According to the information from Environmental department of OJSC "MMK" confirmed during the visit in January 2011:

The project was fully put into operation is 2006 and environmental protection equipment designed for it (gas purification units at EAFs, etc) operates normally. The total environmental impact for the section steel production has been radically reduced in comparison with the open-hearth/ingots casting technology.

Emissions of polluting substances are normalized in the permission to emission of the polluting substances, given out by Rostehnadzor in the Chelyabinsk area. Results of inventory of emissions prepares annually.

¹ <u>http://www.vsestroi.ru/snip_kat/ad977f56010639c6e1ba95802d182677.php</u>

Monitoring report "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works". Version 1.4 of 29.03.2011

According to the valid permission the emissions of pollutant substances do not create maximum concentration above limit, except a number of substances (nitrogen (IV) a dioxide, sulfur a dioxide, hydrogen sulfide, carbon oxide, phenol) for which the temporarily permission is established.

The polluted water is treated at local treatment facilities. The enterprise has several closed loop water turnover systems. The water which is subject to the discharge is released in the river Sukhaya (inflow of the river Ural).

Placing of a waste occurs in conformity to the project of specifications of formation of a waste and limits on their placing, confirmed by Rostehnadzor in the Chelyabinsk area.

B.2 Methodological approach applied (summary from PDD, version 1.5 of January, 31 2011)

Monitoring of the baseline and project emissions during 2010 has been performed in accordance to the PDD, version 1.5 of January, 31 2011 except adjustments and deviations given in the Section C.

JI specific approach is applied for the monitoring of GHGs emission in accordance with paragraph 9 (a) of the "Guidance on criteria for baseline setting and monitoring" (Version 02).

Methodological approach applied for calculation of the CO_2 emissions by carbon balance method is in line with Tier 3 approach described in Section 4.2.2 of Chapter 4 of "2006 IPCC Guidelines for National Greenhouse Gas Inventories" (IPCC Guidelines 2006). This approach was complemented with monitoring of CO_2 emission factor for generation of electricity at MMK own power plants, CO_2 emissions due to consumption of electricity in EAFP, CO_2 emissions from generation and consumption of air blast in blast furnace plant.

Since MMK is a full-cycle iron and steel works, the production of coke and pig iron meets apart from EAFP the demand of basic oxygen furnace plant, even though the latter lies outside the project boundaries. EAFP produces profiled steel billet and slab steel billet, the latter is outside the project boundaries. To calculate CO_2 emissions within the project boundaries the specific CO_2 emissions per ton of coke, pig iron and steel billet are defined. Then specific emissions are multiplied by the output of these products within the project boundaries.

The project boundaries include (Diagram B.2.1, B.2.2 below):

- Metallurgical conversion production works: by-product coke plant, blast-furnace plant, EAFP (or OHFP and BMP in the baseline scenario)
- Own power generation capacities of MMK: Combined heat power plant (CHPP), Central power plant (CPP), Steam-air blowing power plant (SABPP), turbine section in the steam plant, gas recovery section in the steam plant
- Unified energy system of Urals.

Diagram B.2.1. Project boundaries. Project scenario

Monitoring report "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works". Version 1.4 of 29.03.2011

To calculate the project CO₂ emissions we estimated the following parameters:

- 1. CO₂ emission from metallurgical conversions within the project boundaries (using carbon balance method)
- 2. Specific CO₂ emission per ton of coke, pig iron and steel billet (profiled and slab all together).
- 3. Specific consumption of pig iron and scrap metal for production of one ton of steel billet and specific consumption of metallurgical coke per one ton of pig iron.
- 4. Project CO₂ emission from metallurgical conversions during production of profiled steel billet using defined specific values and coefficients
- 5. CO₂ emission coefficients from generation of electricity and air blast at MMK, and accordingly the project emissions from consumption of electricity in EAFP and consumption of air blast in BFP required for production of the profiled steel billet.
- 6. Total project CO_2 emissions associated with production of profiled steel billet are summarized.

Blast furnace dust and scrubber sludge are particular kinds of industrial waste generated in blast furnace process. They originate in the system of dry cleaning of blast furnace gas and contain significant amounts of carbon. These materials are transported to agglomeration plant and consumed during production of fluxed agglomerate. The carbon from blast furnace dust and scrubber sludge is fully released as CO₂. Therefore, these emissions are included in emissions from production of pig iron in blast furnace plant. A small fraction of blast furnace dust comes to the cement plant. By conservative approach this fraction is considered as leakage emission outside OJSC "MMK" and included in the corresponding chapter of monitoring plan.

The consumption of production inputs, raw materials, energy resources, and the output of commercial products are routinely monitored by MMK applying the system of factory monitoring and reporting. These parameters are measured in accordance with applicable standards and rules in the iron and steel industry of Russia as well as international standards (OJSC "MMK" is certified by ISO 9001 standard). All required parameters are available within the production monitoring and reporting system of Magnitogorsk Metallurgical Works and thus associated procedure for monitoring of CO_2 emissions does not require any additional changes or improvements in the existing system.

The majority of carbon content parameters included in the monitoring plan are regularly determined by direct analyses in Central Laboratory of OJSC "MMK" or calculated on the basis of chemical composition of carbon-containing substances. The samples of blast furnace gas and coke oven gas are analyzed in CEST laboratory and the data on chemical composition of natural gas are taken from its technical passport issued and provided by the supplier.

Table B.2.1. contains the values of carbon content of raw materials, fuels and produced substances that are used in calculation formulae but fixed ex-ante as per PDD.

Table B.2.1. Carbon content of raw materials, fuels and produced substances fixed ex ante for the project and baseline²

№	Parameter and measurement units	Variable	Value	Source of data
1.	Carbon content in crude benzol, % by mass	%C _{benzol}	90.0	The Central Lab of MMK performs a test of chemical composition of crude benzol once a month. The carbon content in

² The data confirming the appropriateness of values of these parameters as a ground for their fixing ex-ante has been provided during determination of the PDD and available at OJSC "MMK" by request.

				crude benzol therefore can be determined by known carbon content in each component and its % mass fraction. During development of the PDD the analysis of chemical composition of crude benzol has been taken (QMS reporting form SMK CLK (51)-22-2) and calculated carbon content of crude benzol was 87.8%. As a conservative assumption the value with a certain margin (2,2%) was applied and fixed ex-ante, i.e. 90%.
2.	Carbon content in coal tar, % by mass	%C _{coal-tar}	86.0	During development of the PDD OJSC "MMK" provided to CTF, LLC a Memo #BPCP-C296 of 02.06.2009 (<u>in the PDD</u> <u>by mistake data was mentioned as</u> <u>26.06.2009</u>), signed by Director of BPCP. It stated that by measurements the carbon content in the coal tar was 83%. By information of BPCP during site visit similar measurements in several preceding years showed the maximum value of 84%. As a conservative assumption the maximum value with a certain margin (2%) was applied and fixed ex-ante, i.e. 86%
3.	Carbon content in pig iron, % by mass	%C _{pig iron}	4.70	This is an important technological indicator, which determines the end of blast furnace smelting. Final carbon
				content of pig iron is a technological standard and measurements of the carbon content are performed by MMK Central Lab constantly. The average value for 2002 and 2007 was 4.7 % and provided in the Letter of OJSC MMK to CTF, LLC by 16.02.2009. Due to stability of the value it was decided to fix ex-ante the carbon content in pig iron as 4.7 %.
4.	Carbon content in scrap metal, % by mass	%C scrap	0.18	content of pig iron is a technological standard and measurements of the carbon content are performed by MMK Central Lab constantly. The average value for 2002 and 2007 was 4.7 % and provided in the Letter of OJSC MMK to CTF, LLC by 16.02.2009. Due to stability of the value it was decided to fix ex-ante the carbon content in pig iron as 4.7 %. Electric Arc Furnaces consume scrap metal during steel smelting. The supplied scrap metal is a subject for incoming control by MMK. The carbon content in the scrap metal varies depending on its origin but does not exceed 0,2% by measurements, however usually is less (information from specialists of EAFP). As an assumption for simplicity the carbon content of steel produced at EAFP of MMK (i.e. 0,18%) was applied for scrap metal and fixed ex-ante.

	powder, % by mass	powder_EAFP		1971-003-13303593-2006, which is confirmed by quality certification.
6.	Carbon content in electrodes, % by mass	%C electrodes_EAFP	99.0	In accordance with standard specification 1911-109-052-2003, which is confirmed by quality certification.
7.	Carbon content in steel, % by mass	%C steel	0.18	This is an important technological indicator, which determines quality of steel and may vary only within very narrow bounds depending on type of steel. The average carbon content of steel product mix, produced by the EAFP within long period of time (one year), based on MMK Lab measurements is quite stable. For 2002 the measurements performed by MMK Lab has shown the average value of 0.19 % and for 2007 the average value of 0.18%. Due to stability of the value it was decided to fix ex-ante the carbon content in steel as 0.18 % (the least one as more conservative).
8.	Carbon content in power station coal, % by mass	%C energy coal	73.0	IPCC Guidelines 2006 default value has been taken as no measurements of the carbon content in power station coal are performed at OJSC "MMK".

To estimate project emission reduction it is necessary to calculate the difference in baseline and project CO_2 emissions. Project implementation involves major changes in production assets: the equipment of openhearth furnace plant is replaced leaving in operation only one Double-bath steelmaking unit (DBSU), and blooming mill plant is shut down. In these circumstances we use fixed specific coefficients, which characterize consumption of energy and materials in the baseline (Table B.2.2).

The following parameters have been determined to calculate baseline CO₂ emissions:

- 1. Specific CO_2 emissions from metallurgical conversion during production of one ton of metallurgical coke and pig iron are the same in the project and baseline scenarios;
- 2. Specific CO₂ emissions from metallurgical conversions for steel smelting in open-hearth furnace plant (OHFP) and production of profiled steel billet in blooming mill plant (BMP) are calculated by carbon balance method based on historical consumption of carbon-containing materials and fuels, historical output of production under baseline technology, and actual carbon content in BFG, COG and NG;
- 3. CO₂ emissions from metallurgical conversion for production of profiled steel billet in the baseline in amount equal to the actual project one are calculated on the basis of historical specific consumption of pig iron and scrap metal per ton of profiled steel in OHFP-BMP process, actual specific consumption of metallurgical coke per ton of pig iron and actual output of profiled steel billet in the project;
- CO₂ emissions from consumption of electricity in the baseline are calculated on the basis of historical electricity consumption in OHFP and BMP (they produced only profiled steel), actual CO₂ emission factors from electricity consumption and actual output of profiled steel billet in the project;

Monitoring report "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works". Version 1.4 of 29.03.2011

- 5. CO₂ emissions during generation of air blast were calculated using actual specific consumption of air blast per ton of pig iron, CO₂ emission factor from generation of air blast and demand for pig iron required for production of profiled steel billet in the baseline;
- 6. Total CO₂ emissions associated with production of profiled steel billet in the baseline are summarized.

Table B.2.2. Historical averages of parameters, which characterize OHFP-BMP process³

N⁰	Parameter and measurement units, source of data	Symbol	Value
1.	Annual average consumption of pig iron in OHFP, ths. tons Archives of Economic Department (calculation of production costs)	M pig iron_OHFP	1941.1
2.	Annual average consumption of scrap metal in OHFP, ths. tons Archives of Economic Department (calculation of production costs)	M scrap_OHFP	715.3
3.	Annual average smelting of steel in OHFP, ths. tons Archives of Economic Department (calculation of production costs)	P steel_OHFP	2335.7
4.	Annual average specific consumption of pig iron in OHFP per ton of steel, ton per ton Archives of Economic Department (calculation of production costs)	SM pig iron_OHFP	0.831
5.	Annual average specific consumption of scrap metal in OHFP per ton of steel, ton per ton Archives of Economic Department (calculation of production costs)	SM _{scrap_OHFP}	0.306
6.	Annual average production of profiled steel billet in BMP, ths. tons Archives of Economic Department (calculation of production costs)	P profiled steel_BM	2029.9
7.	Annual average specific consumption of steel in OHFP per ton of profiled steel billet in BMP Archives of Economic Department (calculation of production costs)	SC steel_profiled steel_BM	1.151
8.	Annual average specific consumption of natural gas in OHFP, m ³ per ton of steel Data has been stored in CEST technical reports. Historical data on steel production is stored in archives of Economic Department (calculation of production costs)	SC NG_OHFP	23.3
9.	Annual average specific consumption of blast furnace gas in BMP, m ³ per ton of steel	SC _{BFG_BM}	267.1

³ The data confirming the appropriateness of values of these parameters as a ground for their fixing ex-ante has been provided during determination of the PDD and available at OJSC "MMK" by request.

	Data has been stored in CEST technical reports. Historical data on steel production is stored in archives of Economic Department (calculation of production costs)		
10.	Annual average consumption of blast furnace gas in BMP, mln. m ³ CEST technical reports	C BFG_BM	542.0
11.	Annual average specific consumption of coke oven gas in BMP, m ³ per ton of steel Data has been stored in CEST technical reports. Historical data on steel production is stored in archives of Economic Department (calculation of production costs)	SC cog_bm	7.7
12.	Annual average consumption of coke oven gas in BMP, mln. m ³ CEST technical reports	C COG_BM	16.0
13.	Annual average consumption of electricity in OHFP, GWh CEST technical reports	EC OHFP	16.2
14.	Annual average consumption of electricity in BMP, GWh CEST technical reports	EC BM	83.8

B.3 Approach for organization and implementation of monitoring

The system of monitoring for the project has functioned during the year in accordance with internal procedure PD MMK 3-SSGO-01-2010 "Regulation on monitoring of GHG emissions reduction, created as a result of the realization of the project: "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works".

Monitoring of greenhouse gases emission reduction is carried out at OJSC "MMK" based on continuous monitoring of the monitoring parameters (Table B.3.1) specified in the PDD. Monitoring report is subject for verification. A reference about monitoring of each parameter is presented as informational matrix of the approved form. The data relating to the monitoring of the project is posted on a dedicated server of OJSC "MMK".

Departments responsible for monitoring of each parameter of the JI project carry a responsibility for the treatment of primary reporting documents, processing, preparation, verification and transfer to the Department for relations with state authorities and markets protection (JI project implementation coordinator) of the reporting documents containing the information about monitored parameters. In each department of OJSC "MMK" involved in monitoring under the JI project the head of the department assigns a person responsible for provision of the reporting documents and tracking of the parameters change.

