SIXTH MONITORING REPORT

PROJECT: ACHEMA UKL-7 plant N₂O abatement project

Prepared by:

VERTIS FINANCE

February 7, 2013

Monitoring periods

Line 1 Project campaign 4 FROM: TO: ERUs	22/03/2012 16/10/2012 158,786	Line 1 Project campaign 5 FROM: TO: ERUs	18/10	0/2012 2/2012 89	
Line 2* Project campaign 7 FROM: TO: ERUs	17/07/2012 31/12/2012 117,969				
Line 3 Project campaign 6 FROM: TO: ERUs	27/07/2012 31/12/2012 51,426				
Line 4* Project campaign 6 FROM: TO: ERUs	28/08/2012 31/12/2012 64,614				
Line 5 Project campaign 6 FROM: TO: ERUs	5 11/07/2012 31/12/2012 90,625				
Line 6 Project campaign 6 FROM: TO: ERUs	26/04/2012 22/10/2012 125,686	Line 6 Project campaign 7 FROM: TO: ERUs	12/12	2/2012 2/2012 4	
Line 7 Project campaign 6 FROM: TO: ERUs	08/05/2012 31/12/2012 136,442				
Line 8 Project campaign 6 FROM: TO: ERUs	5 17/05/2012 31/12/2012 72,018				
Sixth monitoring pe	riod start and end:			March 22, 2012 – I	December 31, 2012
Sixth monitoring p	period ERUs in total:			875,279	
Emission Reductior Emission Reductior Emission Reductior	ns 6 th monitoring period (ns 5 th monitoring period (ns (year 2012 total):	year 2012): year 2012):		875,279 662,958 1,538,237	t CO2 equivalents t CO2 equivalents t CO2 equivalents

* Seventh project campaigns on line 2 and sixth project campaign on Line 4 have started on the same calendar days as previous project campaigns on these lines were completed. There is no overlap between these project campaigns on respective lines, as last valid hourly data of previous project campaigns do not overlap with any first recent project campaigns data. Using same calendar day for end of the previous project campaigns and start of the recently verified project campaigns is true reflection of the reality at the plant and this way also calculation of emission reductions for purpose of this 6th monitoring report reflects this reality correctly.

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 1MONITORINGPERIOD:FROM:22/03/2012

TO: 16/10/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS	
	3.1	VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	-	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.		PROJECT EMISSIONS	8
	4.1	1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 1 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the fourth project campaign on Line 1.

The first project campaign on Line 1 started on 11/11/2008. Secondary catalyst was installed on 30/10/2008. Total quantity of emission reductions generated during the fourth project period from 22/03/2012 through 16/10/2012 on Line 1 is **158 786 ERUs**.

EMISSI	ON REDUCTION		
Baseline Emission Factor	EF_BL	9.63	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	1.36	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP BL	60 691	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	60 691	tHNO3
Nitric Acid Produced in the Project Campaign	NAP P	61 936	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	158 786	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		89.8%)

T 1 Emission reduction calculations

EMISSION REDUCT	ON PER Y	EAR	
Year	2011	2012	2013
Date from		22 Mar 2012	
Date to		16 Oct 2012	
Nitric Acid Production		61 936	
Emission Reduction		158 786	
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 1 during baseline measurement carried from 14/03/2008 through 21/10/2008 is 9.63 kgN₂O/tHNO₃.

Project emission factor during the fourth project campaign after installation of secondary catalysts on Line 1, which started on 22/03/2012 and went through 16/10/2012 with secondary catalyst installed and commissioned on 30/10/2008, is $1.36 \text{ kgN}_2\text{O/tHNO}_3$.

During the project campaign 61 936 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 1 emission reductions including information on baseline emission factor setting for the Line 1.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 1 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 1 has been carried out from 14/03/2008 through 21/10/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

 $BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$

where:

Variable	Definition
EF_{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 1 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 1 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N_2O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 Project Campaign Length

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

4.4 Leakage

No leakage calculation is required.

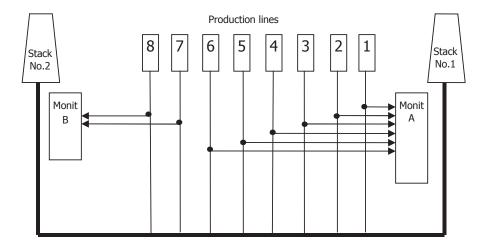
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N₂O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

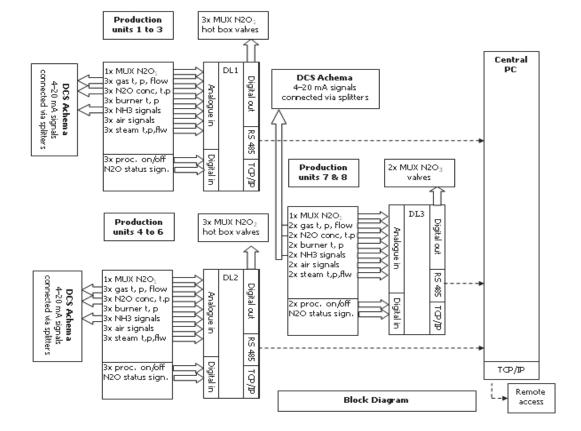
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

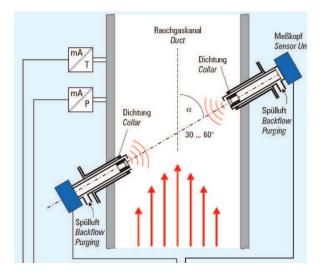
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

N₂O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

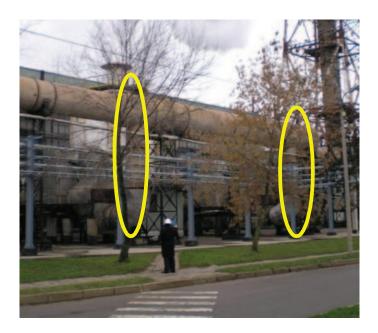
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

MONITORING REPORT

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

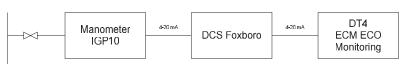
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

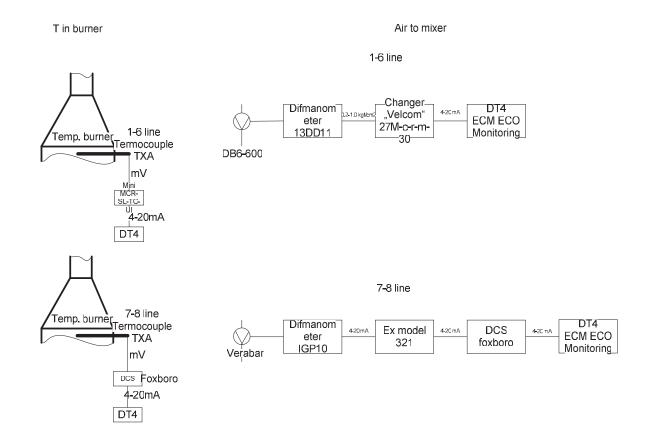
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 27/11/2007 and ending on 29/07/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

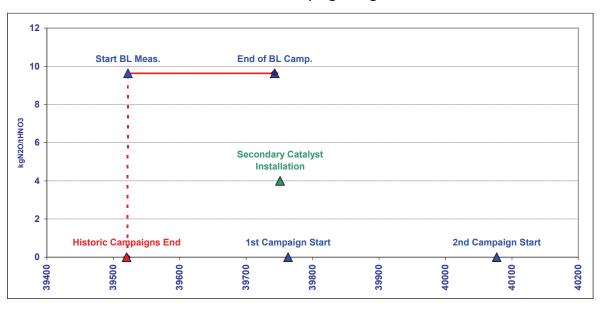
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 65 461 tHNO₃ and time duration was on average 261 days. Table contains also information on suppliers of primary catalysts for the line 1.