Picture B.3.1. Management structure of monitoring process

Table B.3.1. Responsibility of departments for monitoring parameters

#	Department	Monitoring nonomotor
#	Department	Monitoring parameter
1	By-product coke plant	1. Consumption of dry coal charge
		2. Production of dry metallurgical coke
		3. Production of crude benzol
		4. Output of dry coal tar
2	Blast-furnace plant	5. Consumption of dry skip metallurgical coke
		6. Production of pig iron
		7. Supply of blast furnace dust to the cement factory outside MMK
3	Electric arc-furnace plant	8. Consumption of pig iron in EAFP
		 Consumption of carbon-containing powder in EAFP
		10. Consumption of scrap metal in EAFP
		11. Consumption of electrodes in EAFP
		12. Output of profiled steel billet in EAFP
		13. Total production of slab and profiled steel billet in EAFP
		14. Total smelting of steel in EAF-180
4	Technological department	15. Total electricity consumption by MMK
		16. Electricity purchase from Unified Energy System of Urals grid
		17. Total electricity consumption in EAFP
		18. Consumption of grid electricity by EAF-180
		19. Specific electricity consumption for nitrogen production at MMK
		20. Specific electricity consumption for production of

		pure nitrogen at MMK
		21. Specific electricity consumption for production of argon at MMK
		22. Consumption of BFG in CPP
		23. Consumption of NG in CPP
		24. Consumption of NG in CHPP
		25. Consumption of BFG in SABPP
		26. Consumption of COG in SABPP
		27. Consumption of NG in SABPP
		28. Consumption of NG in turbine section of SP
		29. Consumption of NG in recovery unit of SP
		30. Consumption of power station coal by CHPP
		31. Generation of air blast at MMK
		32. Consumption of BFG in SABPP for generation of air blast
		33. Consumption of COG in SABPP for generation of air blast
		34. Consumption of NG in SABPP for generation of air blast
5	Center of Energy Saving	35. Consumption of BFG in BPCP
	Technologies	36. Carbon content in BFG
		37. Consumption of COG in BPCP
		38. Carbon content in COG
		39. Consumption of NG in BPCP
		40. Output of COG in BPCP
		41. Consumption of COG in BFP
		42. Consumption of NG in BFP
		43. Consumption of BFG in BFP
		44. Output of BFG in BFP
		45. Consumption of NG in EAFP
		46. Consumption of nitrogen in EAFP
		47. Consumption of pure nitrogen in EAFP
		48. Consumption of argon in EAFP
6	Central Laboratory of Control in	49. Carbon content in dry coal charge
	structure of Scientific and	50. Carbon content in dry metallurgical coke
	Technological Center	51. Carbon content in blast furnace dust
7	Gas shop	52. Carbon content in NG

The period of data transfer by structural departments of OJSC "MMK" is monthly within 5 working days after their preparation and approval of paper form. Submission of the reports to Department for relations with state authorities and markets protection is performed by responsible person in electronic form.

Responsible person from department prepares documents containing information about monitoring parameters in electronic format *.doc, *.xls, *.pdf, *.jpeg (depending the type of the document, see Table B.3.2). From e-mail address assigned for each department these files are sent to the e-mail address of

Department of informational technologies that is registered as a resource for the monitoring of the project "Implementation of arc-furnace steelmaking at OJSC "MMK". Then received files are placed on the server of OJSC "MMK". Read access to this server is provided to users on the basis of an application for access to information resource. Editing rights of the electronic documents are restricted. Approved reported documents in paper form are stored in accordance with procedure existing in each department.

Storage of all records on monitoring for JI project (describing the period from January 1, 2008 to December 31, 2012) in electronic form is provided until January 1, 2015 by Department for relations with state authorities and markets protection.

Department for relations with state authorities and markets protection controls the completeness of the data and the term of data transfer. Every quarter all the relevant data are transferred to CTF Consulting, LLC. (consultant for the project) by e-mail. Similarly the information matrix of parameters, which were changed and other important information is sent to CTF Consulting, LLC in order that relevant definitions are made during a preparation of the monitoring report.

Within 10 working days after receipt of the complete set of reporting forms the specialists of CTF Consulting, LLC calculate CO_2 emission reduction achieved by JI project for each quarter. The results of calculation are reported to the Department for relations with state authorities and markets protection.

CTF Consulting, LLC develops for OJSC "MMK" the annual monitoring report on CO_2 emission reduction based on quarterly reporting upon receipt of the reporting for 4th quarter. The monitoring report is sent then to Department for relations with state authorities and markets protection, which submits it for consideration of relevant departments. Department of Economics of MMK has to compare the figures contained in the monitoring report on consumption of raw materials and manufacture of products with Calculation of prime costs and confirm their compliance. Annual monitoring report is approved by Executive Director of MMK.

№	Organization department	Name of the reporting document in the Quality Management System (QMS)	Format of electronic copy
1	By-product coke plant	Technical report on coking	.XLS
		Report on recovery of main products from coke oven gas	.XLS
2	Blast-furnace plant	Monthly technical report of BFP	.XLS
3	Electric arc-furnace plant	Technical report of EAFP	.XLS
4	Electric arc-furnace plant	Reference on consumption of pig iron, metallurgical scrap, carbon-containing powders, electrodes	.XLS
5	Technological department	Summary of energy consumption by departments of OJSC "MMK"	.XLS
6	Technological department	Analysis of energy resources consumption by OJSC "MMK" (form QMS (2) -32-0)	.XLS

Table B.3.2. List of reporting documents prepared by departments of OJSC "MMK", which are used in project monitoring

7	Technological department	Fuel consumption by type of product of power plants	.XLS
8	Central Laboratory of Control in structure of Scientific and Technological Center	Carbon content in dry coal charge and metallurgical coke of BPCP of OJSC "MMK".	.JPEG (scan of the table with signature laboratory head)
10	Central Laboratory of Control in structure of Scientific and Technological Center	Monthly average data of agglomerates, iron-ore raw materials and flux	.XLS
11	Center of Energy Saving Technologies	Report on balance of blast furnace gas consumption in workshops	.XLS
12	Center of Energy Saving Technologies	Report on balance of coke over gas consumption in workshops	.XLS
13	Center of Energy Saving Technologies	Report on balance of natural gas consumption in workshops	.XLS
14	Center of Energy Saving Technologies	Products distribution of the oxygen plant, delivered by pipeline to consumers	.XLS
15	Center of Energy Saving Technologies	Results of analysis of coke over gas	.XLS
16	Center of Energy Saving Technologies	Results of analysis of blast furnace gas	.XLS
17	Chief powerman department, Gas shop	Natural gas quality passport (provided by supplier)	.PDF/.JPEG (scan of the passport)

B.4 Technical means of measurements and its accuracy

No	Monitoring parameter	Measuring device	Inaccuracy of measurements,
1	Consumption of coal charge in BPCP (on dry mass)	Consumption of coal charge is calculated based on gross coke production that is calculated as a sum of weighed amounts of metallurgical coke and coke breeze/coke nut after quenching and sifting of every shipment of the gross coke from the coke batteries. Besides humidity is measured to recalculate all material flows on dry mass.	1%
2	Production of dry metallurgical coke	Railway scales	1%
3	Production of crude benzol	Fluid level gauge	0,1%
4	Output of dry coal tar	Reverse calculation via sum of products of tar distillation measured by fluid level gauge	0,1%
5	Consumption of skip metallurgical coke in BFP	Weighting funnels with strain sensor VDD6-0.5. Besides humidity is measured to recalculate on dry mass	1%
6	Production of pig iron in BFP	Railway scales	0,3-1% depending on the scales type
7	Supply of blast furnace dust to the cement factory outside MMK	Railway scales	0,3-1% depending on the scales type
8	Consumption of pig iron in EAFP	Railway scales	0,3-1% depending on the
9	Consumption of scrap metal in EAFP		scales type
10	Consumption of carbon-containing powder in EAFP	Strain-gauge weight-hopper	1%
11	Consumption of electrodes in EAFP	Visual control	-
12	Output of profiled steel billet in EAFP	Calculation through geometric size of production output	-
13	Total production of slab and profiled steel billet in EAFP		

Monitoring report "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works".

14	Total smelting of steel in EAF-180		
15	Total electricity consumption by MMK	Electricity meters	Accuracy rating 0,5; 2,0; 2,5 depending on the type of meter
16	Electricity purchase from Unified Energy System of Urals grid	Electricity meters	Accuracy rating 0,5
17	Total electricity consumption in EAFP	Electricity meters	Accuracy rating 0,5; 2,0; 2,5 depending on the type of meter
18	Consumption of grid electricity by EAF-180	Electricity meters	Accuracy rating 0,5
19	Specific electricity consumption for nitrogen production at MMK	-	-
20	Specific electricity consumption for production of pure nitrogen at MMK		
21	Specific electricity consumption for production of argon at MMK		
22	Consumption of BFG in CPP	Pressure differential flow meters Metran-100-DD-	1%
23	Consumption of NG in CPP	1411, Metran-22-DD-1420 and Sapphire-22-DD- 2410 measure flows of COG_BEG and NG_Then	
24	Consumption of NG in CHPP	the consumption of these gases is calculated by	
25	Consumption of BFG in SP	SPG-762 calculator.	
26	Consumption of COG in SP	Description differential floor motors Value sous	
27	Consumption of NG in SP	Eia110a measure flows of NG in BFP, CHPP,	
28	Consumption of NG in turbine section of SP	CPP, SABPP and the turbine section of the steam	
29	Consumption of NG in recovery unit of SP	plant. Then the consumption of natural gas is	
30	Consumption of BFG in BPCP	calculated by SPG-762 calculator.	
31	Consumption of COG in BPCP		
32	Consumption of NG in BPCP		
33	Consumption of COG in BFP		

Monitoring report "Implementation of arc-furnace steelmaking at Magnitogorsk Iron and Steel Works".

34	Consumption of BFG in BFP		
35	Consumption of nitrogen in EAFP	7	
36	Consumption of BFG in SABPP for generation of air blast	7	
37	Consumption of COG in SABPP for generation of air blast	7	
38	Consumption of NG in SABPP for generation of air blast]	
39	Consumption of NG in BFP]	
40	Consumption of NG in EAFP		
41	Output of COG in BPCP		
42	Output of BFG in BFP		
43	Generation of air blast at MMK	Air flow meter	1%
44	Consumption of pure nitrogen in EAFP	Air flow meter	1%
45	Consumption of argon in EAFP	7	
46	Consumption of power station coal by CHPP	Railway scale	1%
47	Carbon content in BFG	Calculation through gas composition which is	0,3%
48	Carbon content in COG	measured by VTI-2 gas analyzer	
49	Carbon content in dry coal charge	Carbon analyzer LECO SC144DR	0,25%
50	Carbon content in dry metallurgical coke		
51	Carbon content in blast furnace dust	Express carbon analyzer AN-7529	0,5%
52	Carbon content in NG	Component composition of NG is specified in technical passport by the supplier. Carbon content is then estimated on the basis of that measured composition of gas	0,5%
53	Power transmission and distribution losses in Unified energy Systems of Urals grid	Specified in Annual report of Urals Inter-regional Power Distribution Company	-

C. Adjustments and deviations from the monitoring plan presented in PDD

Present monitoring report contains some adjustments and deviations from the monitoring plan presented in section D of PDD, version 1.5 of January 31, 2011 (for this version of PDD the Bureau Veritas Certification Holding SAS has issues a determination report N_{P} Russia/0043-2/2009 version 2 of February 2, 2011). The changes have been made to adapt a monitoring plan and represent the actually existing situation. Other monitoring parameters and calculation formulae are in compliance with PDD. It should be noted that the version 1.5 of January 31, 2011 differs from the preceding version 1.4 of January 15, 2010 only by changes in section A.5, therefore the initial monitoring plan has been developed in 2009.

Mentioned in PDD	Implemented in practice	Explanation
Electricity consumption for production of pure nitrogen, which is used during production of profiled steel billet in EAFP	Since July 2010 the value of specific electricity consumption for production of nitrogen is not	In August 2010 the Oxygen shop of OJSC "MMK" provided a note that in July 2010 the nitrogen compressors which provide the EAFP with gaseous nitrogen were switched. As a result it became impossible
$EC_{pure_N2_profiled_steel} = SEC_{pure_N2_PJ} * V$ $pure_N2_EAFP * P_{profiled_steel_EAFP_/ \sum P_{profiled\&slab}$ $steel_EAFP \qquad (D.1.1.220)$ Where:	defined and fixed as 150 kWh/1000 m ³ .	to define a quantity of electricity used for compressing of the nitrogen. In the letter # KC-1079-06 of 05.08.2010 sent by Oxygen shop to CEST it was proposed to revise an order of electricity consumption accounting for nitrogen generation and fix the value as 150 kWh/1000 m ³ .
SEC _{pure_N2_PJ} – Specific electricity consumption for production of pure nitrogen at MMK, MWh/1000 m ³ V _{pure N2 FAEP} – Consumption of pure nitrogen in		The value of parameter had been monitored until July 2010. The average value for January-June 2010 is 141 kWh/1000 m ³ . Therefore the fixed ex-ante value of specific electricity consumption for production of nitrogen as 150 kWh/1000 m ³ can be considered as applicable.
EAFP, million m ³ P _{profiled_steel_EAFP} - Output of profiled steel billet in EAFP, thousand tons ΣP profiled&slab_steel_EAFP - Total production of slab		It should be furthermore noted that according to the "Standard for applying the concept of materiality in verifications" adopted at twenty- second meeting of the JISC the materiality threshold (item B.4 (b)) is two percent with annual average emission reductions by sources amounting to 100.000 tones per year or more.
and profiled steel billet in EAFP, thousand tons.		Thus for considered project the threshold of materiality is 15.166 tones CO2eq (which are 2% of emission reduction of 758.323 tones CO2eq for 2010). To assess the impact of the issue to the ERUs amount the

		analysis has been made:
		 Annual average specific electricity consumption for production of nitrogen in 2008 was 212 kWh/1000 m³.
		- Annual average specific electricity consumption for production of nitrogen in 2008 was 204 kWh/1000 m ³ .
		Based on assumption that specific electricity consumption for production of nitrogen might be higher in 2010 the value 300 kWh/1000 m ³ (i.e. twice higher than proposed fixed ante value) has been taken for analysis for all 2010. With such assumption the ERUs would be 756.813 tones CO2eq for 2010, which is just 510 tones CO2eq less than normally estimated.
		Therefore the impact of the fixing ante of specific electricity consumption for production of nitrogen as done by OJSC "MMK" is not material in the context of the project and can be considered applicable for monitoring.
Electricity consumption for production of	In 2010 the value of:	For information:
argon, which is used during production of profiled steel billet in EAFP	- Specific electricity consumption for production	values of specific electricity consumption for production of pure nitrogen and argon are reported in the Summary of energy
EC Ar_profiled_steel = SEC Ar_PJ* VAr_EAFP * P profiled_steel_EAFP /P profiled&slab steel_EAFP (D.1.1.221)	of pure nitrogen is 826 kWh/1000 m³ - Specific electricity	consumption by departments of OJSC "MMK". During the visit to the works in January 2011 it was revealed that in fact these values are not measured but determined only once because the technical ability for their instrumental measurements currently is absent. This practice takes
Where:	consumption for production of argon is $55 \text{ kWh}/1000$ m ³	place over the several years including the period from January 1, 2008, and in the reporting for 2008 and 2009 the mentioned values remained
SEC $_{Ar_PJ}$ – Specific electricity consumption for		same.
production of argon at MMK, MWh/1000 m ³ V AT EAER – Consumption of argon in EAFP		Anyhow the values are still subject of monitoring and reporting at MMK and not fixed ex-ante.
million m ³		The appropriate confirmation by the Technological department of MMK is provided in the e-mail from the Head of Section of regulation
P profiled_steel_EAFP - Output of profiled steel billet in		