Line	ACHEMA UKL-1	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	61 581	29 Jul 2004	26 Apr 2005	271	227	Johnson Matthey	N/A *
	2 t HNO3	-	29 Apr 2005	24 Oct 2005	178	-	Heraeus	N/A *
	3 t HNO3	58 648	24 Oct 2005	20 Sep 2006	331	177	Johnson Matthey	N/A *
	4 t HNO3	65 266	21 Sep 2006	24 Jul 2007	306	213	Umicore	N/A *
	5 t HNO3	76 351	07 Aug 2007	13 Mar 2008	219	349	Johnson Matthey	N/A *
Average HNO3								
production	t HNO3	65 461			261	251	* Confidential but availa	able for the verification
Project Campaigns	BL t HNO3	60 691	14 Mar 2008	21 Oct 2008	221	275	Johnson Matthey	N/A *
	PL t HNO3	61 936	22 Mar 2012	16 Oct 2012	208	298	Johnson Matthey	N/A *

T 2 Historic campaigns

The project campaign production value of 61 936 tHNO3 was lower than historic nitric acid production set at level of 65 461 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 14/03/2008 and continued through 21/10/2008 when the 60 691 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-1	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2008 Mar 13	2008 Mar 14	2008 Oct 21	2008 Oct 21	2008 Oct 22
Baseline Factor kgN2O/tHNO3	-	-	9.63	9.63	9.63
Production tHNO3		-	60 691	60 691	-
Per Day Production tHNO3	250.8				
Baseline less Historic Production	(4 770.2)				
Baseline less Historic Days	(19.0)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 1 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 14/03/2008 through 21/10/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 620 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.670%, which is further modified by an uncertainty of 0.089% due to under-sampling. As a result we have arrived to the baseline emission factor of 9.63 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 1 during the project campaign. Project campaign started on 22/03/2012 and went through 16/10/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

 $PE_n = VSG * NCSG * 10-9 * OH (tN2O)$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.36 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

BASELINE EMI	E EMISSI	ON FACTOR									
Parameter	meter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Batio	Oxidation Temperature	Oxidation Pressure	AM Sin Operation	Nitric Acid Production NCSC
5	Code Unit	НО Ч	NAP t/h	NCSG mg N20/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	oT °C	OP kPa	h	NAP t/h
Elimination of extreme values											
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000		0 50
Raw Data Measured Range											
Count as % of Dataset		4 933 03%	4 999 04%	4 989 94%	4 921 03%	5 054 05%	5 028 0 <i>6%</i>	5275 00%	5 275 00%	4 483 85%	4 999
Minimum			-	0	80	1 246		0			
Maximum			15.28	2 401	82 164	6 281	17.17	902			15
standard Deviation Total			12.14 3.42 60 691	261	11 066	0 0 0 0 194	1.04	637 162			12 3 60 691
N2O Emissions (V3G 2 NC3G 2 OH) Emission Factor		9.35 9.35	t N2O kgN2O / tHNO3								
Permitted Range											
Minimum						4 500	0	880	0		
						000 1	0/11	016	000		
		0001		100 1	100						
count as % of Onerating Hours		4 926		4 02/	4 62/					4 483	
as // Operating / Pous Minimum				219	34%					0/16	
Maximum				2 401	227 671						
Mean				1 752	69 348						
Standard Deviation				318	3 984						
N2O Emissions (VSG * NCSG * OH) Emission Factor		599 9.32	t N2O kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval				120	64 500						
				2 375	77 158						
Count				4 353	4 610						
as % of Operating Hours				88% 1 320	93% 65 008						
Maximum				2 374	73 692						
Mean Standard Deviation				1 808 218	69 474 1 214						
N2O Emissions (VSG * NCSG * OH)		620	620 t N2O								
Emission Factor (EF_BL)		9.63	kgN2O / tHNO3								

VERTIS

MONITORING REPORT

5
5
Ü
fa
0
5
ő
3
Ľ
Ο
オ
ŏ
5
2
Ē
S
Η.

Farametric Durit Deverting Hours Ninic Addition (bit) Ninic Addition (bit) Contonitation (bit) Gas Volume (bit) Contonitation (bit) Contonits Contonitation (bit) Conton				ł				ľ		
Cone OH Nor MCR MCR <th></th> <th>Parameter</th> <th>Operating Hours</th> <th>Nitric Acid Production</th> <th>N2O Concentration</th> <th>Gas Volume Flow</th> <th>Ammonia Flow Rate</th> <th>Ammonia to Air Ratio</th> <th>Oxidation Temperature</th> <th>Oxidation Pressure</th>		Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
values 50.0 0.0		Code Unit		NAP t/h	NCSG mg N20/Nm3	VSG Nm3/h	AFR Nm3/h	AFR %	oT °C	оР кРа
00 00 00 00 00 00 00 00 000	Elimination of extreme values									
Inge 2860 480 27% 465 4 77% 88% 68% 70% 69% 65%	Lower limit Upper Limit			0 50.00	3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000
280 430 424 408 445 1 57% 89% 65% 108 445 1 15.14 15.14 68% 108 89% 89% 89% 7% 87% 87% 67% 67% 69% 103 445 15.14 68 1.26 308 7.305 616 10.817 5 NC56 * OH) 64 10.3 103 103 103 1040 104 0.02 NC56 * OH) 1.01 1.03 1.02 1.450 1.441 69 1.450 NC56 * OH) 1.03 1.03 1.03 1.03 1.414 69 214 7.457 Nrs 2.366 2.568 <t< td=""><td>Raw Data Measured Range</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Raw Data Measured Range									
07.9 0.02 0.02	Count		2 860	4	4 264 050/	4 308	4 993	4 455	4 991	4 823
 	as % or Dataset Minimum		o/ /C		00.70 151	00% 66 477	%,001	09.70 7	%001 0	%//6
12.67 326 140 123 NUSG ⁺ OH) 133 60 140 183 0.05 *NUSG ⁺ OH) 64 1/33 60/20 1400 183 0.05 nos interval 1/33 60/20 1/400 193 60/20 1/400 0.05 nos 103 60/20 1/1103 103 60/20 1/478 74 76 nos 103 60/20 1/1103 1/128 2.386 2.588 90% nos 101 1.289 2.386 2.88 2.93 2.05 01 1.128 1.128 1.128 1.128 01 1.128 1.128 1.128 01 1.186 1.18 1.17 11 1.286 1.18 1.17 12 1.17 1.18 1.17 13 0.09 1.36 1.36 14 0.99 1.36 1.36 15 1 1.18 1.17 16 1.36 1.36 1.36 17 1.18 1.1400 16 1.36 1.36 17 1.36 1.36 17 1.36 <t< td=""><td>Maximum</td><td></td><td></td><td>16.14</td><td>648</td><td>83 053</td><td>- 6 3 1 6</td><td>18.77</td><td>916</td><td>615</td></t<>	Maximum			16.14	648	83 053	- 6 3 1 6	18.77	916	615
II 103 • \nCGG * OH) 64 • \nCGG * OH) 103 Ince interval 111 013 103 103 111 111 014 2.366 <td< td=""><td>Mean Standard Deviation</td><td></td><td></td><td>12.67 3.26</td><td>309 86</td><td>72 134 1 450</td><td>5 016 1 843</td><td>10.94 0.62</td><td>789 280</td><td>554 52</td></td<>	Mean Standard Deviation			12.67 3.26	309 86	72 134 1 450	5 016 1 843	10.94 0.62	789 280	554 52
* NCSG * OH) 64 1 N2O noe interval noe interval noe interval noe interval no interval no interval no interval no no no no no no no n	Total			61936						
nce interval 141 141 478 141 141 142 141 151 141 151 141 151 141 151 141 151 141 151 141 151 141 151 141 151 141 151 141 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 1	N2O Emissions (VSG * NCSG * OH) Emission Factor		64 1.03							
141 141 141 141 141 141 141 133% 151 141 151 151 151 151 151 151 151 151 151 151 152 142 151 100 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 151 143 152 143 153 143 154 1.36 15 1.36 15 1.36 15 1.36 16 1.36 17 1.36 16 1.36 17 1.36 17 1.36 17 1.36 17 1.36 17 1.36 17 1.36 17 1.36	Data within the confidence interval									
141 141 10 0.99 kgN20 / tHN03 11 0.99 kgN20 / tHN03 11 0.99 kgN20 / tHN03 11 1.36 1.36 136 1.36 1.36 136 1.36 1.36	95% Confidence interval									
2386 83% 151 151 151 151 151 153 153 153 153 153	Lower bound Upper bound				141 478	09 291 74 976				
151 151 151 151 151 236 151 226 151 210 10 0.99 11.77 2.10 11.77 2.10 11.43 1.49 11.43 1.49 12.10 1.49 136 1.36 5 - 6 - 136 -					000 0					
151 151 10) 61 t N20 11) 61 t N20 120 0.99 kgN20 / tHN03 11 88.% 12 1.43 143 1.77 143 1.77 143 1.49 143 1.49 144 1.36 6 1.36 6 - 136 1.36 136 1.36	ouun as % of Operating Hours				83%					
1) 0.99 kgN20 / tHN03 61 t N20 61 t N20 8.98 kgN20 / tHN03 8.98 kgN20 / tHN03 8.98 kgN20 / tHN03 7 1.07 1.07 1.17 2.10 2.10	Minimum				151	9				
1) 61 N20 1) 61 N20 8.98 kgN20/tHN03 89.8% Actual Factors Moving Average Rule 1 2.10 2.70 2 1.43 1.77 3 0.94 1.49 4 0.99 1.36 5 - - 7 - - 1.36 kgN20/tHN03	Maximum				424	74 970 72 203				
(1) 61 89.8% Actual Factors Actual Factors 3 0.99 6 - 7 - 1.36	Standard Deviation				61	1 258				
(l) 0.99 89.8% Actual Factors 210 1.43 3 0.94 5	N2O Emissions (VSG * NCSG * OH)		61	t N2O						
Actual Factors 210 Actual Factors 210 2 0.143 3 0.944 6	Actual Project Emission Factor (EF_PActual) Abstement Ratio		0.99	_						
Actual Factors Actual Factors 2 10 143 3 0,99 5 - 6 - 7 - 1.36				-						
P) 1.36 kgN20 / tHN	Moving Average Emission Factor Correction				ule					
3 0.94 4 0.99 5 6 7 - 1.36 kgN20 / tHN		- 6								
4 0.99 5 - 6 - 7 - P) 1.36 kgN20 / tHN		ŝ								
P) 1.36		4 4								
P) 1.36		ושמ								
P) 1.36		-								
01.001	Project Emission Factor (EF P)		1.36							
	Abatement Ratio		85.8%							

© 2008, Vertis Finance

2

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N₂O abatement projectLINE:Line 1MONITORINGPERIOD:FROM:18/10/2012

TO: 31/12/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS	
	3.1	VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	-	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.		PROJECT EMISSIONS	8
	4.1	1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 1 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the fifth project campaign on Line 1.

The first project campaign on Line 1 started on 11/11/2008. Secondary catalyst was installed on 30/10/2008. Total quantity of emission reductions generated during the fifth project period from 18/10/2012 through 31/12/2012 on Line 1 is **48 489 ERUs**.

EMISSION REDUCTION				
Baseline Emission Factor	EF_BL	8.39	kgN2O/tHNO3	
Project Campaign Emission Factor	EF_P	1.34	kgN2O/tHNO3	
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 691	tHNO3	
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	22 117	tHNO3	
Nitric Acid Produced in the Project Campaign	NAP_P	22 187	tHNO3	
GWP	GWP	310	tCO2e/tN2O	
Emission Reduction	ER	48 489	tCOe	
ER=(EF_BL-EF_P)*NAP_P*GWP/1000				
Abatement Ratio		84.9%	1	

T 1 Emission reduction calculations

EMISSION REDUCTION PER YEAR				
Year	2011	2012	2013	
Date from		18 Oct 2012		
Date to		31 Dec 2012		
Nitric Acid Production		22 187		
Emission Reduction	48 489			
ER_YR = ER * NAP_P_YR / NAP_P				

Baseline emission factor established for the Line 1 during baseline measurement carried from 14/03/2008 through 21/10/2008 is 8.39 kgN₂O/tHNO₃.

Project emission factor during the fifth project campaign after installation of secondary catalysts on Line 1, which started on 18/10/2012 and went through 31/12/2012 with secondary catalyst installed and commissioned on 30/10/2008, is $1.34 \text{ kgN}_2\text{O/tHNO}_3$.

During the project campaign 22 187 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 1 emission reductions including information on baseline emission factor setting for the Line 1.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 1 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 1 has been carried out from 14/03/2008 through 21/10/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

 $BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$

where:

Variable	Definition
EF_{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 1 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 1 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N_2O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 Project Campaign Length

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was lower than the baseline, the NCSG values of the baseline beyond the project NAP were eliminated at 22 117 tHNO3.

4.4 Leakage

No leakage calculation is required.

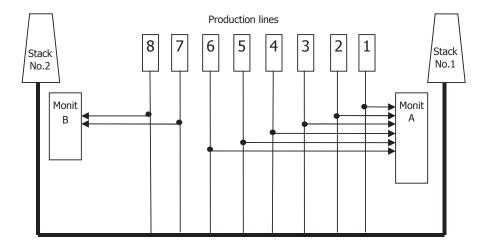
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N₂O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

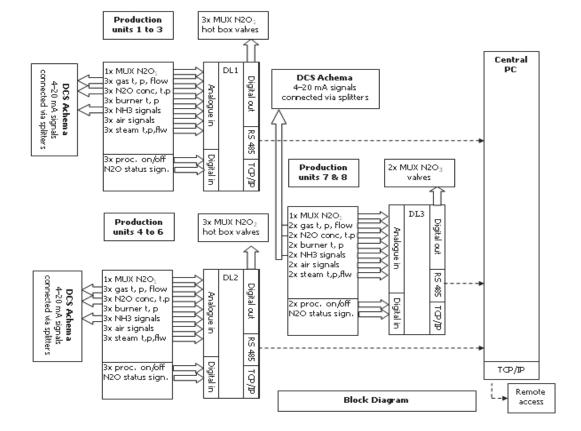
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

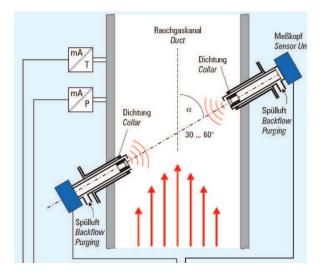
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

N₂O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

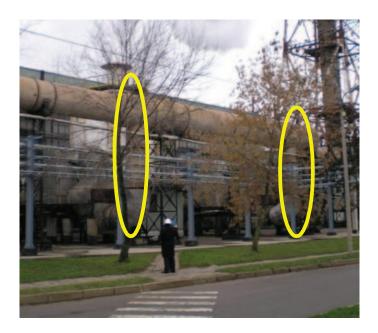
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

MONITORING REPORT

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

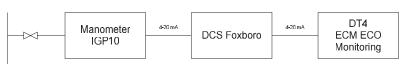
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

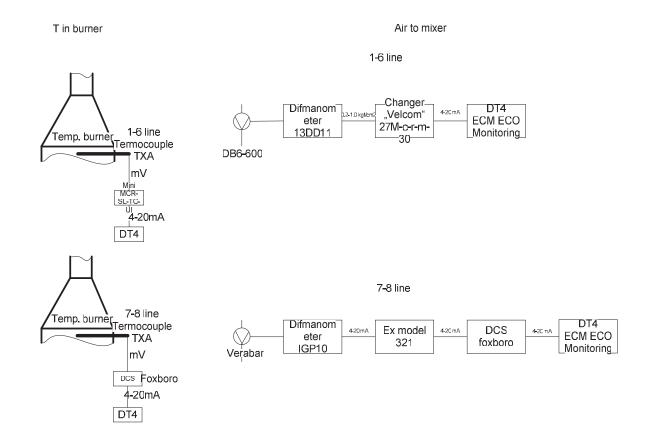
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 27/11/2007 and ending on 29/07/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

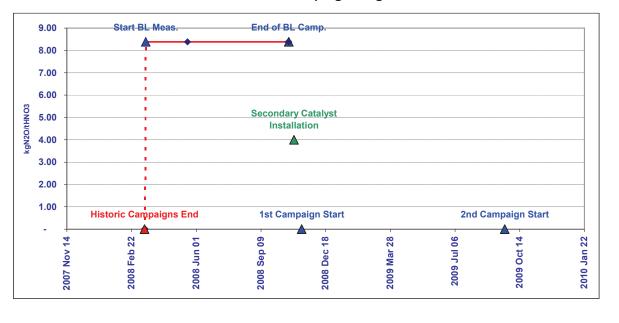
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 65 461 tHNO₃ and time duration was on average 261 days. Table contains also information on suppliers of primary catalysts for the line 1.

Line	ACHEMA UKL-1	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	61 581	29 Jul 2004	26 Apr 2005	271	227	Johnson Matthey	N/A *
	2 t HNO3	-	29 Apr 2005	24 Oct 2005	178	-	Heraeus	N/A *
	3 t HNO3	58 648	24 Oct 2005	20 Sep 2006	331	177	Johnson Matthey	N/A *
	4 t HNO3	65 266	21 Sep 2006	24 Jul 2007	306	213	Umicore	N/A *
	5 t HNO3	76 351	07 Aug 2007	13 Mar 2008	219	349	Johnson Matthey	N/A *
Average HNO3								
production	t HNO3	65 461			261	251	* Confidential but availa	ble for the verification
Project Campaigns	BL t HNO3	60 691	14 Mar 2008	21 Oct 2008	221	275	Johnson Matthey	N/A *
	PL t HNO3	22 187	18 Oct 2012	31 Dec 2012	75	296	Johnson Matthey	N/A *

T 2 Historic campaigns

The project campaign production value of 22 187 tHNO3 was lower than historic nitric acid production set at level of 65 461 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 14/03/2008 and continued through 21/10/2008 when the 60 691 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

lar 13	2008 Mar 14			
	2000 Mai 14	2008 May 18	2008 Oct 21	2008 Oct 22
-	-	8.39	8.39	8.39
	-	22 117	60 691	-
250.8				
(4 770.2)				
(19.0)				
	(4 770.2)	(4 770.2)	- 22 117 250.8 (4 770.2)	- 22 117 60 691 250.8 (4 770.2)

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 1 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 14/03/2008 through 21/10/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 540 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.670%, which is further modified by an uncertainty of 0.073% due to under-sampling. As a result we have arrived to the baseline emission factor of 8.39 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 1 during the project campaign. Project campaign started on 18/10/2012 and went through 31/12/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

 $PE_n = VSG * NCSG * 10-9 * OH (tN2O)$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.34 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