EAFP, thousand tons		and analysis of fuel and energy resources consumption, date
		17/03/2011 mrs. Irina Kucherova:"The consumption rates were
$\sum P_{\text{profiled&slab steel}_{EAFP}}$ - Total production of slab		determined in 1994, consumption of electricity for nitrogen production
and profiled steel billet in EAFP, thousand tons.		was calculated through the known value of consumption of electricity
		for oxygen production in the ratio of the melting points of nitrogen and
		oxygen (at an estimated exergy). The consumption of electricity for
		argon production was determined as electricity consumption for
		purification and compressing of the crude argon (this is a by-product of
		oxygen production) – for that the additional equipment had been
		installed.
		It should be furthermore noted that according to the "Standard for
		applying the concept of materiality in verifications" adopted at twenty-
		second meeting of the JISC the materiality threshold (item B.4 (b)) is
		two percent with annual average emission reductions by sources
		amounting to 100.000 tones per year or more.
		Thus for considered project the threshold of materiality is 15.166 tones
		CO2eq (which are 2% of emission reduction of 758.323 tones CO2eq
		for 2010). To assess the impact of the issue to the ERUs amount the
		analysis has been made:
		- Being increased 2 times the values of specific electricity
		consumption for production of pure nitrogen and argon give the
		change of ERUs of 6/2 tones CO2eq.
		- Even increase of the mentioned values for 10 times (which is
		definitely unlikely) gives the change of ERUs of 5.864 tonnes
		CO2eq or 0, / /% of the total ERUs for 2010.
		Therefore the impact of the values of specific electricity consumption
		for production of pure nitrogen and argon is not material in the context
		or the project and no additional confirmation of the correctness of the
CO ₂ emissions from consumption of electricity	To the moment of preparation of	The value of technological losses during transportation and distribution

TDL – Technological losses during transportation	present Monitoring report the OJSC	of grid electricity in Unified Energy System of Urals changes over the
and distribution of grid electricity in Unified	"MRSK of Urals" has not yet	last years within 1%.
Energy System of Urals, %	published on their web-site the	The impact of such change on ERUs is less than 1000 tonnes CO_{2eq} .
	annual report for 2010. Therefore	
	the value of technological losses	
	has been defined for all the year	
	2010 by data of 9 months	
	(<u>http://www.mrsk-</u>	
	ural.ru/ru/440.news1434.html) as	
	7.24%.	
Specific consumption of air blast per ton of pig	There is a misprint in PDD.	
iron produced	Generation of air blast at MMK is	
	designated OC air blast generation PJ	
SC air blast generation_PJ = P air blast generation / P pig	which follows from the table	
iron_BF_PJ (D.1.1.229)	D.1.1.1 and formula D.1.1.227.	
Where:		
SC air blast generation_PJ - Specific consumption of air		
blast in BFP per ton of produced pig iron,		
thousand m ³ /ton		
P air blast generation – Generation of air blast at MMK,		
m ³ of air blast		
P _{pig iron_BF_PJ} – Production of pig iron in BFP,		
thousand tons		

D. Calculation of GHG emissions reduction

$D.1 CO_2$ emissions from metallurgical conversions calculated by carbon balance method

Production of metallurgical coke

 $PE_{metallurgical_coke} = [(M_{coking coal_PJ} * \%C_{coking coal_PJ}) + (FC_{BFG_CP_PJ} * C_{BFG_PJ}) + (FC_{COG_CP_PJ} * C_{COG_PJ}) + (FC_{NG_CP_PJ} * C_{NG_PJ}) - (P_{metallurgical coke_PJ} * \%C_{metallurgical coke_PJ}) - (P_{COG_CP_PJ} * C_{COG_PJ}) - (P_{benzol_PJ} * \%C_{benzol}) - (P_{coal-tar_PJ} * \%C_{coal-tar})] * 44/12$ (PDD formula D.1.1.2.-1)

Specific CO₂ emissions per ton of produced metallurgical coke

SPE metallurgical coke = PE metallurgical coke / P metallurgical coke_PJ

Symbol	Data variable	Unit	Symbol	Data variable	Unit	Symbol	Data variable	Unit
${ m M}_{ m coking\ coal_PJ}$	Consumption of coal charge in BPCP (on dry mass)	ths. tons	C _{COG_PJ}	Carbon content in COG	kg C/m ³	P _{COG_CP_PJ}	Output of COG in BPCP	mln. m ³
%C coking coal_PJ	Carbon content in dry coal charge	% by mass	FC NG_CP_PJ	Consumption of NG in BPCP	mln. m ³	P benzol_PJ	Production of crude benzol	ths. tons
FC BFG_CP_PJ	Consumption of BFG in BPCP	mln. m ³	C _{NG_PJ}	Carbon content in NG	kg C/m3	P coal-tar_PJ	Output of dry coal tar	ths. tons
C BFG_PJ	Carbon content in BFG	kg C/m ³	P metallurgical coke_PJ	Production of dry metallurgical coke	ths. tons	PE metallurgical_coke	Project emissions from production of metallurgical coke in BPCP	ths. tons CO ₂
FC _{COG_CP_PJ}	Consumption of COG in BPCP	mln. m ³	%C _{metallurgical} coke_PJ	Carbon content in dry metallurgical coke	% by mass	SPE metallurgical	Specific CO ₂ emissions per ton of dry metallurgical coke produced in BPCP	ton CO ₂ / ton

(PDD formula D.1.1.2.-2)

12 months of 2010

. .

.

	Input carbon flows														
Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
	Consumption of coal charge in BPCP (on dry mass)	ths. tons	511,5	500,7	551,8	571,9	516,3	458,0	485,0	509,2	582,4	536,5	554,7	550,1	6328,1
1	Carbon content in dry coal charge	% by mass	80,40	80,70	80,50	80,70	80,40	80,10	80,10	80,50	80,20	80,00	80,10	80,40	80,34
		ths. tons C	411,2	404,1	444,2	461,5	415,1	366,8	388,5	409,9	467,1	429,2	444,3	442,3	5084,3
	Consumption of COG in BPCP	mln. m3	46,6	45,3	51,9	54,2	48,1	42,4	46,7	50,6	61,3	52,1	53,6	53,3	606,0
	Carbon content in COG	kg C/m3	0,18	0,18	0,18	0,18	0,18	0,18	0,19	0,19	0,19	0,19	0,19	0,19	0,18
		ths. tons C	8,6	8,2	9,3	9,6	8,5	7,5	8,7	9,5	11,4	9,9	10,0	9,9	111,0
	Consumption of BFG in BPCP	mln. m3	131,8	134,1	139,7	141,0	136,4	117,5	118,6	118,4	121,4	129,6	137,3	137,2	1562,9
2	Carbon content in BFG	kg C/m3	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,22	0,22	0,22	0,21
		ths. tons C	27,9	28,1	29,4	29,8	28,9	25,0	25,1	25,0	25,8	27,9	30,1	30,2	333,3
	Consumption of NG in BPCP	mln. m3	3,3	2,9	2,7	1,9	0,8	0,7	0,8	0,7	0,8	1,1	1,6	2,4	19
	Carbon content in NG	kg C/m3	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
		ths. tons C	1,6	1,4	1,3	0,9	0,4	0,3	0,4	0,3	0,4	0,5	0,8	1,2	9,6
3	Total mass of carbon in the input flow for production of metallurgical coke	ths. tons C	449,3	441,8	484,2	501,8	452,9	399,6	422,7	444,8	504,7	467,5	485,2	483,5	5538,2
	Output carbon flows													1	
															Total for
Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	year
	Production of dry metallurgical coke	ths. tons	359,6	351,7	388,7	404,7	367,1	325,0	344,1	360,1	415,6	380,1	392,9	388,2	4477,7
1	Carbon content in dry metallurgical coke	% by mass	83.10												
			05,10	82,60	83,20	83,50	83,30	83,00	83,00	82,90	82,80	82,90	82,90	83,00	83,02
		ths. tons C	298,8	82,60 290,5	83,20 323,4	83,50 337,9	83,30 305,8	83,00 269,7	83,00 285,6	82,90 298,5	82,80 344,1	82,90 315,1	82,90 325,7	83,00 322,2	<mark>83,02</mark> 3717,4
	Output of COG in BPCP	ths. tons C mln. m3	298,8 165,6	82,60 290,5 161,6	83,20 323,4 181,3	83,50 337,9 188,7	83,30 305,8 168,0	83,00 269,7 144,7	83,00 285,6 154,0	82,90 298,5 165,9	82,80 344,1 189,8	82,90 315,1 180,7	82,90 325,7 189,3	83,00 322,2 189,5	83,02 3717,4 2079,0
2	Output of COG in BPCP Carbon content in COG	ths. tons C mln. m3 kg C/m3	298,8 165,6 0,18	82,60 290,5 161,6 0,18	83,20 323,4 181,3 0,18	83,50 337,9 188,7 0,18	83,30 305,8 168,0 0,18	83,00 269,7 144,7 0,18	83,00 285,6 154,0 0,19	82,90 298,5 165,9 0,19	82,80 344,1 189,8 0,19	82,90 315,1 180,7 0,19	82,90 325,7 189,3 0,19	83,00 322,2 189,5 0,19	83,02 3717,4 2079,0 0,18
2	Output of COG in BPCP Carbon content in COG	ths. tons C mln. m3 kg C/m3 ths. tons C	298,8 165,6 0,18 30,4	82,60 290,5 161,6 0,18 29,2	83,20 323,4 181,3 0,18 32,4	83,50 337,9 188,7 0,18 33,3	83,30 305,8 168,0 0,18 29,7	83,00 269,7 144,7 0,18 25,6	83,00 285,6 154,0 0,19 28,8	82,90 298,5 165,9 0,19 31,2	82,80 344,1 189,8 0,19 35,4	82,90 315,1 180,7 0,19 34,2	82,90 325,7 189,3 0,19 35,4	83,00 322,2 189,5 0,19 35,1	83,02 3717,4 2079,0 0,18 380,8
2	Output of COG in BPCP Carbon content in COG Output of dry coal tar	ths. tons C mln. m3 kg C/m3 ths. tons C ths. tons	298,8 165,6 0,18 30,4 15,5	82,60 290,5 161,6 0,18 29,2 15,1	83,20 323,4 181,3 0,18 32,4 17,9	83,50 337,9 188,7 0,18 33,3 18,3	83,30 305,8 168,0 0,18 29,7 16,4	83,00 269,7 144,7 0,18 25,6 14,1	83,00 285,6 154,0 0,19 28,8 15,4	82,90 298,5 165,9 0,19 31,2 15,3	82,80 344,1 189,8 0,19 35,4 17,5	82,90 315,1 180,7 0,19 34,2 17,7	82,90 325,7 189,3 0,19 35,4 18,6	83,00 322,2 189,5 0,19 35,1 18,3	83,02 3717,4 2079,0 0,18 380,8 200,1
2	Output of COG in BPCP Carbon content in COG Output of dry coal tar Carbon content in dry coal tar	ths. tons C mln. m3 kg C/m3 ths. tons C ths. tons % by mass	298,8 165,6 0,18 30,4 15,5 86,00	82,60 290,5 161,6 0,18 29,2 15,1 86,00	83,20 323,4 181,3 0,18 32,4 17,9 86,00	83,50 337,9 188,7 0,18 33,3 18,3 86,00	83,30 305,8 168,0 0,18 29,7 16,4 86,00	83,00 269,7 144,7 0,18 25,6 14,1 86,00	83,00 285,6 154,0 0,19 28,8 15,4 86,00	82,90 298,5 165,9 0,19 31,2 15,3 86,00	82,80 344,1 189,8 0,19 35,4 17,5 86,00	82,90 315,1 180,7 0,19 34,2 17,7 86,00	82,90 325,7 189,3 0,19 35,4 18,6 86,00	83,00 322,2 189,5 0,19 35,1 18,3 86,00	83,02 3717,4 2079,0 0,18 380,8 200,1 86,00
2	Output of COG in BPCP Carbon content in COG Output of dry coal tar Carbon content in dry coal tar	ths. tons C mln. m3 kg C/m3 ths. tons C ths. tons % by mass ths. tons C	298,8 165,6 0,18 30,4 15,5 86,00 13,3	82,60 290,5 161,6 0,18 29,2 15,1 86,00 13,0	83,20 323,4 181,3 0,18 32,4 17,9 86,00 15,4	83,50 337,9 188,7 0,18 33,3 18,3 86,00 15,7	83,30 305,8 168,0 0,18 29,7 16,4 86,00 14,1	83,00 269,7 144,7 0,18 25,6 14,1 86,00 12,1	83,00 285,6 154,0 0,19 28,8 15,4 86,00 13,3	82,90 298,5 165,9 0,19 31,2 15,3 86,00 13,2	82,80 344,1 189,8 0,19 35,4 17,5 86,00 15,0	82,90 315,1 180,7 0,19 34,2 17,7 86,00 15,2	82,90 325,7 189,3 0,19 35,4 18,6 86,00 16,0	83,00 322,2 189,5 0,19 35,1 18,3 86,00 15,7	83,02 3717,4 2079,0 0,18 380,8 200,1 86,00 172,1
2	Output of COG in BPCP Carbon content in COG Output of dry coal tar Carbon content in dry coal tar Production of crude benzol	ths. tons C mln. m3 kg C/m3 ths. tons C ths. tons C ths. tons C ths. tons C ths. tons C	298,8 165,6 0,18 30,4 15,5 86,00 13,3 4,8	82,60 290,5 161,6 0,18 29,2 15,1 86,00 13,0 4,7	83,20 323,4 181,3 0,18 32,4 17,9 86,00 15,4 5,2	83,50 337,9 188,7 0,18 33,3 18,3 86,00 15,7 5,4	83,30 305,8 168,0 0,18 29,7 16,4 86,00 14,1 4,6	83,00 269,7 144,7 0,18 25,6 14,1 86,00 12,1 4,4	83,00 285,6 154,0 0,19 28,8 15,4 86,00 13,3 4,5	82,90 298,5 165,9 0,19 31,2 15,3 86,00 13,2 4,7	82,80 344,1 189,8 0,19 35,4 17,5 86,00 15,0 4,7	82,90 315,1 180,7 0,19 34,2 17,7 86,00 15,2 5,1	82,90 325,7 189,3 0,19 35,4 18,6 86,00 16,0 5,1	83,00 322,2 189,5 0,19 35,1 18,3 86,00 15,7 5,4	83,02 3717,4 2079,0 0,18 380,8 200,1 86,00 172,1 58,5

Specific CO₂ emissions form metallurgical conversions same for project and baseline. Production of metallurgical coke

		ths. tons C	4,3	4,2	4,7	4,9	4,1	4,0	4,0	4,2	4,2	4,5	4,6	5	52,7
5	Total mass of carbon in the output flow from production of metallurgical coke	ths. tons C	346,8	336,9	376,0	391,9	353,7	311,4	331,7	347,1	398,7	369,1	381,7	377,9	4322,9

CO2 emissions from production of metallurgical coke

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Burning of carbon during production of metallurgical coke	ths. tons C	102,5	104,9	108,3	110,0	99,2	88,2	91,1	97,6	106,0	98,4	103,5	105,6	1215,3
2	CO2 emissions from production of metallurgical coke in BPCP	ths. tons CO2	375,9	384,8	397,0	403,2	363,7	323,4	333,9	357,9	388,6	361,0	379,5	387,1	4456,0
3	Specific CO2 emissions per ton of produced metallurgical coke	ton CO2/ton	1,045	1,094	1,021	0,996	0,991	0,995	0,970	0,994	0,935	0,950	0,966	0,997	0,995

Production of pig iron

 $PE_{pig_iron} = [(M_{skip_metallurgical coke_BF_PJ} * \%C_{metallurgical coke_PJ}) + (FC_{COG_BF_PJ} * C_{COG_PJ}) + (FC_{NG_BF_PJ} * C_{NG_PJ}) + (FC_{BFG_BF_PJ} * C_{BFG_PJ}) - (P_{pig_iron_BF_PJ} * \%C_{pig_iron}) - (P_{BFG_BF_PJ} * C_{BFG_PJ})] * 44/12$ (PDD formula D1.1.2.-3)

Specific CO2 emissions per ton of pig iron produced

SPE _{pig iron} = **PE** _{pig_iron} / **P** _{pig iron_BF_PJ}

(PDD formula D.1.1.2.-4)

Symbol	Data variable	Unit	Symbol	Data variable	Unit
M skip_metallurgical coke_BF_PJ	Consumption of skip metallurgical coke in BFP	ths. tons	P pig iron_BF_PJ	Production of pig iron in BFP	ths. tons
FC _{COG_BF_PJ}	Consumption of COG in BFP	mln. m ³	P _{BFG_BF_PJ}	Output of BFG in BFP	mln. m ³
FC NG_BF_PJ	Consumption of NG in BFP	mln. m ³	C _{NG_PJ}	carbon content in NG	kg C/m ³
FC BFG_BF_PJ	Consumption of BFG in BFP	mln. m ³	C BFGPJ	Carbon content in BFG	kg C/m ³
C _{COG_PJ}	Carbon content in COG	kg C/m ³	PE pig iron	Project emissions from production of pig iron in the blast furnace plant	ths. tons CO ₂
%C pig iron	Carbon content in pig iron	% by mass	SPE pig iron	Specific CO ₂ emissions per ton of produced pig iron	ton CO ₂ /ton
%C metallurgical coke_PJ	Carbon content in metallurgical coke	% by mass			

12 months of 2010

Input carbon flows

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
	Consumption of skip metallurgical coke in BFP	ths. tons	310,8	314,3	379,5	368,5	337,2	305,4	323,4	337,8	369,5	348,5	352,1	357,3	4104,3
1	Carbon content in dry metallurgical coke	%by mass	83,10	82,60	83,20	83,50	83,30	83,00	83,00	82,90	82,80	82,90	82,90	83,00	83,02
		ths. tons C	258,3	259,6	315,7	307,7	280,9	253,5	268,4	280,0	306,0	288,9	291,9	296,6	3407,4
2	Consumption of COG in BFP	mln. m3	2,1	1,3	3,0	6,2	6,4	5,3	5,6	5,0	4,7	3,5	6,3	9,4	58,9
2	Carbon content in COG	kg C/m3	0,18	0,18	0,18	0,18	0,18	0,18	0,19	0,19	0,19	0,19	0,19	0,19	0,18

Specific CO₂ emissions form metallurgical conversions same for project and baseline. Production of pig iron

		ths. tons C	0,38	0,23	0,55	1,09	1,14	0,95	1,05	0,94	0,88	0,67	1,17	1,74	10,8
	Consumption of NG in BFP	mln. m3	65,5	70,0	86,5	89,7	79,9	76,5	79,7	77,4	77,9	83,4	82,6	85,4	954,4
	Carbon content in NG	kg C/m3	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
		ths. tons C	32,4	34,6	42,8	44,4	39,5	37,8	39,4	38,3	38,5	41,2	40,8	42,2	472,1
	Consumption of BFG in BFP	mln. m3	345,9	340,5	435,0	414,0	367,4	313,5	337,0	343,1	353,8	368,3	364,9	357,9	4341,3
	Carbon content in BFG	kg C/m3	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,22	0,22	0,22	0,21
		ths. tons C	73,3	71,4	91,7	87,6	78,0	66,6	71,5	72,3	75,2	79,3	79,9	78,7	925,5
3	Total mass of carbon in the input flow for production of pig iron	ths. tons C	364,4	365,9	450,7	440,8	399,5	358,9	380,3	391,6	420,5	410,1	413,9	419,2	4815,9

Output carbon flows

															Total
															for
N⁰	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	year
	Production of pig iron in BFP	ths. tons	686,3	700,0	849,3	842,4	769,6	708,4	754,5	761,4	799,0	781,0	786,9	795,1	9234,0
1	Carbon content in pig iron	% by mass	4,70	4,70	4,70	4,70	4,70	4,70	4,70	4,70	4,70	4,70	4,70	4,70	4,70
		ths. tons C	32	33	40	40	36	33	35	36	38	37	37	37	434
	Output of BFG in BFP	mln. m3	955,5	976,5	1199,3	1188,3	1068,8	974,1	1029,5	1024,5	1051,0	1071,1	1044,4	1083,8	12666,9
2	Carbon content in BFG	kg C/m3	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,22	0,22	0,22	0,21
		ths. tons C	202,5	204,8	252,8	251,5	226,9	207,0	218,3	216,0	223,3	230,6	228,7	238,2	2700,7

CO2 emissions from production of pig iron

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Carbon burning during production of pig iron	ths. tons	129,6	128,2	158,1	149,7	136,5	118,6	126,6	139,7	159,7	142,8	148,2	143,6	1681,2
2	CO2 emissions from production of pig iron in the blast furnace plant	ths. tons CO2	475,2	470,2	579,6	548,8	500,4	434,8	464,1	512,4	585,5	523,5	543,3	526,6	6164,3
3	Specific CO2 emissions per ton of pig iron produced	ton CO2/ton	0,692	0,672	0,682	0,651	0,650	0,614	0,615	0,673	0,733	0,670	0,690	0,662	0,668

Production of profiled steel billet in EAFP (project only)

 $PE_{EAFP} = [(M_{pig iron_EAFP} * \%C_{pig iron}) + (M_{carbon powder_EAFP} * \%C_{carbon powder_EAFP}) + (M_{scrap_EAFP} * \%C_{scrap}) + (M_{electrodes_EAFP} * \%C_{electrodes_EAFP}) + (FC_{NG_EAFP} * C_{NG_PJ}) - (\sum_{profiled & slab steel_EAFP} * \%C_{steel})] * 44/12$ (PDD formula D.1.1.2-5)

Specific CO2 emissions per ton of profiled steel billet produced in EAFP

SPE EAFP = **PE** EAFP / \sum P profiled&slab steel_EAFP

(PDD formula D.1.1.2-6)

Symbol	Data variable	Unit	Symbol	Data variable	Unit
M pig iron_EAFP	Consumption of pig iron in EAFP	ths. tons	FC NG_EAFP	Consumption of NG in EAFP	mln. m ³
M _{carbon} powder_EAFP	Consumption of carbon-containing powder in EAFP	ths. tons	∑P profiled&slab steel_EAFP	Total production of slab and profiled steel billet in EAFP	ths. tons
M scrap_EAFP	Consumption of scrap metal in EAFP	ths. tons	PE _{EAFP}	Project CO ₂ emissions from production of profiled steel billet in EAFP	ths.tons CO ₂
M electrodes_EAFP	Consumption of electrodes in EAFP	ths. tons	SPE _{EAFP}	Specific CO ₂ emissions per ton of steel billet produced in EAFP	ton CO ₂ /ton
%C pig iron	Carbon content in pig iron	% by mass	%C electrodes_EAFP	Carbon content in electrodes	% by mass
%C _{carbon} powder_EAFP	Carbon content in carbon-containing powder	% by mass	C _{NG_PJ}	Carbon content in NG	kg C/m ³
%C scrap	Carbon content in scrap metal	% by mass	%C steel	Carbon content in steel	% by mass

	Input carbon flows														
															Total for
Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	year
	Consumption of pig iron in EAFP	ths. tons	50,1	74,9	99,2	94,6	54,8	38,8	36,6	70,8	91,8	71,4	93,5	105,4	882,0
1	Carbon content in pig iron	% by mass	4,70	4,70	4,70	4,70	4,70	4,70	4,70	4,70	4,70	4,70	4,70	4,70	4,70
	Carbon content in pig non	ths. tons C	2,4	3,5	4,7	4,4	2,6	1,8	1,7	3,3	4,3	3,4	4,4	5,0	41,5
	Consumption of carbon-containing powder in EAFP	ths. tons	0,30	1,33	1,03	0,81	0,80	0,62	0,99	0,58	0,58	0,43	0,17	0,28	7,9
2	Carbon content in carbon-containing	% by mass	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00
	powder	ths. tons C	0,3	1,3	1,0	0,8	0,8	0,6	0,9	0,5	0,6	0,4	0,2	0,3	7,5
	Consumption of scrap metal in EAFP	ths. tons	38,7	116,4	125,8	112,6	162,5	131,9	146,8	135,2	135,7	75,9	33,7	37,9	1253,2
3	Carbon contant in caron matal	% by mass	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18
	Carbon content in scrap metai	ths. tons C	0,07	0,21	0,23	0,20	0,29	0,24	0,26	0,24	0,24	0,14	0,06	0,07	2,3
	Consumption of electrodes in EAFP	ths. tons	0,07	0,22	0,23	0,20	0,36	0,31	0,32	0,25	0,24	0,15	0,05	0,05	2,4
4	Carbon contant in clostrodes	% by mass	99,00	99,00	99,00	99,00	99,00	99,00	99,00	99,00	99,00	99,00	99,00	99,00	99,00
	Carbon content in electrodes	ths. tons C	0,1	0,2	0,2	0,2	0,4	0,3	0,3	0,2	0,2	0,1	0,1	0,0	2,4
	Consumption of NG in EAFP	mln. m3	7,0	6,0	4,9	5,5	6,0	4,7	4,5	5,3	5,6	5,0	3,4	5,4	63,5
5	Carbon contant in NG	kg C/m3	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
	Carbon content in NG	ths. tons C	3,5	3,0	2,4	2,7	3,0	2,3	2,2	2,6	2,8	2,5	1,7	2,7	31,4
6	Total mass of carbon in the input flow in EAFP	ths. tons C	6,2	8,2	8,5	8,4	7,0	5,3	5,5	7,0	8,1	6,5	6,4	8,0	85,1
	Output carbon flows														
															Total

															for
N⁰	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	year
_	Total production of slab and profiled steel billet in EAFP	ths. tons	78,6	169,7	199,3	183,8	192,9	151,5	162,0	181,8	200,8	129,9	112,4	125,9	1888,4
1	Carbon contant in steel	% by mass	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18
	Calbon content in steel	ths. tons C	0,1	0,3	0,4	0,3	0,3	0,3	0,3	0,3	0,4	0,2	0,2	0,2	3,4
2	Total mass of carbon in the output flow from EAFP	ths. tons C	0,1	0,3	0,4	0,3	0,3	0,3	0,3	0,3	0,4	0,2	0,2	0,2	3,4

Nº	Data variable	Unit	Янв.	Фев.	Март	Апр.	Май	Июнь	Июль	Авг.	Сент.	Окт.	Ноя.	Дек.	Итог по году
1	Burning of carbon during production of profiled steel billet in EAFP	ths. tons C	6,1	7,9	8,2	8,0	6,6	5,0	5,2	6,7	7,8	6,3	6,2	7,8	81,7
2	CO2 emissions from production of profiled steel billet in EAFP	ths. tons CO2	22,3	28,9	30,0	29,4	24,3	18,4	19,0	24,5	28,4	23,1	22,6	28,5	299,4
3	Specific CO2 emissions per ton of profiled steel billet produced in EAFP	tons CO2/ton	0,284	0,170	0,151	0,160	0,126	0,122	0,117	0,135	0,141	0,178	0,201	0,227	0,159

CO2 emissions from production of steel

Steel smelting in Open-Hearth Furnace Plant (baseline only)

 $BE_{OHFP} = [(M_{pig iron_OHFP} * \%C_{pig iron}) + (M_{scrap_OHFP} * \%C_{scrap}) + (SC_{NG_OHFP} * P_{steel_OHFP} * C_{NG_PJ}) - (P_{steel_OHFP} * \%C_{steel})] * 44/12$ (PDD formula D.1.1.4-1)

Specific CO2 emissions per ton of steel smelted in OHFP

SBE $_{OHFP}$ = **BE** $_{OHFP}$ / **P** $_{steel_OHFP}$

(PDD formula D.1.1.4.-2)

Symbol	Data variable	Unit	Symbol	Data variable	Unit
M pig iron_OHFP	Annual average consumption of pig iron in OHFP	ths. tons	C _{NG_PJ}	Carbon content in NG	kg C/m ³
%C pig iron	Carbon content in pig iron	% by mass	P steel_OHFP	Annual average smelting of steel in OHFP	ths. tons
M _{scrap_OHFP}	Annual average consumption of scrap metal in OHFP	ths. tons	%C steel	Carbon content in steel	% by mass
%C scrap	Carbon content in scrap metal	% by mass	BE OHFP	CO ₂ emissions from steel smelting in OHFP	ths. tons CO ₂
SC _{NG_OHFP}	Annual average consumption of NG in OHFP	mln. m ³	SBE OHFP	Specific CO_2 emissions per ton of steel smelted in OHFP	ton CO ₂ /ton

12 months of 2010

	Input carbon flows														
Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
	Annual average consumption of pig iron in OHFP	ths. tons						1	941,1						1941,1
1	Carbon content in pig iron	% by mass							4,70						4,70
		ths. tons C						1	91,2						91,2
	Annual average consumption of scrap metal in OHFP	ths. tons						7	'15,3						715,3
2	Carbon content in scrap metal	% by mass							0,18						0,18
		ths. tons C							1,3						1,3
3	Annual average consumption of NG in OHFP	mln. m3						:	54,4						54,4

Specific CO₂ emissions for metallurgical conversions in the baseline only. Steel smelting in the OHFP

	Carbon content in NG	kg C/m3	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
		ths. tons C						4	26,9						26,9
4	Total mass of carbon in the input flow in the OHFP	ths. tons C						1	19,4						119,4

Output carbon flows

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
	Annual average smelting of steel in OHFP	ths. tons						2	335,7						2335,7
1	Carbon content in steel	% by mass						(0,18						0,18
		ths. tons C							4,2						4,2
2	Total mass of carbon in the output flow from OHFP	ths. tons C							4,2						4,2

CO2 emissions from steel smelting in OHFP

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Burning of carbon during steel smelting in OHFP	ths. tons C						1	15,2						115,2
2	CO2 emissions from steel smelting in OHFP	ths. tons CO2						4	22,6						422,6
3	Specific CO2 emissions per ton of steel smelted in OHFP	tons CO2/ton						C),181						0,181

Production of profiled steel billet in the Blooming Mill Plant (baseline only)

 $BE_{BM} = [(M_{steel_{BM}} * \%C_{steel}) + (SC_{BFG_{BM}} * P_{profiled steel_{BM}} * C_{BFG_{PJ}}) + (SC_{COG_{BM}} * P_{profiled steel_{BM}} * C_{COG_{PJ}}) - (P_{profiled steel_{BM}} * \%C_{steel})] * 44/12$

(PDD formula D.1.1.4-3)

Specific CO2 emissions per ton of profiled steel billet produced in BMP

SBE _{BM} = **BE** _{BM} / **P** _{profiled steel_BM}

(PDD formula D.1.1.4.-4)

Symbol	Data variable	Unit	Symbol	Data variable	Unit
M steel_BM	Annual average consumption of steel in BMP	ths. tons	SC _{COG_BM}	Annual average consumption of COG in BMP	mln. m ³
%C steel	Carbon content in steel	% by mass	C _{COG_PJ}	Carbon content in COG	kg C/m ³
SC _{BFG_BM}	Annual average consumption of BFG in BMP	mln. m ³	P profiled steel_BM	Annual average production of profiled steel billet in BMP	ths. tons
C BFG_PJ	Carbon content in BFG	kg C/m ³	BE _{BM}	CO ₂ emissions from production of profiled steel billet in BMP	ths. tons CO ₂
			SBE _{BM}	Specific CO ₂ emissions per ton of profiled steel billet produced in BMP	ton CO ₂ /ton