BASELINE EMI	ISSION FACTOR									
Parameter	er Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Batio	Oxidation Temperature	Oxidation Pressure	AM S in Operation	Nitric Acid Production NCSG
Code Unit	it OH	NAP t/h	NCSG mg N20/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	oT °C	OP kPa	ч	NAP t/h
Elimination of extreme values										
Lower limit Upper Limit		0 50.00	3 000	0 120 000	0 10 000	0 - 20.00	1 200	0 1 000		0 50
Raw Data Measured Range			·							
Count court	4 933	3 4 999	1 517	4 921		5 028	5275	5 275	4 483	1 554
as 76 01 Dataset Minimum	02		1 127	808 80			%66 0		0000	
Maximum		15.28	1 836	82 164			902			15
Mean Standard Deviation Total		12.14 3.42 60 691	1 570 108	67 547 11 066	5 825 194	10.28 1.04	857 162			14 1 22 117
N2O Emissions (VSG * NCSG * OH) Emission Factor	523 8.13	3 t N2O 3 kgN2O / tHNO3								
Permitted Range										
Minimum					4 500	0	880	0		
Maximum					7 500	11.70	910	800		
Data within the permitted range										
Count	4 926	9	1 529	4 627					4 483	
as % of Operating Hours	100	%	31%	94%					91%	
Marinium Maximum			0/0 1 836	3 822 227 671						
Mean			1 544	69 348						
Standard Deviation			163	3 984						
N2O Emissions (VSG * NCSG * OH) Emission Factor	528 8.21	8 t N2O 1 kgN2O / tHNO3								
Data within the confidence interval										
95% Confidence interval										
Lower bound Upper bound			1 224 1 864	61 538 77 158						
Count			1 457	4 610						
as % of Operating Hours			30%	93%						
Minimum Maximum			1 320 1 836	65 098 73 692						
Mean Standard Deviation			1 575 91	69 474 1 214						
N2O Emissions (VSG * NCSG * OH) Emission Factor (EF_BL)	54 8.3	540 t N 20 8.39 kgN20 / tHNO3								

VERTIS

MONITORING REPORT

<u> </u>
0
÷
2
<u>.</u>
Ξ
5
0
10
2
5
•
*
Ň
. <u>۳</u>
0
<u> </u>
Ω
S
~
⊢
-

	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Batio	Oxidation Temperature	Oxidation Pressure
	Code Unit	HO H	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	oT °C	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000
Raw Data Measured Range									
Count		1 239	1 695	1 494	1 518	1 800	1 533	1 797	1 738
as % of Dataset		99%		83%	84% 50.011	%001	~ ~ % CR	%00L	
Maximum			15.23	212	50 633	- 6 040	, 18.63	910	0 629
Mean			13.09	312	73 592	4 915	10.38	766	565
Standard Deviation Total			3.64 22 187	50	3 331	1 651	0.39	297	81
N2O Emissions (VSG * NCSG * OH) Emission Factor		28 1.28	t N20 kgN20 / tHN03						
Data within the confidence interval									
95% Confidence interval									
Lower bound				213	67 064				
Upper bound				411	80 120				
Count				1 106	-				
as % of Operating Hours				89%					
Mavimum				240					
Mean				305	74 236				
Standard Deviation				38					
N2O Emissions (VSG * NCSG * OH)		28	t N2O						
Actual Project Emission Factor (EF_PActual) Abatement Ratio		1.26 84.9%	kgN20 / tHNO3						
Moving Average Emission Factor Correction		Actual Factors	Moving Average Rule	ule					
	F	2.10	2.10	2					
	2	1.43							
	ю •	0.94	1.49						
	4 u	0.99							
	9								
	7								
Ducioné Eminaion Ecotor / EE DI		1 2 4	4 34 b=N20 / +HNO2						
		1.34							
		2011 0 2							

© 2008, Vertis Finance

2

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 2MONITORINGPERIOD:FROM:17/07/2012

TO: 31/12/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS	-
	3.1	VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	-	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.		PROJECT EMISSIONS	8
	4.1	1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 2 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the seventh project campaign on Line 2.

The first project campaign on Line 2 started on 30/05/2008. Secondary catalyst was installed on 07/11/2008. Total quantity of emission reductions generated during the seventh project period from 17/07/2012 through 31/12/2012 on Line 2 is **117 969 ERUs**.

EMISSI	ON REDUCTION		
Baseline Emission Factor	EF_BL	9.34	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	1.67	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 767	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	49 606	tHNO3
Nitric Acid Produced in the Project Campaign	NAP_P	49 615	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	117 969	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		85.0%)

T 1 Emission reduction calculations

EMISSION REDUCT	ION PER YE	EAR	
Year	2011	2012	2013
Date From		17 Jul 2012	
Date To		31 Dec 2012	
Nitric Acid Production		49 615	
Emission Reduction		117 969	
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 2 during baseline measurement carried from 09/11/2007 through 20/05/2008 is $9.34 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Project emission factor during the seventh project campaign after installation of secondary catalysts on Line 2, which started on 17/07/2012 and went through 31/12/2012 with secondary catalyst installed and commissioned on 07/11/2008, is $1.67 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 49 615 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 2 emission reductions including information on baseline emission factor setting for the Line 2.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 2 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 2 has been carried out from 09/11/2007 through 20/05/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 2 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 2 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N_2O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 Project Campaign Length

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was lower than the baseline, the NCSG values of the baseline beyond the project NAP were eliminated at 49 606 tHNO3.

4.4 Leakage

No leakage calculation is required.

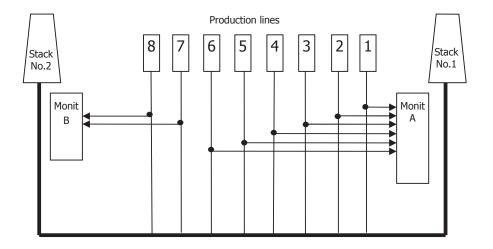
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $\text{EF}_{ma,n}$ and EF_n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

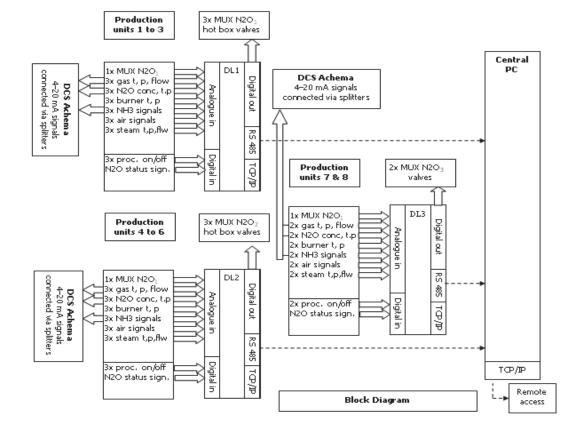
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

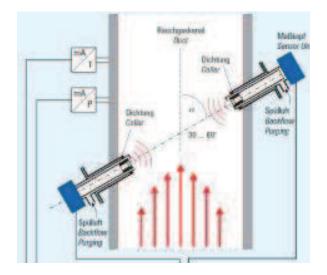
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

N₂O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

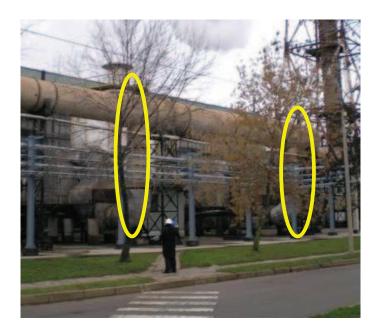
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

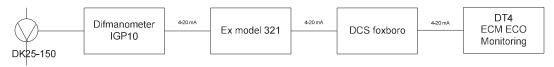
As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

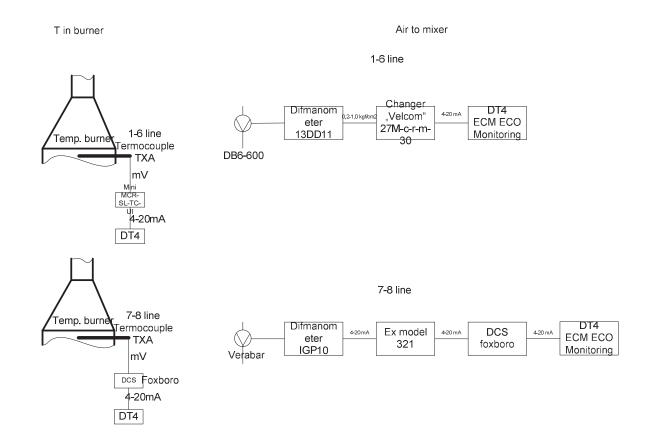
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

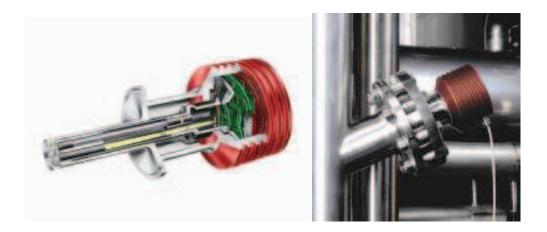
All these parameters are measured by the plant monitoring system as presented on diagrams below:


P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line


Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 08/11/2007 and ending on 29/07/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 62 710 tHNO₃ and time duration was on average 239 days. Table contains also information on suppliers of primary catalysts for the line 2.