12 months of 2010

	Input carbon flows														
Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
	Annual average consumption of steel in BMP	ths. tons						233	5,7						2335,7
1	Carbon content in steel	% by mass						0,1	8						0,18
		ths. tons C						4,2	2						4,2
	Annual average consumption of BFG in BMP	mln. m3						542	,2						542,2
2	Carbon content in BFG	kg C/m3	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,22	0,22	0,22	0,21
		ths. tons C				-		114	,7		-				114,7
	Annual average consumption of COG in BMP	mln. m3						15,	6						15,6
3	Carbon content in COG	kg C/m3	0,18	0,18	0,18	0,18	0,18	0,18	0,19	0,19	0,19	0,19	0,19	0,19	0,18
		ths. tons C				-		2,8	3		-				2,8
4	Total mass of carbon in the input flow in BMP	ths. tons C						121	,7						121,7

Output carbon flows

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
	Annual average production of profiled steel billet in BMP	ths. tons						2029	9,9						2029,9
1	Carbon content in steel	%						0,1	8						0,18
		ths. tons C						3,	7						3,7
2	Total mass of carbon in the output flow from BMP	ths. tons C						3,	7						3,7

CO2 emissions from production of profiled steel billet in BMP

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Carbon burning during production of profiled steel billet in BMP	ths. tons C						118	8,0						118,0
2	CO2 emissions from production of profiled steel billet in BMP	ths. tons CO2						432	2,7						432,7
3	Specific CO2 emissions from production of profiled steel billet in BMP	tons CO2/ton						0,2	13						0,213

Specific CO₂ emissions for metallurgical conversions in the baseline only. Production of profiled steel billet in the Blooming Mill Plant

D.2 Coefficients of consumption for metallurgical conversions

Coefficients of consumption for metallurgical conversions in the project

Specific consumption of pig iron per ton of steel billet produced in EAFP

SC pig iron_EAFP = M pig iron_EAFP / $\sum P$ profiled&slab steel_EAFP

Specific consumption of scrap metal per ton of steel billet produced in EAFP

SC scrap_EAFP = M scrap_EAFP / $\sum P$ profiled&slab steel_EAFP

Data variable

Symbol

Specific consumption of dry skip metallurgical coke per ton of produced pig iron

SC skip_metallurgical_coke_PJ = M skip_metallurgical coke_BF_PJ / P pig iron_BF_PJ

SC pig iron_EAFP	Specific consumption of pig iron per ton of steel billet produced in EAFP	ton/ton	M scrap_EAFP	Consumption of scrap metal in EAFP	ths. tons
M pig iron_EAFP	Consumption of pig iron in EAFP	ths. tons	SC skip_metallurgical_coke_PJ	Specific consumption of dry skip metallurgical coke per ton of pig iron produced in BFP	tons/ton
∑P profiled&slab steel_EAFP	Total production of slab and profiled steel billet in EAFP	ths. tons	M skip_metallurgical coke_BF_PJ	Consumption of dry skip metallurgical coke in BFP	ton/ton
SC _{scrap_EAFP}	Specific consumption of pig iron per ton of steel billet produced in EAFP	ton/ton	P pig iron_BF_PJ	Production of pig iron in BFP	ton/ton

Symbol

Data variable

Unit

(PDD formula D.1.1.2.-7)

(PDD formula D.1.1.2.-8)

(PDD formuila D.1.1.2.-9)

Unit

Coefficients of consumption of materials for metallurgical conversions in the project

_	Project factors														
Nº	Data variable	Unit	Jan	Feb	March	Apr	Мау	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Total production of slab and profiled steel billet in EAFP	ths. tons	78,6	169,7	199,3	183,8	192,9	151,5	162,0	181,8	200,8	129,9	112,4	125,9	1888,4
2	Output of profiled steel billet in EAFP	ths. tons	35,2	91,0	99,0	88,2	64,5	58,9	63,4	130,9	157,4	96,0	101,7	121,3	1107,5
3	Total smelting of steel in EAF- 180	ths. tons	37,3	103,4	124,3	109,0	183,3	151,5	162,0	146,3	134,6	55,8	0,0	1,7	1209,1
4	Consumption of pig iron in EAFP	ths. tons	50,1	74,9	99,2	94,6	54,8	38,8	36,6	70,8	91,8	71,4	93,5	105,4	882,0
5	Consumption of scrap metal in EAFP	ths. tons	38,7	116,4	125,8	112,6	162,5	131,9	146,8	135,2	135,7	75,9	33,7	37,9	1253
6	Specific consumption of pig iron per ton of steel billet produced in EAFP	ton/ton	0,638	0,442	0,498	0,515	0,284	0,256	0,226	0,389	0,457	0,550	0,832	0,838	0,467
7	Specific consumption of scrap metal per ton of steel billet produced in EAFP	ton/ton	0,492	0,686	0,631	0,613	0,842	0,871	0,906	0,744	0,676	0,585	0,300	0,301	0,664
8	Specific consumption of dry skip metallurgical coke per ton of produced pig iron	ton/ton	0,453	0,449	0,447	0,437	0,438	0,431	0,429	0,444	0,462	0,446	0,448	0,449	0,444

<u>Note</u>: in this case, the calculation model operates with data including the data from cells previously submitted (*Specific consumption of coke per ton of iron*), and also contains indicators (*actual production of profiled steel billet in the EAFP* and *production of steel in EAF-180*), which will be used to calculate project emissions further.

Coefficients of consumption of materials for metallurgical conversions in the baseline

Consumption of pig iron per ton of smelted steel in the baseline

SC _{pig iron_OHFP} = M _{pig iron_OHFP} / P _{steel_OHFP}

Consumption of scrap metal per ton of smelted steel in the baseline

SC $_{scrap_OHFP} = M _{scrap_OHFP} / P _{steel_OHFP}$

Consumption of steel per ton of profiled steel billet produced in BMP

SC steel_profiled_steel_BM = M steel_BM / P profiled steel_BM

(PDD formula D.1.1.4.-5)

(PDD formula D.1.1.4.-6)

(PDD formula D.1.1.4.-7)

Symbol	Data variable	Unit	Symbol	Data variable	Unit
SC pig iron_OHFP	Consumption of pig iron per ton of steel smelted in OHFP	ton/ton	M scrap_OHFP	Consumption of scrap metal per ton of steel smelted in OHFP	ths. tons
M pig iron_OHFP	Consumption of pig iron in OHFP	ths. tons	SC steel_profiled_steel_BM	Specific consumption of steel per ton of profiled steel billet produced in BMP	ton/ton
P _{steel_OHFP}	Annual average output of steel in OHFP	ths. tons	M steel_BM	Annual average consumption of steel in BMP	ths. tons
SC _{scrap_OHFP}	Specific consumption of scrap metal per ton of steel smelted in OHFP,	ton/ton	P profiled steel_BM	Annual average output of profiled steel billet in BMP	ths. tons

12 months of 2010

	Baseline factors														
Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Annual average production of profiled steel billet in BMP	ths. tons						2	029,9						2 029,9
2	Output of profiled steel billet in EAFP	ths. tons	35,2	91,0	99,0	88,2	64,5	58,9	63,4	130,9	157,4	96,0	101,7	121,3	1107,5
3	Annual average smelting of steel in OHFP	ths. tons						2	335,7						2 335,7
4	Annual average consumption of pig iron in OHFP	ths. tons						1	941,1						1 941,1
5	Annual average consumption of scrap metal in OHFP	ths. tons						7	715,3						715,3
6	Specific consumption of pig iron per ton of steel smelted in OHFP	ton/ton						C),831						0,831
7	Specific consumption of scrap metal per ton of steel smelted in OHFP	ton/ton						C),306						0,306
8	Specific consumption of steel per ton of profiled steel billet produced in BMP	ton/ton						1	,151						1,151
9	Specific consumption of dry skip metallurgical coke per ton of produced pig iron	ton/ton	0,453	0,449	0,447	0,437	0,438	0,431	0,429	0,444	0,462	0,446	0,448	0,449	0,444

Note: for this case the calculation mode in general operates with the values obtained from calculations in the PDD for the baseline (in figures, fixed ex-ante). Monitoring indicators are: *Actual production of profiled steel billet in the EAFP*, and *Specific consumption of metallurgical coke per ton of iron* (the same for the project and the baseline).

D.3 Project CO₂ emissions from metallurgical conversions associated with production of profiled steel billet

Project CO₂ emissions from consumption of metallurgical coke for production of profiled steel billet

L metallurgical_coke_profiled_steel – SC skip_metallurgical_coke_PJ SC pig iron_EAFP 1 profiled_steel_EAFP SI L cok

Project CO₂ emissions from consumption of pig iron for production of profiled steel billet

PE pig iron_profiled_steel = SC pig iron_EAFP * P profiled steel_EAFP * SPE pig iron

Project CO₂ emissions in EAFP from production of profiled steel billet

PE profiled steel_EAFP = P profiled steel_EAFP * SPE EAFP

Symbol	Data variable	Unit	Symbol	Data variable	Unit
$\mathbf{PE}_{\mathrm{metallurgical_coke_profiled_steel}}$	Project CO ₂ emissions from consumption of metallurgical coke for production of profiled steel billet	ths. tons CO ₂	P profiled steel_EAFP	Output of profiled steel billet in EAFP	ths. tons
SC skip_metallurgical_coke_PJ	Specific consumption of dry skip metallurgical coke per ton of pig iron smelted in BFP	ton/ton	PE pig iron_profiled_steel	Project CO ₂ emissions from consumption of pig iron for production of profiled steel billet	ths. tons CO ₂
SC pig iron_EAFP	Specific consumption of pig iron per ton of steel billet produced in EAFP	ton/ton	SPE pig iron	Specific CO_2 emissions per ton of produced pig iron	ton CO ₂ /ton
SPE metallurgical_coke	Specific CO ₂ emissions per ton of dry metallurgical coke produced in BPCP	ton CO ₂ /ton	SPE EAFP	Specific CO ₂ emissions per ton of profiled steel billet produced in EAFP	ton CO ₂ /ton

(PDD formula D.1.1.2.-10)

(PDD formula D.1.1.2.-11)

(PDD formula D.1.1.2.-12)

12 months of 2010

	FIDJECT COZ EMISSIONS NOM METAIIUTYI	cal conversions duri	ng producti	ion or pror	lieu sieel i	Jilet									
Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	CO2 emissions from consumption of metallurgical coke for production of profiled steel billet	ths. tons CO2	10,630	19,745	22,489	19,788	7,959	6,463	5,962	22,484	31,129	22,363	36,577	45,535	251,124
2	CO2 emissions from consumption of pig iron for production of profiled steel billet	ths. tons CO2	15,550	27,001	33,632	29,581	11,921	9,245	8,816	34,315	52,738	35,372	58,421	67,309	383,900
3	CO2 emissions in EAFP from production of profiled steel billet	ths. tons CO2	10,009	15,485	14,916	14,113	8,117	7,156	7,436	17,629	22,272	17,072	20,448	27,498	182,151

Project CO2 emissions from metallurgical conversions during production of profiled steel billet

D.4 CO₂ emissions from production of profiled steel billet in the baseline

CO₂ emissions from consumption of metallurgical coke for production of profiled steel billet in the baseline

BE metallurgical coke_profiled_steel = SC skip_metallurgical_coke_F	J * SC pig iron_OHFP *	* P profiled steel_EAFP * S	C steel_profiled_steel_BM * SPE metallurgical_coke	(PDD formula D.1.1.48)
---	------------------------	-----------------------------	--	------------------------

CO₂ emissions from consumption of pig iron in the baseline

CO₂ emissions from steel smelting in OHFP

BE steel_OHFP = SC steel_profiled_steel_BM * P profiled steel_EAFP * SBE OHFP

CO₂ emissions from production of profiled steel billet in BMP

BE profiled steel_BM = **SBE** BM * **P** profiled steel_EAFP

(PDD	formu	la D.1	1.1.4	11)
------	-------	--------	-------	-------------

(PDD formula D.1.1.4.-10)

Symbol	Data variable	Unit	Symbol	Data variable	Unit
BE metallurgical coke_profiled_steel	CO ₂ emissions from consumption of metallurgical coke in BFP for production of profiled steel billet in the baseline	ths. tons CO ₂	BE steel_OHFP	CO ₂ emissions from steel smelting in OHFP	ths. tons CO ₂
BE pig iron_profiled_steel	CO ₂ emissions from consumption of pig iron in OHFP	ths. tons CO ₂	BE profiled steel_BM	CO ₂ emissions from production of profiled steel billet in BMP	ths. tons CO ₂
SC skip_metallurgical_coke_PJ	Specific consumption of dry skip metallurgical coke per ton of pig iron smelted in BFP	ton/ton	SBE OHFP	Specific CO ₂ emissions per ton of steel smelted in OHFP	tons CO ₂ /ton
P profiled steel_EAFP	Output of profiled steel billet in EAFP	ths. tons	SPE metallurgical_coke	Specific CO ₂ emissions per ton of dry metallurgical coke produced in BPCP	tons CO ₂ /ton
SC steel_profiled_steel_BM	Consumption of steel per ton of profiled steel billet produced in BMP	ton/ton	SBE _{BM}	Specific CO ₂ emissions per ton of production of profiled steel billet in BMP	tons CO ₂ /ton
SC pig iron_OHFP	Consumption of pig iron per ton of steel	ton/ton	SPE pig iron	Specific CO ₂ emissions per ton of	tons CO ₂ /ton

CO₂ emissions from production of profiled steel billet in the baseline

smelted in OHFP		produced pig iron	

12 months of 2010

CO2 emissions from metallurgical conversions form steel making in OHFP and production of profilled steel billet in BMP

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	CO2 emissions from consumption of metallurgical coke in BFP for production of profiled steel billet (baseline)	ths.tons CO2	15,937	42,769	43,213	36,766	26,792	24,163	25,221	55,226	65,125	38,902	42,059	51,992	468,166
2	CO2 emissions from consumption of pig iron in BFP in the baseline	ths.tons CO2	23,314	58,485	64,625	54,962	40,127	34,564	37,297	84,285	110,331	61,534	67,177	76,853	713,555
3	CO2 emissions from steel smelting in OHFP	ths.tons CO2	7,330	18,955	20,617	18,366	13,435	12,258	13,200	27,264	32,776	19,987	21,180	25,259	230,627
4	CO2 emissions from production of profiled steel billet in BMP	ths.tons CO2	7,503	19,403	21,104	18,800	13,753	12,548	13,512	27,908	33,551	20,459	21,681	25,857	236,079

D.5 CO₂ emissions from electricity consumption associated with production of profiled steel billet in EAFP

CO₂ emissions from consumption of grid electricity by EAF-180 via 220/35 kV step-down substation during smelting of profiled steel grades

 $PE_{EC_grid_profiled_steel_EAF} = SEC_{grid_steel_EAF} * P_{profiled_steel_EAFP} * \sum P_{steel_EAF} / \sum P_{profiled_steel_EAFP} * EF_{grid} * (1+TDL)$ (PDD formula D.1.1.2.-14)

Specific consumption of grid electricity by EAF-180 via 220/35 kV step-down substation during smelting of profiled steel grades

Unit

GW-h

SEC $_{grid_steel_EAF} = EC$ $_{grid_steel_EAF} / \sum P$ $_{steel_EAF}$

Data variable

Consumption of grid electricity by EAF-

Symbol

EC

(PDD formula D.1.1.2.-15)

Unit

MW-h/ton

grid_steel_EAF	180 via 220/35 kV step-down substation			180 via 220/35 kV step-down substation per ton of all smelted steel	
$\sum \mathbf{P}_{steel}$	Total smelting of steel in EAF-180	ths. tons	EF grid	CO_2 emission factor for grid electricity from Unified Energy Systems of Urals (EF grid = 0.541 t CO2/MW-h)	tons CO2/MW-h
P profiled steel_EAFP	Output of profiled steel billet in EAFP	ths. tons	TDL	Technological losses during transportation and distribution of grid electricity in Unified Energy System of Urals	%
∑P profiled&slab steel_EAFP	Total production of slab and profiled steel billet in EAFP	ths. tons	PE EC_grid_profiled_steel_EAF	CO ₂ emissions from consumption of grid electricity by EAF-180 via 220/35 kV step-down substation during smelting of profiled steel grades	ths. tons CO ₂

Symbol

SEC grid steel EAF

Data variable

Specific consumption of grid electricity by EAF-

CO₂ emissions from consumption of electricity from corporate MMK grid by other equipment of EAFP (including DBSU) during production of profiled steel billet

 $PE_{EC_profiled_steel_other EAFP} = (SEC_{steel refinement and casting EAFP} * P_{profiled steel_EAFP} + SEC_{steel_OHFP} * P_{profiled steel_EAFP} * (\sum_{profiled stab steel_EAFP} * (\sum_{profiled stab steel_EAFP} - \sum_{profiled stab} - \sum_{profiled stab} + \sum_{profiled steel_EAFP} + SEC_{profiled steel_EAFP} * (\sum_{profiled stab} - \sum_{profiled stab} + \sum_{profiled stab} + \sum_{profiled steel_EAFP} + \sum_{profiled$

Specific electricity consumption in EAFP for steel refining and casting

SEC steel refinement and casting EAFP = (EC EAFP - EC grid_steel_EAF - SEC steel_OHFP * $(\sum P \text{ profiled&slab steel}_EAFP - \sum P \text{ steel}_EAF)) / \sum P \text{ profiled&slab steel}_EAFP$ (PDD formula D.1.1.2.-17)

Symbol	Data variable	Unit	Symbol	Data variable	Unit
PE _{EC_other} equipment_EAFP_PJ	CO2 emissions from consumption of electricity from corporate MMK grid by other equipment of EAFP (including DBSU) during production of profiled steel billet	ths. tons CO ₂	EF own generation_PJ	CO ₂ emission factor for electricity produced by own generating capacities of MMK	tons CO ₂ /MW- h
SEC steel refinement and casting EAFP	Specific electricity consumption in EAFP for steel refining and casting,	MW-h/ton	EC gross_PJ	Total electricity consumption by MMK	GW-h
P profiled steel_EAFP	Output of profiled steel billet in EAFP	ths. tons	EC import_PJ	Electricity purchases from Unified Energy Systems of Urals grid	GW-h
∑P profiled&slab steel_EAFP	Total production of slab and profiled steel billet in EAFP	ths. tons	EC grid_steel_EAF	Consumption of grid electricity by EAF-180 via 220/35 kV step-down substation	GW-h
∑P steel_EAF	Total smelting of steel in EAF-180	ths. tons	EC EAFP	Total electricity consumption in EAFP	GW-h
SEC steel_OHFP	Specific electricity consumption in OHFP per ton of steel	MW-h/ton	TDL	Technological losses during transportation and distribution of grid electricity in Unified Energy System of Urals ⁴	%
EF grid	CO2 emission factor for grid electricity from Unified Energy Systems of Urals (EF grid = 0.541 t CO2/MW-h)	tons CO ₂ /MW-h			

⁴ <u>http://www.mrsk-ural.ru/ru/460</u>

CO₂ emissions from consumption of electricity from corporate grid of MMK, for production of nitrogen, pure nitrogen and argon needed for production of profiled steel billet

$$PE_{EC_Ar_N2_profiled_steel} = (EC_{N2_profiled_steel} + EC_{pure N2_profiled_steel} + EC_{Ar_profiled_steel}) * ((EF_{own generation_PJ} * (EC_{gross_PJ} - EC_{import_PJ}) + EF_{grid} * (EC_{import_PJ} - EC_{import_PJ})$$

Electricity consumption for production of nitrogen, which is used during production of profiled steel billet in EAFP

$$EC_{N2_profiled_steel} = SEC_{N2_PJ} * V_{N2_EAFP} * P_{profiled_steel_EAFP} / \sum P_{profiled\&slab \ steel_EAFP}$$
(PDD formula D.1.1.2.-19)

Electricity consumption for production of pure nitrogen, which is used during production of profiled steel billet in EAFP

$$EC_{pure_N2_{profiled_{steel}}} = SEC_{pure_N2_{PJ}} * V_{pure_N2_{EAFP}} * P_{profiled_{steel}_{EAFP}} / \sum P_{profiled_{steel}_{EAFP}}$$
(PDD formulaD.1.1.2.-20)

Electricity consumption for production of argon, which is used during production of profiled steel billet in EAFP

EC Ar_profiled_steel = SEC	ar_PJ* V	V _{Ar_EAFP} * P	profiled_steel_EAFP /P	profiled&slab steel_EAFP
----------------------------	----------	--------------------------	------------------------	--------------------------

(PDD formula D.1.1.2.-21)

Symbol	Data variable	Unit	Symbol	Data variable	Unit
PE EC_Ar_N2_profiled_steel	CO ₂ emissions from consumption of electricity from corporate grid of MMK for production of nitrogen, pure nitrogen and argon needed for production of profiled steel billet	ths. tons CO ₂	EC gross_PJ	Total electricity consumption by MMK	GW-h
$EC_{N2_profiled_steel}$	Electricity consumption for production of nitrogen, which is used during production of profiled steel billet in EAFP	GW-h	EC import_PJ	Electricity purchases from Unified Energy Systems of Urals grid	GW-h
EC pure N2_profiled_steel	Electricity consumption for production of pure nitrogen, which is used during production of profiled steel billet in EAFP	GW-h	EC grid_steel_EAF	Consumption of grid electricity by EAFP-180, via 220/35 kV step- down substation	GW-h
EC Ar_profiled_steel	Electricity consumption for production of argon, which is used during production of profiled steel billet in EAFP	GW-h	EF grid	CO_2 emission factor for grid electricity from Unified Energy Systems of Urals (EF grid = 0.541	tons CO ₂ / MW-h

CO₂ emissions from electricity consumption associated with production of profiled steel billet in EAFP

				t CO2/MW-h)	
EF own generation_PJ	CO2 emission factor for electricity produced by own generating capacities of MMK	tons CO ₂ / MW-h	TDL	Technological losses during transportation and distribution of grid electricity in Unified Energy System of Urals	%
SEC _{N2_PJ}	Specific electricity consumption for production of nitrogen at MMK	MW-h/1000 m ³	V _{N2_EAFP}	Consumption of nitrogen in EAFP	mln. m ³
SEC pure_N2_PJ	Specific electricity consumption for production of pure nitrogen at MMK	MW-h/1000 m ³	V pure_N2_EAFP	Consumption of pure nitrogen in EAFP	mln. m ³
SEC Ar_PJ	Specific electricity consumption for production of argon at MMK	MW-h/1000 m ³	V _{Ar_EAFP}	Consumption of argon in EAFP	mln. m ³
P profiled steel_EAFP	Output of profiled steel billet in EAFP	ths. tons	∑P profiled&slab steel EAFP	Total production of slab and profiled steel billet in EAFP	ths. tons

12 months of 2010

Electricity balance in project

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Total electricity consumption in EAFP	GWh	19,8	49,1	50,5	45,1	71,8	60,3	64,7	56,8	54,0	30,4	10,8	12,7	526,1
2	Specific electricity consumption in EAFP for steel refining and casting	MWh/ton	0,110	0,079	0,070	0,069	0,071	0,079	0,080	0,075	0,069	0,085	0,085	0,086	0,080
3	Consumption of grid electricity by EAF-180 via 220/35 kV step-down substation	GWh	10,9	35,2	36,2	31,9	57,9	48,4	51,8	42,9	39,8	18,9	0,5	1,0	375,3
4	Specific consumption of grid electricity by EAF-180 via 220/35 kV step-down substation during smelting of profiled steel grades	MWh/ton	0,292	0,340	0,291	0,293	0,316	0,320	0,320	0,293	0,295	0,339	0,000	0,621	0,310
5	Total electricity consumption by MMK	GWh	557,5	573,3	624,9	598,5	631,0	590,0	616,3	604,3	588,4	585,9	552,3	582,7	7105,1
6	Electricity purchases from Unified Energy Systems of Urals grid	GWh	85,8	148,8	165,6	184,2	192,7	185,3	224,6	196,0	182,8	127,0	97,8	107,0	1897,8

CO₂ emissions from electricity consumption associated with production of profiled steel billet in EAFP

7	Electricity purchases from Unified Energy Systems of Urals grid except EAF-180 demand	GWh	75,0	113,6	129,5	152,3	134,8	136,9	172,8	153,1	143,0	108,1	97,3	106,0	1522,4
8	Electricity, generated by MMK	GWh	471,7	424,4	459,3	414,3	438,3	404,7	391,7	408,3	405,6	458,8	454,5	475,7	5207,3

Electricity consumption for production of nitrogen, which is used during production of profiled steel billet in EAFP

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Consumption of nitrogen in EAFP	mln. m3	0,3	1,1	1,2	1,4	2,0	2,5	2,4	2,6	2,2	1,2	1,0	1,0	19
2	Specific electricity consumption for production of nitrogen at MMK	MWh/ths. m3	0,207	0,167	0,160	0,154	0,108	0,053	0,150	0,150	0,150	0,150	0,150	0,150	0,146
3	Specific consumption of nitrogen for production of steel in EAFP	ths. m3/ton	0,004	0,006	0,006	0,007	0,010	0,017	0,015	0,014	0,011	0,010	0,009	0,008	0,010
4	Electricity consumption for production of nitrogen	GWh	0,03	0,10	0,09	0,10	0,07	0,05	0,14	0,28	0,26	0,14	0,13	0,14	1,5
5	Consumption of pure nitrogen in EAFP	mln. m3	0,14	0,21	0,09	0,12	0,275	0,08	0,06	0,18	0,13	0,08	0,08	0,09	1,5
6	Specific electricity consumption for production of pure nitrogen at MMK	MWh/ths. m3	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826	0,826
7	Specific consumption of pure nitrogen for production of steel in EAFP	ths. m3/ton	0,0017	0,0012	0,0005	0,0006	0,0014	0,0005	0,0004	0,0010	0,0007	0,0006	0,0007	0,0007	0,0008
8	Electricity consumption for production of pure nitrogen	GWh	0,1	0,1	0,0	0,0	0,1	0,0	0,0	0,1	0,1	0,0	0,1	0,1	0,7
9	Consumption of argon in EAFP	mln. m3	0,11	0,19	0,17	0,17	0,20	0,16	0,14	0,14	0,13	0,12	0,081	0,102	1,7
10	Specific electricity consumption for production of argon at MMK	MWh/ths. m3	0,055	0,055	0,055	0,055	0,055	0,055	0,055	0,055	0,055	0,055	0,055	0,055	0,055
11	Specific consumption of argon for production of steel in EAFP	ths. m3/ton	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001
12	Electricity consumption fo production of argon	GWh	0,003	0,005	0,005	0,004	0,004	0,003	0,003	0,006	0,006	0,005	0,004	0,005	0,05

CO₂ emissions from electricity consumption associated with production of profiled steel billet in EAFP

Total CO₂ emissions from electricity consumption associated with production of profiled steel billet in EAFP

			_		
Symbol	Data variable	Unit	Symbol	Data variable	Unit
PE electricity_profiled_steel_EAFP	Total CO ₂ emissions from electricity consumption associated with production of profiled steel billet in EAFP	ths. tons CO ₂	PE _{EC_} profiled_steel_other EAFP	CO ₂ emissions from consumption of electricity from corporate MMK grid by other equipment of EAFP (including DBSU) during production of profiled steel billet	ths. tons CO ₂
PE EC_grid_profiled_steel_EAF	CO_2 emissions from consumption of grid electricity by EAF-180 via 220/35 kV step-down substation during smelting of profiled steel grades in EAFP	ths. tons CO ₂	PE EC_Ar_N2_profiled_steel	CO ₂ emissions from consumption of electricity from corporate MMK grid for production of nitrogen, pure nitrogen, and argon needed for production of profiled steel billet in EAFP	ths. tons CO ₂

$PE_{electricity_profiled_steel_EAFP} = PE_{EC_grid_profiled_steel_EAF} + PE_{EC_profiled_steel_other EAFP} + PE_{EC_Ar_N2_profiled_steel_steel_eafP} + PE_{EC_arsis_profiles_steel_eafP} + PE_{EC_arsis_profiles_steel_steel_arsis_profiles$

12 months of 2010

CO2 emissions from electricity consumption associated with production of profiled steel billet in EAFP

Nº	Data variable	Unit	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	CO2 emissions from consumption of grid electricity by EAF-180 via 220/35 kV step-down substation	ths. tons CO2	2,825	10,949	10,423	8,885	11,238	10,914	11,762	17,936	18,076	8,101	0,000	0,584	111,691
2	CO2 emissions from consumption of electricity from corporate MMK grid in for production of nitrogen, pure nitrogen, and argon	ths. tons CO2	0,060	0,145	0,106	0,121	0,139	0,075	0,148	0,360	0,322	0,165	0,157	0,174	1,972
3	CO2 emissions from consumption of electricity from corporate MMK grid by other equipment of EAFP (including DBSU)	ths. tons CO2	2,960	5,566	5,546	5,070	4,211	4,322	4,618	9,277	10,297	7,357	7,480	8,863	75,565
4	Total CO2 emissions from electricity consumption associated with production of profiled steel billet in EAFP	ths. tons CO2	5,844	16,659	16,075	14,076	15,588	15,311	16,528	27,572	28,695	15,623	7,637	9,621	189,229

CO₂ emissions from electricity consumption associated with production of profiled steel billet in EAFP

(PDD formula D.1.1.2.-13)

CO₂ emission factor for electricity produced at MMK

EF own generation PJ = PE total electricity generation / (EC gross PJ - EC import PJ)

CO2 emissions from electricity generation at MMK

Symbol

EF own generation_PJ

PE total electricity generation

PE combustion gases_electricity

PE total electricity generation = PE combustion gases electricity + PE combustion coal_electricity

produced at MMK

generation at MMK

Data variable

CO₂ emissions from combustion of gases for electricity generation at MMK

CO₂ emission factor for electricity

Total CO₂ emissions from electricity

CO₂ emissions from combustion of

gases for electricity generation at MMK

PE combustion gases electricity = (FC BFG CPP PJ * C BFG PJ + FC NG CPP PJ * C NG .PJ + FC NG CHPP PJ * C NG PJ + FC BFG SABPP PJ * C BFG PJ + FC COG SABPP PJ * C COG PJ + FC NG_SABPP_PJ * C NG_PJ + FC NG_turbine section of SP_PJ * C NG_.PJ + FC NG gas recovery unit-2 of SP_PJ * C NG_PJ)/100 * 44/1 (PDD formula D.1.1.2.-24)