Line	ACHEMA UKL-2	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	63 318	07 Jun 2004	26 Jan 2005	233	272	Heraeus	N/A *
	2 t HNO3	65 490	27 Jan 2005	21 Sep 2005	237	276	Umicore	N/A *
	3 t HNO3	51 101	22 Sep 2005	10 Apr 2006	200	256	Heraeus	N/A *
	4 t HNO3	63 008	11 Apr 2006	24 Jan 2007	288	219	Heraeus	N/A *
	5 t HNO3	70 635	14 Mar 2007	08 Nov 2007	239	296	Johnson Matthey	N/A *
Average HNO3								
production	t HNO3	62 710			239	262	* Confidential but availa	able for the verification
Project Campaigns	BL t HNO3	60 767	09 Nov 2007	20 May 2008	193	315	Johnson Matthey	N/A *
	PL t HNO3	49 615	17 Jul 2012	31 Dec 2012	167	296	Johnson Matthey	N/A *

T 2 Historic campaigns

The project campaign production value of 49 615 tHNO3 was lower than historic nitric acid production set at level of 62 710 tHNO3.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 09/11/2007 and continued through 20/05/2008 when the 60 767 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-2	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Nov 08	2007 Nov 09	2008 Apr 16	2008 May 20	2008 May 21
Baseline Factor kgN2O/tHNO3	-	-	9.34	9.34	9.34
Production tHNO3		-	49 606	60 767	-
Per Day Production tHNO3	261.9				
Baseline less Historic Production	(1 943.4)				
Baseline less Historic Days	(7.4)				

T 3 Baseline campaign length

C 1 Baseline campaign length

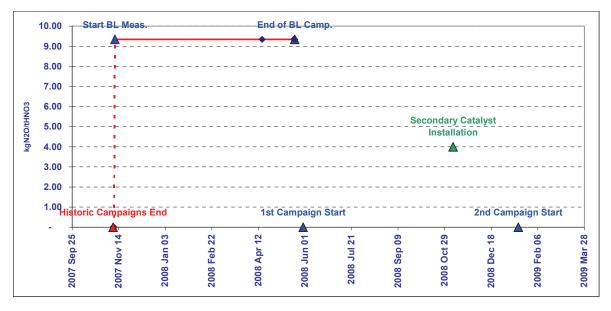


Table T 4 illustrates the calculation of the baseline emission factor on Line 2 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 09/11/2007 through 20/05/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 607 tN_2O .

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 6.460%, which is further modified by an uncertainty of 0.100% due to under-sampling. As a result we have arrived to the baseline emission factor of 9.34 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 2 during the project campaign. Project campaign started on 17/07/2012 and went through 31/12/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

 $PE_n = VSG * NCSG * 10-9 * OH (tN2O)$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.67 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

BASELINE EM		SSION FACTOR									
Parameter	<u> </u>	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxidation Pressure	AM S in Operation	Nitric Acid Production
ςΩ	Code Unit	HO 4	NAP t/h	NCSG mg N20/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	oT °C	ОР КРа	h	NAP t/h
Elimination of extreme values											
Lower limit Upper Limit			0 50.00	3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000		0 50
Raw Data Measured Range											
Count as % of Dataset		4 254 92%	4 633 100%	3 583 - 77%	4 216 91%	4 296 93%	4 277 92%	4 606	4	3 828 83%	3 817 82%
Minimum				0	140	2 069		42			
Maximum Mean			15.73 13.12	2 356 1 538	106 649 83 679	6 243 5 815	18.13 9.78	1 1 0 0 8 4 3	679 604		16
Standard Deviation Total			3.81 60 767	339	18 036	263	1.67	207			4 49 606
N2O Emissions (VSG * NCSG * OH) Emission Factor		547 843	t N2O kaN2O / tHNO3								
Permitted Rance											
						4 500 7 500	0	880	0 008		
Data within the permitted range								5	0		
Count		3 710		2 913	3 7 10					3 828	
as % of Operating Hours Minimum		81%		68% 465	87% 10 197					806	
Maximum				2 356 1 556	105 388						
mean Standard Deviation				292	14 825						
N2O Emissions (VSG * NCSG * OH) Emission Factor		567 8.72	t N2O kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval Lower bound Upper bound				985 2 128	56 534 114 648						
Count as % of Oreratina Hours				2 673 63%	3 604 85%						
Minimum Maximum				2 106	77 416 105 388						
Mean Standard Deviation				1 625 174	87 784 7 591						
N2O Emissions (VSG * NCSG * OH) Emission Factor (EF_BL)		607 9.34	607 t N2O 9.34 kgN2O / tHNO3								

 \triangleright

MONITORING REPORT

factor
on
ISS
em
ect
roj
5
Η.

	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	но h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	oT °C	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000
Raw Data Measured Range									
Count cont		3 018 7 Eo/	3 822 06 eV	2 961 74%	3 012 76%	3 154 700/	3 040 76%	4 017	3 437 96°2
as % or baraset Minimum		0/C /	9/06 70 7	109	62 278	422	40/	(21)	
Maximum			16.61	961	105 266	6 203	19.49	1 100	702
Mean Chanding Doublettion			12.98	335	70 536	5 7 7 3 5 9 7	10.21	696 262	
standard Deviation Total			3.73 49 615	104	- 00 -	/00	0.4 -	700	
N2O Emissions (VSG * NCSG * OH) Emission Factor		71 1.44	t N2O kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound Upper bound				13 657	66 888 74 185				
Count as % of Operating Hours				2 8/6 95%	2 913 97%				
Minimum				109	66 891				
Maximum				656	74 180				
Mean Standard Deviation				320 154	1 482				
N2O Emissions (VSG * NCSG * OH)		69	t N20						
Actual Project Emission Factor (EF_PActual) Abatement Ratio		1.40	kgN20 / tHNO3						
		2000							
Moving Average Emission Factor Correction	•		Moving Average Rule	ule					
	- 0	1.84	1.84						
	ŝ	1.99	1.99						
	4	1.67	1.83						
	n u	1.47	1.75						
	• ~	1.34	1.67						
Project Emission Factor (EF_P)		1.67	1.67 kgN20 / tHNO3						
		101 00							

© 2008, Vertis Finance

2

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 3MONITORINGPERIOD:FROM:27/07/2012

TO: 31/12/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS	
	3.1	VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	-	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.		PROJECT EMISSIONS	8
	4.1	1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 3 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the sixth project campaign on Line 3.

The first campaign on Line 3 started on 27/08/2008. Secondary catalyst was installed on 04/07/2008. Total quantity of emission reductions generated during the sixth project period from 27/07/2012 through 31/12/2012 on Line 3 is **51 426 ERUs**.

T 1 Emission reduction calculations	
EMISSION REDUCTION	

EMISSI	ON REDUCTION		
Baseline Emission Factor	EF_BL	5.45	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	2.23	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	59 042	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	51 474	tHNO3
Nitric Acid Produced in the Project Campaign	NAP_P	51 519	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	51 426	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		84.2%	

EMISSION RE	EDUCTION PER YE	AR	
Year	2010	2011	2012
Date From			27 Jul 2012
Date To			31 Dec 2012
Nitric Acid Production			51 519
Emission Reduction			51 426
ER_YR = ER * NAP_P_YR / NAP_P)		

Baseline emission factor established for the Line 3 during baseline measurement carried using overlapping approach from 01/02/2008 to 04/07/2008 and from 01/09/2007 through 03/11/2007 is 5.45 kgN₂O/tHNO₃.

Project emission factor during sixth project campaign after installation of secondary catalysts on Line 3, which started on 27/07/2012 and went through 31/12/2012 with secondary catalyst installed and commissioned on 04/07/2008, is $2.23 \text{ kgN}_2\text{O/tHNO}_3$.

During the project campaign 51 519 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 3 emission reductions including information on baseline emission factor setting for the Line 3.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 3 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 3 has been carried out using overlapping approach from 01/02/2008 to 04/07/2008 and from 01/09/2007 through 03/11/2007.

 N_2O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

 $BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$

where:

Variable	Definition
EF_{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 3 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 3 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

 $PEn = VSG * NCSG * 10^{-9} * OH (tN_2O)$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N_2O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

Because this campaign was sixth project campaign on Line 3 there has been no minimum average emission factor established yet for this campaign. This factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was lower than the baseline, the NCSG values of the baseline beyond the project NAP were eliminated at 51 474 tHNO3.

4.4 Leakage

No leakage calculation is required.