Unit

tons

CO₂/MW-h

ths. tons CO_2

ths. tons CO₂

Symbol

EC gross PJ

EC import_PJ

PE combustion coal_electricity

CO2 emissions from combustion of power station coal for electricity generation at MMK

PE combustion coal electricity = (FC energy coal CHPP PJ * %C energy coal)/100 * 44/12

Symbol	Data variable	Unit	Symbol	Data variable	Unit
PE combustion gases_electricity	CO ₂ emissions from combustion of gases for electricity generation at MMK	ths. tons CO ₂	PE combustion coal_electricity	CO ₂ emissions from combustion of power station coal	ths. tons CO ₂
FC BFG_CPP_PJ	Consumption of BFG in CPP	mln. m ³	FC COG_SABPP_PJ	Consumption of COG in SABPP	mln. m ³
FC NG_CPP_PJ	Consumption of NG in CPP	mln. m ³	FC NG_SABPP_PJ	Consumption of NG in SABPP	mln. m ³

Data variable

power station coal

Total electricity generation at MMK

Electricity purchases from Unified

CO₂ emissions from combustion of

Energy Systems of Urals grid

(PDD formula D.1.1.2.-22)

(PDD formula D.1.1.2.-25)

(PDD formula D.1.1.2.-23)

51

Unit

GW-h

GW-h

ths. tons

 CO_2

FC NG_CHPP_PJ	Consumption of NG in CHPP	mln. m ³	FC NG_turbine section of SP_PJ	Consumption of NG in turbine section of SP	mln. m ³
FC bfg_sabpp_pj	Consumption of BFG in SABPP	mln. m ³	FC NG_gas recovery unit-2 of SP _PJ	Consumption of NG in gas recovery unit of SP	mln. m ³
C BFG_PJ	Carbon content in BFG	kg C/m ³	C _{NG_PJ}	Carbon content in NG	kg C/m ³
C _{COG_PJ}	Carbon content in COG	kg C/m ³	%C energy coal	Carbon content in power station coal	% by mass
FC energy coal_CHPP_PJ	Consumption of power station coal by CHPP	ths. tons			

12 months of 2010

	Input carbon flows, burning of gases														
Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Consumption of BFG in CPP	mln. m3	141,3	141,8	183,6	195,9	256,4	262,6	264,6	262,7	257,8	233,1	186,8	182,9	2569,5
2	Carbon content in BFG	kg C/m3	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,22	0,22	0,22	0,21
		ths. tons C	29,9	29,7	38,7	41,5	54,4	55,8	56,1	55,4	54,8	50,2	40,9	40,2	547,7
3	Consumption of NG in CPP	mln. m3	31,6	25,7	23,2	20,8	27,3	26,3	25,7	26,1	19,6	26,1	25,0	26,2	303,6
4	Carbon content in NG	kg C/m3	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
4		ths. tons C	15,6	12,7	11,5	10,3	13,5	13,0	12,7	12,9	9,7	12,9	12,4	13,0	150,2
5	Consumption of NG in CHPP	mln. m3	54,5	49,9	56,9	55,7	69,3	67,6	63,6	67,9	65,9	63,7	57,1	58,2	730,4
6	Carbon content in NG	kg C/m3	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
0		ths. tons C	27,0	24,7	28,2	27,6	34,3	33,4	31,5	33,5	32,6	31,5	28,3	28,8	361,3
7	Consumption of COG in SABPP	mln. m3	55,6	58,4	71,8	73,2	61,8	46,8	44,3	53,1	60,2	59,8	57,8	65,3	708
	Carbon content in COG	kg C/m3	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,22	0,22	0,22	0,21
0		ths. tons C	11,8	12,2	15,1	15,5	13,1	9,9	9,4	11,2	12,8	12,9	12,6	14,4	151,0
9	Consumption of BFG in SABPP	mln. m3	12,9	10,1	10,9	12,9	11,5	7,6	7,0	8,7	11,5	12,9	12,3	11,5	129,8
10	Carbon content in BFG	kg C/m3	0,18	0,18	0,18	0,18	0,18	0,18	0,19	0,19	0,19	0,19	0,19	0,19	0,18
10		ths. tons C	2,4	1,8	1,9	2,3	2,0	1,3	1,3	1,6	2,1	2,4	2,3	2,1	23,8

CO₂ emission factor for electricity produced at MMK

11	Consumption of NG in SABPP	mln. m3	9,7	8,4	7,8	5,3	6,4	5,1	4,8	5,3	5,9	6,2	5,9	8,1	79
10	Carbon content in NG	kg C/m3	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
12		ths. tons C	4,8	4,2	3,9	2,6	3,2	2,5	2,4	2,6	2,9	3,1	2,9	4,0	39,1
13	Consumption of NG in turbine section of SP	mln. m3	0,216	0,208	0,294	0,164	0,182	0,225	0,158	0,130	0,142	0,239	0,461	0,379	2,8
14	Carbon content in NG	kg C/m3	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
14		ths. tons C	0,11	0,10	0,15	0,08	0,09	0,11	0,08	0,06	0,07	0,12	0,23	0,19	1,4
15	Consumption of NG in gas recovery unit of SP	mln. m3	0,000	0,000	0,129	0,166	0,094	0,053	0,09	0,09	0,14	0,11	0,07	0,13	1,1
10	Carbon content in NG	kg C/m3	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
16		ths. tons C	0,00	0,00	0,06	0,08	0,05	0,03	0,04	0,05	0,07	0,05	0,04	0,06	0,5
17	Total carbon input stream with gases	ths. tons C	91,6	85,5	99,5	99,9	120,7	116,2	113,5	117,4	115,0	113,2	99,7	102,7	1274,9
	Input carbon flows, burning of coal														
N⁰	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Consumption of power station coal by CHPP	ths. tons	9,1	8,4	6,4	0,0	0,0	0,0	0,0	0,0	0,0	4,1	7,6	7,9	43,4
2	Carbon content in power station	% by mass	73,00	73,00	73,00	73,00	73,00	73,00	73,00	73,00	73,00	73,00	73,00	73,00	73,00
2	coal	ths. tons C	6,6	6,1	4,7	0,0	0,0	0,0	0,0	0,0	0,0	3,0	5,5	5,8	31,7

	CO2 emissions from electricity genera	ation													
Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Carbon burning in the gas-burning processes	ths. tons C	91,6	85,5	99,5	99,9	120,7	116,2	113,5	117,4	115,0	113,2	99,7	102,7	1274,9
2	CO2 emissions from burning of gases	ths. tons CO2	335,8	313,5	364,8	366,3	442,5	426,0	416,0	430,5	421,8	415,1	365,5	376,7	4674,5
3	Carbon burning in the coal burning process	ths. tons C	6,6	6,1	4,7	0,0	0,0	0,0	0,0	0,0	0,0	3,0	5,5	5,8	31,7
4	CO2 emissions from coal burning	ths. tons CO2	24,3	22,5	17,1	0,0	0,0	0,0	0,0	0,0	0,0	10,9	20,2	21,2	116,3

0,0

0,0

0,0

0,0

0,0

0,0

3,0

5,5

4,7

6,1

6,6

ths. tons C

3

Total ouput carbon flow

CO₂ emission factor for electricity produced at MMK

5,8

31,7

5	CO2 emission factor for electricity produced at MMK	ths. tons CO2	360,1	336,0	381,9	366,3	442,5	426,0	416,0	430,5	421,8	426,0	385,7	397,9	4790,8
---	--	---------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	--------

	c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			/ 12 / 14 / 14 / 14	
Emission factors	tor electricity	v and nower	transmission	distribution	INCODO
			111111111111111111111111111111111111111	ustibution	000000

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	CO2 emission factor for electricity generated at MMK	tons CO2/MWh	0,763	0,792	0,831	0,884	1,010	1,053	1,062	1,054	1,040	0,928	0,849	0,837	0,920
2	CO2 emissions factor for grid electricity purchased from Unified Energy System of Urals (fixed ex-ante, 2008-2012)	tons CO2/MWh	0,541	0,541	0,541	0,541	0,541	0,541	0,541	0,541	0,541	0,541	0,541	0,541	0,541
3	Power transmission and distribution losses in Unified energy Systems of Urals grid*	%/100	0,0724	0,0724	0,0724	0,0724	0,0724	0,0724	0,0724	0,0724	0,0724	0,0724	0,0724	0,0724	0,0724

* http://www.mrsk-ural.ru/ru/440.news1434.html

D.6 CO₂ emissions from electricity consumption in the baseline

CO₂ emissions from electricity consumption in OHFP

 $BE_{electricity_OHFP} = SEC_{steel_OHFP} * P_{profiled steel_EAFP} * SC_{steel_profiled_steel_BM} * ((EF_{own generation_PJ} * (EC_{gross_PJ} - EC_{import_PJ}) + EF_{grid} * (EC_{import_PJ} - EC_{grid_steel_EAF}) * (1+TDL))/(EC_{gross_PJ} - EC_{grid_steel_EAF})$ (PDD formula D.1.1.4.-12)

CO₂ emissions from consumption of electricity in BMP

 $BE_{electricity_BM} = SEC_{profiled steel_BM_} * P_{profiled steel_EAFP} * ((EF_{own generation_PJ} * (EC_{gross_PJ} - EC_{import_PJ}) + EF_{grid} * (EC_{import_PJ} - EC_{grid_steel_EAF}) * (1+TDL))/ (EC_{gross_PJ} - EC_{grid_steel_EAF})$ (PDD formula D.1.1.4.-14)

Total CO₂ emissions from electricity consumption

BE total electricity consumption = **BE** electricity_OHFP + **BE** electricity_BM

(PDD formula D.1.1.4.-16)

Symbol	Data variable	Unit	Symbol	Data variable	Unit
BE electricity_OHFP	CO ₂ emissions from electricity consumption in OHFP	ths. tons CO ₂	EC gross_PJ	Total electricity consumption by MMK	GW-h
BE electricity_BM	CO ₂ emissions from consumption of electricity in BMP	ths. tons CO ₂	EC import_PJ	Electricity purchases from Unified Energy Systems of Urals grid	GW-h
BE total electricity consumption	Total CO ₂ emissions from electricity consumption in the baseline	ths. tons CO ₂	EC grid_steel_EAF	Consumption of grid electricity by EAF-180 via 220/35 kV step-down substation	GW-h
SEC steel_OHFP	Specific consumption of electricity in OHFP per ton of smelted steel	MW-h/ton	EF grid	CO ₂ emission factor for grid electricity from Unified Energy Systems of Urals (EF grid = 0.541 t CO2/MW-h)	tons CO ₂ /MW-h
SC steel_profiled_steel_BM	Specific consumption of steel per ton of profiled steel billet produced in BMP	tons CO ₂ /MW-h	EF own generation_PJ	CO ₂ emission factor for electricity produced by own generating capacities of MMK	tons CO ₂ /MW-h
P profiled steel_EAFP	Output of profiled steel billet in EAFP	ths. tons	TDL	Technological losses during	%

			transportation and distribution of grid electricity in Unified Energy System of Urals	
SEC profiled steel_BM	Specific consumption of electricity in BMP per ton of profiled steel billet	MW-h/ton		

12 months of 2010

Electricity balance in the baseline

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Specific consumption of electricity in OHFP per ton of smelted steel	MWh/ton						0,007							0,007
2	Specific consumption of electricity in BMP per ton of profiled steel billet	MWh/ton						0,041							0,041
3	Total electricity consumption by MMK	GWh	557,5	573,3	624,9	598,5	631,0	590,0	616,3	604,3	588,4	585,9	552,3	582,7	7105,1
4	Electricity purchases from Unified Energy Systems of Urals grid	GWh	85,8	148,8	165,6	184,2	192,7	185,3	224,6	196,0	182,8	127,0	97,8	107,0	1897,8
5	Electricity purchases from Unified Energy Systems of Urals grid except EAF-180 demand	GWh	75,0	113,6	129,5	152,3	134,8	136,9	172,8	153,1	143,0	108,1	97,3	106,0	1522,4
6	Electricity, generated by MMK	GWh	471,7	424,4	459,3	414,3	438,3	404,7	391,7	408,3	405,6	458,8	454,5	475,7	5207,3

CO2 emissions from electricity demand in the baseline

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	CO2 emissions from electricity demand in OHFP	ths. tons CO2	0,207	0,543	0,614	0,565	0,468	0,439	0,463	0,967	1,156	0,661	0,651	0,765	7,497
2	CO2 emissions from electricity demand in BMP	ths. tons CO2	1,073	2,807	3,173	2,922	2,420	2,268	2,393	5,000	5,979	3,416	3,365	3,955	38,770
3	Total CO2 emissions from electricity denamd	ths. tons CO2	1,280	3,350	3,786	3,486	2,888	2,707	2,856	5,967	7,135	4,076	4,015	4,720	46,268

D.6 CO₂ emissions from generation of air blast for production of pig iron used for production of profiled steel billet

CO₂ emissions from generation of air blast for production of pig iron used for production of profiled steel billet in the project

Unit

ths. tons CO_2

PE air blast_for_pig_iron = P profiled steel_EAFP * SC pig iron_EAFP * SC air blast generation_PJ * EF air blast generation_PJ

CO₂ emissions from generation of air blast for

EF air blast generation_PJ = **PE** air blast generation / **OC** air blast generation_PJ

PE air blast generation = (FC BFG_SABPP_ air blast generation_PJ * C BFG_PJ + FC COG_SABPP_ air blast generation_PJ * C COG_SABPP_ air blast generation_PJ * C NG_SABPP_ air blast generation_PJ * C NG_PJ)/100 * 44/12

Symbol

OC air blast

Data variable

Generation of air blast at MMK

(PDD formula D.1.1.2.-28)

SC air blast generation PJ = OC air blast generation PJ / P pig iron BF PJ

Data variable

Symbol

PE air blast_for_pig_iron

Specific consumption of air blast per ton of pig iron produced

production of pig iron used for production of generation PJ profiled steel billet mln. m³ Output of profiled steel billet in EAFP Consumption of BFG in SABPP for P profiled steel_EAFP ths. tons FC BFG SABPP air generation of air blast blast generation _PJ kg C/m³ Specific consumption of pig iron per ton of Carbon content in BFG SC pig iron EAFP ton/ton C BFG PJ profiled steel billet produced in EAFP ths. m³/ton mln. m³ Specific consumption of air blast per ton of Consumption of COG in SABPP SC air blast generation FC COG SABPP air pig iron produced for generation of air blast blast generation _PJ CO₂ emission factor for air blast generation % by mass EF air blast generation_PJ ths. tons Carbon content in COG C COG.P.I $CO_2/ths. m^3$ $mln. m^3$ CO₂ emissions from combustion of fuel for Consumption of NG in SABPP for ths. tons CO₂ PE air blast generation FC NG SABPP air generation of air blast generation of air blast blast generation_PJ kg C/m^3 Production of pig iron in BFP Carbon content in NG ths. tons C_{NG}._{PJ} **P**_{pig iron_BF_PJ}

(PDD formula D.1.1.2.-29)

Unit

mln. m³

(PDD formula D.1.1.2.-26)

(PDD formula D.1.1.2.-27)

12 months of 2010

N⁰	Data variable	Unit	Jan	Feb	March	Apr	Мау	June	July	Aug	Sep	Oct	Nov	Dec	l otal for year
1	Generation of air blast at MMK	mln. m3	1600,1	1589,6	2044,7	2049,8	2025,5	1887,5	1005,8	1106,4	1079,8	1043,8	1113,1	1924,4	18470,5
2	Specific consumption of air blast in BFP per ton of produced pig iron	ths. m3 of air blast/ton	2,331	2,271	2,407	2,433	2,632	2,664	1,333	1,453	1,351	1,336	1,415	2,420	2,004
	Input carbon flows														
Nº	Data variable	Unit	Jan	Feb	March	Apr	Мау	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Consumption of BFG in SABPP for generation of air blast	mln. m3	68,5	87,9	113,4	121,0	104,0	100,2	106,5	113,4	101,4	90,1	96,5	95,5	1198,4
2	Carbon content in BFG	kg C/m3	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,22	0,22	0,22	0,21
2		ths. tons C	14,5	18,4	23,9	25,6	22,1	21,3	22,6	23,9	21,5	19,4	21,1	21,0	255,4
3	Consumption of COG in SABPP for generation of air blast	mln. m3	15,8	15,2	17,2	21,4	19,4	16,2	16,7	18,7	19,4	19,4	20,5	16,9	216,8
1	Carbon content in COG	kg C/m3	0,18	0,18	0,18	0,18	0,18	0,18	0,19	0,19	0,19	0,19	0,19	0,19	0,18
4		ths. tons C	2,9	2,7	3,1	3,8	3,4	2,9	3,1	3,5	3,6	3,7	3,8	3,1	39,7
5	Consumption of NG in SABPP for generation of air blast	mln. m3	11,9	12,7	12,3	8,7	10,9	10,9	11,6	11,3	10,0	9,4	9,8	11,8	131,3
6	Carbon content in NG	kg C/m3	0,50	0,50	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
U		ths. tons C	5,9	6,3	6,1	4,3	5,4	5,4	5,7	5,6	4,9	4,6	4,8	5,9	65,0
7	Total carbon content in input gaseos flow	ths. tons C	23,3	27,5	33,1	33,7	30,9	29,6	31,5	33,0	30,1	27,7	29,8	30,0	360,1

CO2 emissions from generation of air blast

Generation of air blast at MMK

Nº	Data variable	Unit	Jan	Feb	March	Apr	Мау	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	CO2 emissions from generation of air blast	ths. tons CO2	85,5	100,7	121,3	123,6	113,2	108,4	115,3	121,1	110,3	101,6	109,3	109,9	1320,2

CO₂ emissions from generation of air blast for production of pig iron used for production of profiled steel billet in the project

CO2 emission factor for generation of air blast

Nº	Data variable	Unit	Янв.	Фев.	Март	Апр.	Май	Июнь	Июль	Авг.	Сент.	Окт.	Ноя.	Дек.	Итог по году
1	CO2 emission factor for generation of air blast at MMK	tons CO2/ ths. m3 of air blast	0,053	0,063	0,059	0,060	0,056	0,057	0,115	0,109	0,102	0,097	0,098	0,057	0,071

CO2 emissions from generation of air blast for production of pig iron used for production of profiled steel billet in the project

Nº	Data variable	Unit	Jan	Feb	March	Apr	Мау	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	CO2 emissions from generation of air blast for production of pig iron	ths. tons CO2	2,798	5,782	7,037	6,660	2,697	2,305	2,191	8,108	9,937	6,867	11,757	14,051	80,189

CO₂ emissions from generation of air blast for production of pig iron used for production of profiled steel billet in the baseline

Symbol	Data variable	Unit	Symbol	Data variable	Unit
BE air blast_for_pig_iron	CO ₂ emissions from generation of air blast for production of pig iron used for production of profiled steel billet in the baseline	ths. tons CO ₂	P profiled steel_EAFP	Output of profiled steel billet in EAFP	ths. tons
SC air blast generation_PJ	Specific consumption of air blast in BFP per ton of pig iron	ths. m ³ /ton	SC _{steel_profiled_steel_BM}	Specific consumption of steel per ton of profiled steel billet produced in BMP	ton/ton
SC pig iron_OHFP	Specific consumption of pig iron per ton of steel produced in OHFP	ton/ton	EF air blast generation_PJ	CO ₂ emission factor for air blast generation	ths. tons CO ₂ /ths. m ³

BE air blast_for_pig_iron = SC air blast generation_PJ * SC pig iron_OHFP * P profiled steel_EAFP * SC steel_profiled_steel_BM * EF air blast generation_PJ (PDD formula D.1.1.4.-17)

12 months of 2010

CO2 emissions from generation of air blast for production of pig iron used for production of profiled steel billet in the baseline

N⁰	Data variable	Unit	Jan	Feb	March	Apr	Мау	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	CO2 emissions from generation of air blast for production of pig iron	ths. tons CO2	4,195	12,525	13,522	12,374	9,079	8,616	9,268	19,916	20,790	11,946	13,519	16,043	151,792

D.7 Emissions reduction calculation from project activity

Total project emissions from production of profiled steel billet

$PE = PE_{metallurgical coke_profiled_steel} + PE_{pig iron_profiled_steel} + PE_{profiled steel_EAFP} + PE_{electricity_profiled_steel_EAFP} + PE_{air blast_for_pig_iron}$ (PDD formula D.1.1.2.-30)

Symbol	Data variable	Unit	Symbol	Data variable	Unit
РЕ	Total project CO ₂ emissions from production of profiled steel billet	ths. tons CO ₂	PE profiled steel_EAFP	CO ₂ emissions in EAFP from production of profiled steel billet	ths. tons CO ₂
PE metallurgical coke_profiled_steel	CO ₂ emissions from consumption of metallurgical coke for production of profiled steel billet	ths. tons CO ₂	PE electricity_profiled_steel_EAFP	CO ₂ emissions from consumption of electricity for production of profiled steel billet in EAFP	ths. tons CO ₂
PE pig iron_profiled_steel	CO ₂ emissions from consumption of pig iron for production of profiled steel billet	ths. tons CO ₂	PE air blast_for_pig_iron	CO ₂ emissions from consumption of air blast for production of pig iron for production of profiled steel billet	ths. tons CO ₂

Total CO₂ emissions in the baseline

BE = BE metallurgical coke_profiled_steel + BE pig iron_profiled_steel + BE steel_OHFP + BE profiled steel_BM + BE total electricity consumption + BE air blast_for_pig_iron

(PDD formula D.1.1.4.-18)

Symbol	Data variable	Unit	Symbol	Data variable	Unit
BE	Total CO ₂ emissions in the baseline	ths. tons CO ₂	BE steel_OHFP	CO ₂ emissions from steel smelting in OHFP	ths. tons CO ₂
BE metallurgical coke_profiled_steel	CO ₂ emissions from consumption of metallurgical coke in BFP for production of profiled steel billet in the baseline	ths. tons CO ₂	BE profiled steel_BM	CO ₂ emissions from production of profiled steel billet in BMP	ths. tons CO ₂
BE pig iron_profiled_steel	CO ₂ emissions from consumption of pig iron in BFP in the baseline	ths. tons CO ₂	BE total electricity consumption	Total CO ₂ emissions from electricity consumption in the baseline	ths. tons CO ₂
			BE air blast_for_pig_iron	CO ₂ emissions from generation of air blast in the baseline	ths. tons CO ₂

Utilization of blast furnace dust at the cement factory outside MMK

 $LE_y = M_{dust utilization_PJ} * \% C_{dust_BF_PJ} * 44/12$

Symbol Data variable Unit Symbol Data variable Unit LE_v CO₂ emissions from utilization of ths. tons CO₂ % C dust_BF_PJ Carbon content in blast furnace dust, % by mass blast furnace dust at the cement factory outside MMK M dust utilization_PJ Supply of blast furnace dust at the ths. tons cement factory outside MMK

GHG emission reduction from the project activity

 $\mathbf{ER}_{\mathbf{y}} = \mathbf{BE}_{\mathbf{y}} - \mathbf{PE}_{\mathbf{y}} - \mathbf{LE}_{\mathbf{y}}$

(PDD formula D.1.4.-1)

Symbol	Data variable	Unit	Symbol	Data variable	Unit
ERy	Emission reduction in the period y	tons CO _{2eq}	PEy	Project emissions in the period y	ths. tons CO ₂
BEy	Baseline emissions in the period y	ths. tons CO ₂	LE _y	CO ₂ emissions from utilization of blast furnace dust at the cement factory outside MMK	ths. tons CO ₂

(PDD formula D.1.3.2.-1)

12 months of 2010

	Leakages - utilization of blast furnace dust outside MMK														
Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
	Supply of blast furnace dust to the cement factory outside MMK	ths. tons	0,7	0,7	0,6	0,0	0,0	0,0	0,2	0,2	0,0	0,0	0,0	0,2	2,6
1	Carbon content in blast furnace	% by mass	16,7	16,3	14,1	16,3	15,1	17,2	20,0	21,4	20,6	19,6	20,0	19,0	18,0
	dust	ths. tons C	0,12	0,11	0,08	0,00	0,00	0,00	0,04	0,03	0,00	0,00	0,00	0,04	0,4
2	CO2 emissions from utilization of blast furnace dust at the cement factory outside MMK	ths. tons CO2	0,429	0,418	0,310	0,000	0,000	0,000	0,149	0,126	0,000	0,000	0,000	0,139	1,572

ERUs generated in 2010 in accordance with monitoring results

Nº	Data variable	Unit	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Total for year
1	Total project CO2 emissions from production of profiled steel billet	ths. tons CO2	44,832	84,672	94,148	84,217	46,282	40,478	40,933	110,108	144,772	97,297	134,840	164,013	1086,593
2	Total CO2 emissions in the baseline	ths. tons CO2	59,559	155,486	166,866	144,754	106,075	94,856	101,354	220,566	269,709	156,905	169,632	200,725	1846,487
3	CO2 emissions from leakages	ths. tons CO2	0,429	0,418	0,310	0,000	0,000	0,000	0,149	0,126	0,000	0,000	0,000	0,139	1,572
4	ERUs generated in 2010	tons CO2eq	14 299	70 396	72 408	60 537	59 792	54 377	60 273	110 332	124 937	59 608	34 792	36 573	758 323

Appendix 1

	Color legend for calculation tables
	carbon containing flow
	data input from MMK reports
	carbon mass
0,19	carbon conent
	specific CO2 emissions
	CO2 emissions, associated with production of profiled steel billet
	value fixed ex-ante
	value which requires a special note in the monitoring report (section C)

List of abbreviations

BFG	Blast-Furnace Gas
BFP	Blast-Furnace Plant
BMP	Blooming Mill Plant
BOFP	Basic Oxygen Furnace Plant
BPCP	By-Product Coke Plant
CCM	Continuous Casting Machine
CEST	Center for Energy Saving Technologies
CHPP	Combined Heat Power Plant
CL	Central Lab
COG	Coke Oven Gas
CPP	Central Power Plant
DBSU	Double-Bath Steelmaking Unit
EAF	Electric Arc Furnace
EAFP	Electric Arc-Furnace Plant
EF	Emission Factor
EIA	Environmental Impact Assessment
ERU	Emission Reduction Unit
GHG	Greenhouse Gas
IMP and LDW	Integrated Mining-and-Processing, Limestone and Dolomite Works
IPCC	Intergovernmental Panel on Climate Change
JI	Joint Implementation
KP	The Kyoto Protocol
LFA	Ladle-Furnace Aggregate
MEC	Magnitogorsk Energy Company
MMK	Magnitogorsk iron and steel works
MNR	Ministry of Natural Resources
MPC	Maximum Permissible Concentration
MPE	Maximum Permissible Emissions
OHFP	Open-Hearth Furnace Plant
SABPP	Steam-Air Blowing Power Plant
SP	Steam Plant
SRA	Steel Refining Aggregate
TEE	Turbine Expansion Engine
QMS	Quality Management System

Appendix 3

Response to the Further Action Request(s) in the Verification report issued for the previous monitoring period

In the Initial and First Verification report of Bureau Veritas No. Russia - ver /0048/2010 the verifier issued 6 Further Action Requests (FARs). Table 3.1. provides the response on these FARs in order to close them.

Table 3.1. Response to the FARs in the Initial and First Verification report of Bureau Veritas No. Russia - ver /0048/2010.

FAR 01. Based on the first experience of monitoring, OJSC "MMK" may wish to issue a separate Manual of the Monitoring Management System though the present managerial set up is observed by the verifier as appropriate enough.	Indeed the specialized internal procedure PD MMK 3-SSGO-01-2010 "Regulation on monitoring of GHG emissions reduction, created as a result of the realization of the project: "Implementation of arc- furnace steelmaking at Magnitogorsk Iron and Steel Works" was approved at OJSC "MMK" by the Order of the Executive Director of MMK Y.A. Bodyaev № ID-173 of 03.03.2010.
FAR 02. Based on the first experience of monitoring, OJSC "MMK" may wish to issue a formal order to formalize the status of a JI working group responsible for the JI Project Monitoring Management System, in particular to appoint a JI coordinator to ensure the alignment with the existed managerial set up.	According to internal procedure PD MMK 3-SSGO- 01-2010 (see above) the coordinator of JI project is a Department for relations with state authorities and markets protection. Additionally the responsible persons for reporting on monitoring data and other related issues regarding JI projects were appointed in the related production departments according to the Order of First Vice- president on strategic development and metallurgy R.S. Takhutdinov # RT-4 of 21.01.2010 "On results of the external independent expertise (determination)".
FAR 03. Please develop a procedure, which provides emergency concepts in case of unexpected problems with data gathering and/or data quality.	The following measures should provide a protection and mitigate the consequences of unexpected problems with data access and/or data quality at OJSC "MMK": 1. According to specialized corporate procedure for the monitoring organization for the Joint Implementation project PD MMK 3-SSGO-01-2010: - For ensuring of the secure storage and protection of electronic documents with data used for monitoring purposes the special folder is established on the server space of OJSC "MMK". Each responsible person from department that submit monitoring data has the own folder without editing rights from other persons. - For prevention of unintended erasure of correct version of electronic document the reserve coping is ensured.

	of MMK is accordance with PD MMK 3-SSGO-01- 2010 are printed out and signed in the departments following the existing reporting procedures within certified QMS. Therefore in case of issues with electronic format the data may be restored from the official printed copies or local server space/local website of each relevant department or the Corporate Information System of MMK (CIS).
FAR 04. Based on the first experience of monitoring, OJSC "MMK" may wish to issue a formal procedure for data archiving as partially defined in the MR.	See response to FAR 01.
FAR 05. Based on the first experience of monitoring, OJSC "MMK" may wish to issue a formal procedure for the calculation of emission reductions and the preparation of the monitoring report in particular respect to internal verification and validation of data and responsibilities assigned for that. The extended and comprehensive Responsibility Structure of the MR is observed and discussed on the site visit.	See response to FAR 01.
FAR 06. Based on the first experience of monitoring, OJSC "MMK" may wish to issue a formal procedure for the internal control procedures (Internal audits and management review), which allow the identification and solution of problems at an early stage of calculation of emission reductions and the preparation of the monitoring report.	The internal verification of the monitoring data in the initial reporting forms submitted to Department for relations with state authorities and markets protection by the relevant departments of MMK is performed within each department according to existing procedures. The internal audit of each production department is carried out by the group of internal audit at OJSC "MMK" as a part of certified QMS.
	The management review of the activity of Department for relations with state authorities and markets protection including issues related to JI project is performed in form of periodic report of the department on the MMK's Board meeting.