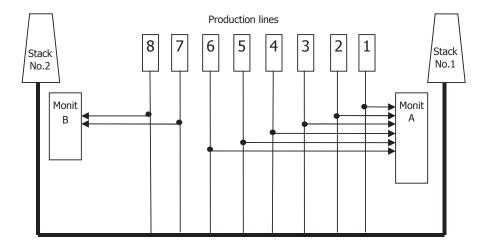
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF _{ma,n} and EF _n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N₂O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

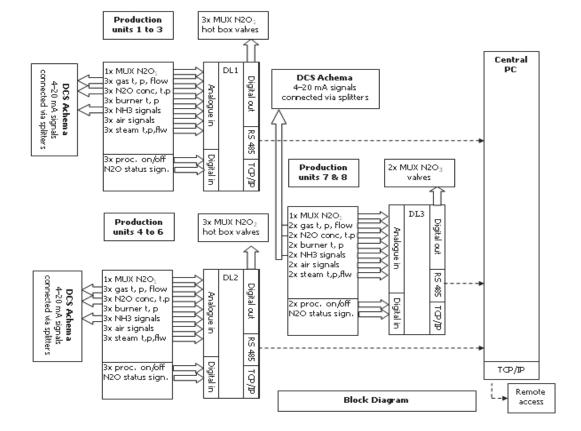
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

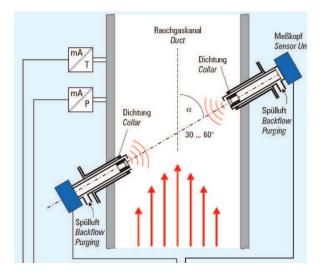
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

N₂O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

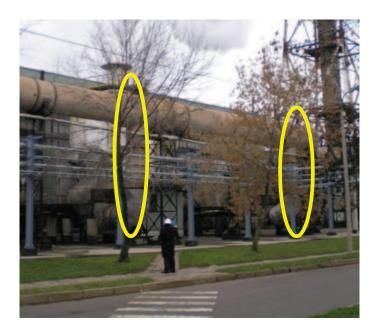
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF=Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

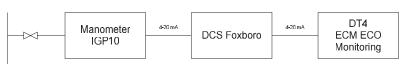
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

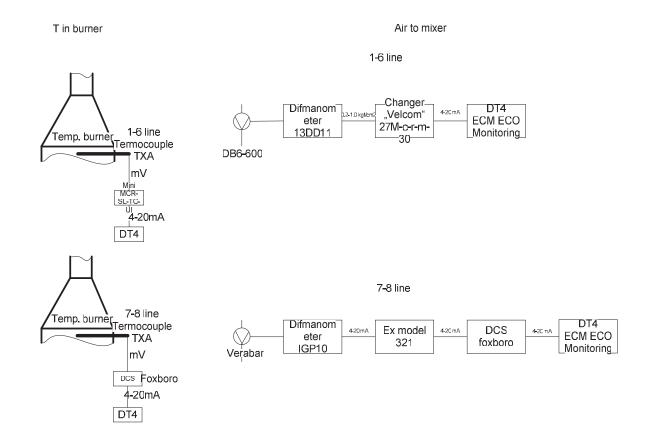
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 09/11/2007 and ending on 30/07/2008 project uses HNO3 concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 59 680 tHNO₃ and time duration was on average 316 days. Table contains also information on suppliers of primary catalysts for the line 3. As shown in the table, it is usual practice in Achema to use primary catalysts from various suppliers.

-		
12	Historic	campaigns
	111310110	oumpuigno

Line	ACHEMA UKL-3	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	64 017	05 Feb 2004	09 Oct 2005	612	105	Heraeus	N/A *
	2 t HNO3	63 115	10 Oct 2005	28 Jun 2006	261	242	Heraeus	N/A *
	3 t HNO3	59 912	01 Jul 2005	24 Jan 2006	207	289	Heraeus	N/A *
	4 t HNO3	56 702	25 Jan 2006	23 Nov 2006	302	188	Heraeus	N/A *
	5 t HNO3	54 654	24 Dec 2006	09 Jul 2007	197	277	Heraeus	N/A *
Average HNO3								
production	t HNO3	59 680			316	189	* Confidential but availa	able for the verification
Project Campaigns	BL t HNO3	59 042	01 Sep 2007	04 Jul 2008	308	192	Heraeus	N/A *
	PL t HNO3	51 519	27 Jul 2012	31 Dec 2012	158	326	Heraeus	N/A *

The project campaign production value of 51 519 tHNO3 was lower than historic nitric acid production set at level of 59 680 tHNO3.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started using overlapping approach from 01/02/2008 to 04/07/2008 then from 01/09/2007 through 03/11/2007 when the 59 042 tHNO₃ nitric acid production was reached. The baseline measurement for N2O concentration (NCSG) was carried out until the production of 51 474 tHNO₃ was reached.

We have two campaigns available that we can use for the baseline. AMS was installed in the middle of the first campaign, whereas the secondary catalyst was installed in the middle of the consecutive second one. We use these two campaigns to construct the baseline campaign using the overlapping approach as set out by the PDD. To get a clear start, that is, the baseline series has to start with a primary catalyst change, we use the beginning of the second campaign as the basis, until the secondary catalyst installation is reached. If this baseline turns out to be shorter than the project line, we use data available from the first campaign from the AMS installation to overlap the two series, and get a comparable baseline. Since we use the earliest available data from the first campaign, where emissions are generally lower, this is a conservative approach and fully in line with the PDD.

ACHEMA UKL-3	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jul 09	2007 Sep 01	2008 Jul 04	2008 Jul 04	2008 Jul 05
Baseline Factor kgN2O/tHNO3	-		5.45	5.45	5.45
Production tHNO3		-	51 474	59 042	-
Per Day Production tHNO3	189.0				
Baseline less Historic Production	(637.7)				
Baseline less Historic Days	(3.4)				

T 3 Baseline campaign length

C 1 Baseline campaign length

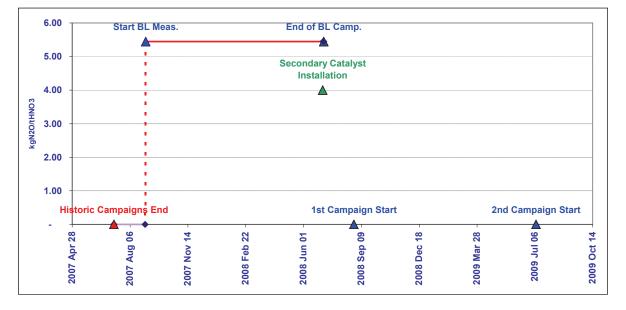


Table T 4 illustrates the calculation of the baseline emission factor on line 3 using the method as defined in the CDM methodology AM0034 and in the PDD.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 341 tN_2O .

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.630%, which was further modified by an uncertainty of 0.102% due to under-sampling. As a result we have arrived to the baseline emission factor of 5.45 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 3 during the project campaign. Project campaign started on 27/07/2012 and went through 31/12/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.23 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

BAS	BASELINE EMISS	SION FACTOR									
		Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxid ation Pressure	AM S in Operation	Nitric Acid Production
	Code Unit	но Ч	NAP t/h	NCSG mg N20/Nm3	VSG Nm3/h	AFR Nm3/h	като AIFR %	°c	оР кРа	ء	NCSG NAP th
E limination of extreme values											
Lower limit Upper Limit			0 50.00	3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000		0 50
Raw Data Measured Range											
Count		4 524	5 074	4 134	4 623	5 148	4 843	5 235	5 232	4 155	4 535
as % of Dataset		86%	97%	29%	88%	888°	92%	100%	100%	/6/	86%
Minimum Maximum			- 16.63	0 1 864	90 517	6 221	0 19.99	906	0 626		- 17
Mean Standard Deviation			11.64 5.03	1 097 307	67 849 11 542	4 974 1 802	10.52 1.62	794 258	545 118		12
1 0131			240 BC								14/4
N2O Emissions (VSG * NCSG * OH) Emission Factor		337 5.38	t N2O kgN2O / tHNO3								
Permitted Range											
Minim um Maximum						4 500 7 500	0 11 70	880 910	0 008		
Data within the new itted range									0		
		4 087		0 860	080 0					A 155	
as % of Orerating Hours		%06 6		5 000 63%	200 z					92%	
Minimum				381							
Maximum				1 864	77 232						
Mean Standard Deviation				1113	64 988 14 287						
Statigal d Deviation				101	14 20/						
N2O Emissions (VSG * NCSG * OH) Emission Factor		327 5.23	t N2O kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound Upper bound				818 1 408	36 965 92 991						
Count				3 164	3 816						
as % of Operating Hours				20%	84%						
Minimum				822	48 852						
Maximum Mean				1 408	68 019						
Standard Deviation				131	2 721						
N2O Emissions (VSG * NCSG * OH) Emission Eactor (FE RI)		341 5.45	341 ± N2O 5.45 ± 42N2O / ± HNO3								
EIIIISSIUII LANNI (FL_DL)		210									

T 4 Baseline emission factor

T 5 Project emission factor

© 2008, Vertis Finance

MONITORING REPORT

	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	ОН h	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	от °С	0P kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000
Raw Data Measured Range									
Count as % of Dataset		3 505 92%	3 784 100%	3 461 91%	3 490 92%	3 788 100%	3 722 98%	3 789 100%	3 788 100%
Minimum			0.83	116	56	155	-	85	-
Maximum			15.61 13 61	640		6 397 5 505	19.81	886	627 660
mean Standard Deviation Total			13.01 3.05 51 519	34	2 314	1 443	1.76	193	000 23
N2O Emissions (VSG * NCSG * OH) Emission Factor		44 0 86	t N2O kaN2O /HHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound Upper bound				133 264	59 368 68 440				
Count				3 298	3 192				
as % of Operating Hours Minimum				94%	91% 50 360				
Maximum				264	03 382 68 382				
Mean Standard Deviation				196 29	64 345 1 655				
N2O Emissions / VSC * NCSC * OUV		14	Ocia +						
Actual Project Emission Factor (EF_PActual)		44 0.86	kgN20 / tHNO3						
Abatement Ratio		84.2%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average Rule	tule					
	- 0	1.92 3.01	1.92 3.01						
	ι m	3.57	3.57						
	4 -	2.53	2.76						
	n n	1.52	2.51						
	~	5 '	2						
Project Emission Factor (EF_P)		2.23	kgN20 / tHN03						
		102							

ო

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 4MONITORINGPERIOD:FROM:28/08/2012

TO: 31/12/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS	-
	3.1	VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	-	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.		PROJECT EMISSIONS	8
	4.1	1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 4 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the sixth project campaign on Line 4.

The first project campaign on Line 4 started on 01/08/2008. Secondary catalyst was installed on 06/10/2008. Total quantity of emission reductions generated during the sixth project period from 28/08/2012 through 31/12/2012 on Line 4 is **64 614 ERUs**.

EMISSI	ON REDUCTION		
Baseline Emission Factor	EF_BL	7.18	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	1.68	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	58 683	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	37 497	tHNO3
Nitric Acid Produced in the Project Campaign	NAP_P	37 897	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	64 614	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		91.2%	1

T 1 Emission reduction calculations	n calculations
-------------------------------------	----------------

EMISSION REDUCTION	N PER YEAR	
Year 2011	2012	2013
Date From	28 Aug 2012	
Date To	31 Dec 2012	
ProjectLine Row From	65	
ProjectLine Row To	3,076	
Nitric Acid Production	37,897	
Emission Reduction	64,614	
ER_YR = ER * NAP_P_YR / NAP_P		

Baseline emission factor established for the Line 4 during baseline measurement carried from 28/12/2007 through 31/07/2008 is 7.18 kgN₂O/tHNO₃.

Project emission factor during the sixth project campaign after installation of secondary catalysts on Line 4, which started on 28/08/2012 and went through 31/12/2012 with secondary catalyst installed and commissioned on 06/10/2008, is $1.68 \text{ kgN}_2\text{O/tHNO}_3$.

During the project campaign 37 897 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 4 emission reductions including information on baseline emission factor setting for the Line 4.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 4 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 4 has been carried out from 28/12/2007 through 31/07/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 4 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 4 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N_2O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 Project Campaign Length

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was lower than the baseline, the NCSG values of the baseline beyond the project NAP were eliminated at 37 497 tHNO3.

4.4 Leakage

No leakage calculation is required.

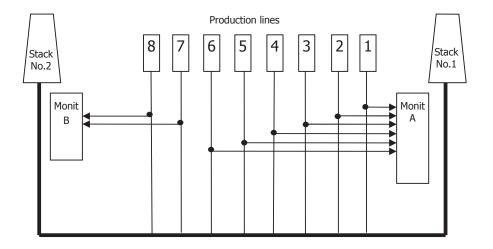
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF _{ma,n} and EF _n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

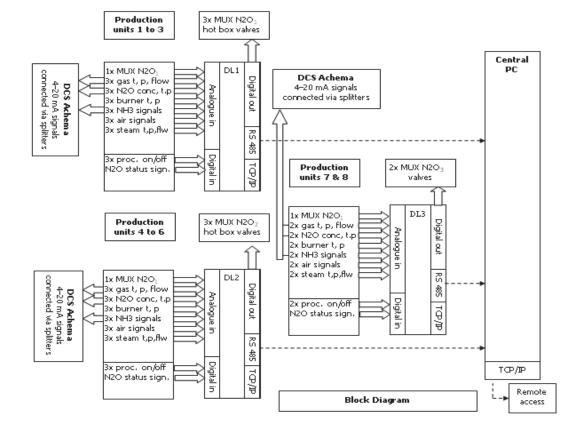
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

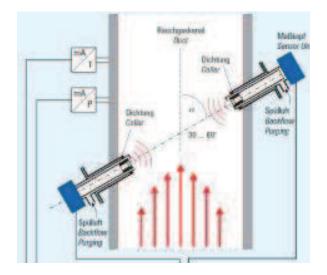
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

N₂O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

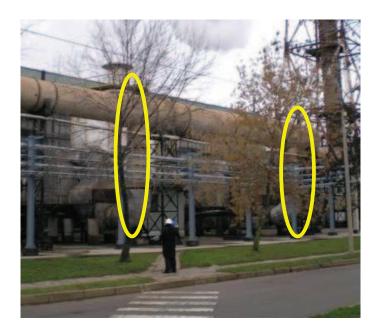
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

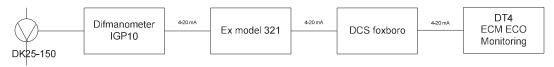
As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

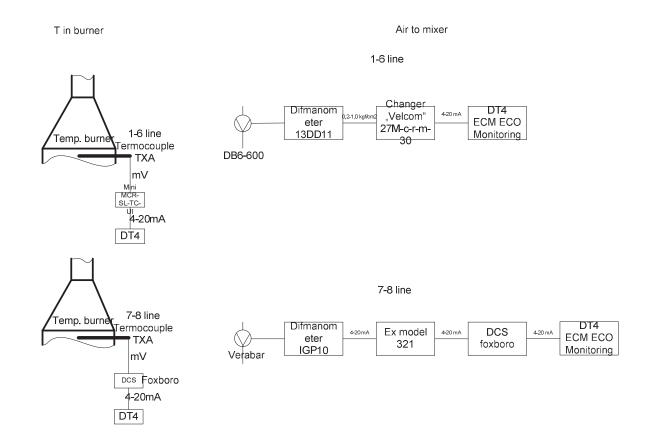
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

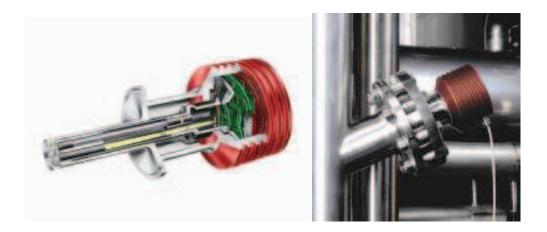
All these parameters are measured by the plant monitoring system as presented on diagrams below:


P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line


Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 31/10/2007 and ending on 10/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

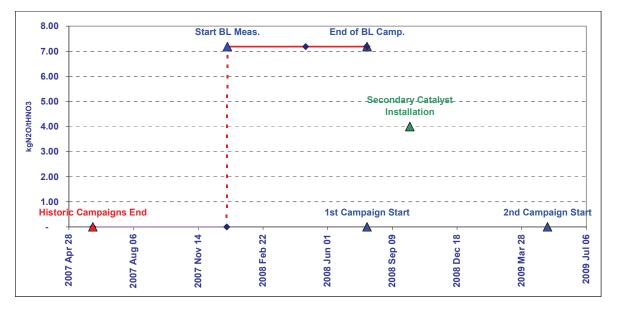
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 65 823 tHNO₃ and time duration was on average 275 days. Table contains also information on suppliers of primary catalysts for the line 4.

Line	ACHEMA UKL-4	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	69 782	18 Apr 2003	11 Dec 2003	237	294	Johnson Matthey	N/A *
	2 t HNO3	65 420	11 Dec 2003	06 Dec 2004	361	181	Johnson Matthey	N/A *
	3 t HNO3	66 129	07 Dec 2004	08 Nov 2005	336	197	Umicore	N/A *
	4 t HNO3	66 826	22 Mar 2006	23 Nov 2006	246	272	Johnson Matthey	N/A *
	5 t HNO3	60 959	23 Nov 2006	04 Jun 2007	193	316	Johnson Matthey	N/A *
Average HNO3								
production	t HNO3	65 823			275	240	* Confidential but availa	able for the verification
Project Campaigns	BL t HNO3	58 683	28 Dec 2007	31 Jul 2008	216	272	Johnson Matthey	N/A *
	PL t HNO3	37 897	28 Aug 2012	31 Dec 2012	125	302	Johnson Matthey	N/A *

T 2 Historic campaigns

The project campaign production value of 37 897 tHNO3 was lower than historic nitric acid production set at level of 65 823 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 28/12/2007 and continued through 31/07/2008 when the 58 683 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-4	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jun 04	2007 Dec 28	2008 Apr 28	2008 Jul 31	2008 Aug 01
Baseline Factor kgN2O/tHNO3	-	-	7.18	7.18	7.18
Production tHNO3		-	37 497	58 683	-
Per Day Production tHNO3	239.7				
Baseline less Historic Production	(7 140.4)				
Baseline less Historic Days	(29.8)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 4 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 28/12/2007 through 31/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 446 tN_2O .

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.450%, which is further modified by an uncertainty of 0.065% due to under-sampling. As a result we have arrived to the baseline emission factor of 7.18 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 4 during the project campaign. Project campaign started on 28/08/2012 and went through 31/12/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

 $PE_n = VSG * NCSG * 10-9 * OH (tN2O)$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.68 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

BASELINE EMI	SS	ION FACTOR									
Parameter	<u> </u>	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Batio	Oxidation Temperature	Oxidation Pressure	AM S in Operation	Nitric Acid Production
Code Unit	Code Unit	Ho ۲	NAP t/h	NCSG mg N20/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	oT °C	0P kPa	ч	NAP t/h
Elimination of extreme values											
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 20.00	- 50 1 200	0 1 000		0 20
Raw Data Measured Range											
Count as % of Datasat		4 564 88%	4 906 95%	2 884 56%	4 467 86%	4 733	5 086 08%	5161 1002	4 755	4 028 78%	2 846 55%
Minimum		000		0		266		100/0			0/00 -
Maximum			15.12	2 132	83 541	6 465		906			15
iwean Standard Deviation Total			11.96 4.35 58 683	1 395 232	66 846 10 182	5 718 881	9.71 2.96	791 272	572 62		13 3 37 497
N2O Emissions (VSG * NCSG * OH) Emission Factor		426 6.86	t N2O kgN2O / tHNO3								
Permitted Range											
Minimum						4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		4 399		2 610	4 210					4 028	
as % of Operating Hours		% 0 %		810 810	9.7%					88%	
Maximum				1 922	75 876						
Mean				1 415	67 275						
Standard Deviation				136	8 270						
N2O Emissions (VSG * NCSG * OH) Emission Factor		434 7.00	t N2O kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound Upper bound				1 148	83 484						
Count				2 513	4 149						
as % of Operating Hours				55%	91%						
Maximum				1 678	75 876						
Mean Standard Deviation				1 432 96	68 235 2 154						
N2O Emissions (VSG * NCSG * OH)		446	t N20								
Emission Factor (EF_BL)		7.18	7.18 kgN20 / tHNO3								

 \geq

MONITORING REPORT

factor
ion
ISS
emi
ect
Proj
2
F

Parameter (code) Parameter (code)<										
Code OH MAP MCSG VGSG VG		Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxidation Pressure
$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$		Code Unit		NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	oT °C	0P kPa
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ilimination of extreme values									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lower limit Upper Limit			0 50.00	000 C	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	taw Data Measured Range									
1 2.25 500 4773 313 225 37.847 15.17 560 1622 912 37.847 37.84 31 2083 560 1622 912 37.847 37.84 31 2083 560 1620 912 37.847 37.84 31 2083 567 061 225 37.847 37.84 31 2083 567 061 225 9.945 905 111 49.561 111 49.561 111 49.553 111 49.553 150 57.258 111 49.553 111 49.553 150 57.258 111 49.553 150 57.258 1500 57.258 111 49.553 150 57.258 1500 111 49.553 150 57.258 1500 111 49.553 150 57.258 1500 111 49.553 150 57.258 1500 111 49.553 150 57.258 1500 111 49.553 150 57.258 1500 111 14.05 1500 57.258 1500	Count as % of Dataset		2 637 88%	3 006	2 581 86%	2	2 818 04%	2 669 80%	3 008	2 976 99%
15,17 460 62,803 6053 86,22 912 3,45 3,1 2,63 5,605 16,2 912 1) 24 17 5,66 106 824 3,1,817 5,7 0,61 5,55 0,61 252 3,1,817 5,7 0,61 5,55 0,61 252 11 49,651 2,00 5,728 5,728 5,728 23,2 2,322 2,52 91% 96% 91% 111 49,653 2,325 2,32 2,52 111 49,653 2,32 2,52 111 49,653 2,32 2,52 111 49,653 2,55 1,99 111 49,653 2,55 1,99 111 49,653 2,55 1,99 12,4 9,12% 1,99 2,725 23 23 2,35 1,99 15 2,33 1,96 3,653 160 5,725 1,99 12,4 2,34 2,34 13 2,32 2,34 14 2,39 2,34 15 2,34 2,34 16 5,725	Minimum			2.25	50		313		55	7
1) 0.64 4NOC 0.61 202 1) 0.64 4NOC 11 49.65 11 149 11 149 11 11 149 11 149 11 11 149 11 149 11 11 149 11 149 11 11 149 11 149 11 11 149 11 149 11 11 149 11 149 11 11 149 149 149 149 11 149 149 149 149 11 149 149 149 149 11 149 149 149 149 11 149 149 149 149 11 149 149 149 149 11 149 149 149 149 11 149 149 149 149 11 149 149 149 149 11 149 149 149 149 11 149 149 149 149 11 149 149 149 <td>Maximum</td> <td></td> <td></td> <td>15.17</td> <td>460</td> <td>62 803 52 645</td> <td>6 053 F 606</td> <td></td> <td>912 804</td> <td>635</td>	Maximum			15.17	460	62 803 52 645	6 053 F 606		912 804	635
1) 24 tN20 0.64 kgN20/tHN03 111 2392 2392 91% 111 2302 2392 91% 111 2302 2302 91% 111 2302 2302 91% 111 2302 2303 111 2304 2302 111 2302 111 2302 111 2303 111 2303 111 2303 111 2303 111 2303 111 2303 111 2303 111 2303 111 2303 111 2303 111 2303 111 237 2303 234 231 237 231 237 231 237 232 234 233 1.88 234 2.19 6 0.663 1.68 6073 1.68 6073 1.68 6073 1.68 6073 1.68 6073	recent Standard Deviation Total			3.45 3.45 37 897	31	2 083	5 000 627		252	49 49
111 2302 2302 2302 2303 2302 2304 2111 2305 2302 111 2302 2306 2303 111 2303 2306 2303 2307 24 2308 2303 111 2303 2309 2303 2300 160 2301 0.633 2302 2.57 2303 2.57 2317 2.57 2318 2.57 2318 2.57 2318 2.57 2318 2.57 2318 2.57 232 2.19 5 0.73 5 0.63 6 0.63 1.68 4.1.81 7 1.68	N2O Emissions (VSG * NCSG * OH) Emission Eactor		24 0.64	t N20 kon20 / HUND3						
111 230 232 395% 111 2392 395% 111 230 111 230 111 230 111 230 111 230 111 230 111 230 111 230 169 255 111 230 169 255 111 230 169 255 111 230 169 255 111 230 169 255 111 230 169 255 111 230 169 255 111 230 169 255 111 230 169 255 111 230 169 255 111 230 169 255 111 230 169 255 111 230 169 255 111 230 169 255 111 230 169 255 237 2.17 2.74 2.77 2.74 2.77 2.77 2.77 2.74 2.74 2.77 2.77 2.74 2.74 2.77 2.77 2.77 2.74 2.74 2.75 1.68 6 0.63 1.68 2.67 1.68 2.67 1.68 2.67 1.68 2.67 1.68 2.77 2.77 2.77 2.77 2.74 2.74 2.76 1.68 2.67 1.68 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.74 2.76 1.68 2.77 2.77 2.77 2.77 2.77 2.77 2.74 2.76 2.76 2.76 2.76 2.77 2.77 2.76 2.77 2.77 2.77 2.76 2.77 2.76	ata within the confidence interval				_					
111 230 230 232 97% 111 2392 97% 111 2392 97% 111 239 21 111 239 21 111 239 25 24 1020 159 25 25 23 49120 / 1110 239 25 25 231 237 25 25 7 25 7 25 7 25 7 25 7 25 7 25	15% Confidence interval									
2332 2332 2332 2332 2332 2332 2337 234 255 257 257 257 257 257 257 257	Lower bound				111	49 561 57 728				
2 332 97% 111 230 113 25 97% 114 230 169 25 26 10 25 26 26 25 27 27 27 27 27 27 27 27 27 27						01				
10 24 1.0 25 10 24 1.0 26 0.03 kgN2O / tHNO3 169 27 0.03 kgN2O / tHNO3 169 27 0.03 kgN2O / tHNO3 169 28 0.73 2.77 2.77 29 2.37 2.34 2.19 3 1.87 2.34 1.89 6 0.63 1.68 1.68 7 - 1.68 1.68	Count				2 392					
25 10) 24 t N20 10) 0.63 kgN20 / tHN03 24 t N20 0.63 kgN20 / tHN03 24 t N20 0.63 kgN20 / tHN03 257 277 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.67 1.89 6 0.63 1.88 71.89 6 0.63 1.88 71.89 1.88 71.89 1.88 1	as 78 or operating rooms Minimum				111	46				
1) 24 1/20 24 1/20 0.63 kgN2O / tHNO3 91.2% 91.2% 91.2% Actual Factors Moving Average Rule 1 2.77 2.77 2 2.37 2.57 3 1.87 2.19 5 0.73 1.88 7 - 1.68	Maximum				230					
24 1/20 0.63 kgN20 / tHN03 91.2% 0.63 Actual Factors Moving Average Rule 1 277 2 237 3 1.87 3 1.74 4 1.74 5 0.63 6 0.63 1.68 8/8020 / tHN03	Mean Standard Deviation				169 25					
(1) 0.53 91.2% Actual Factors 27 27 3 1.87 3 1.74 5 0.73 6 0.73 7 -	N3O Emissions / VSG * NCSG * OH)		54	OCN +						
91.27% Actual Factors 277 2 2 237 3 1.87 3 1.87 6 0.63 7 -	Actual Project Emission Factor (EF_PActual)		0.63							
Actual Factors 277 2 2 237 3 1.277 4 1.74 5 0.73 6 0.63 7 -			91.2.10	_						
1 2// 2 237 3 1.87 5 1.74 5 0.73 6 0.63 7 - 1.68 kgN20 / tH1	Aoving Average Emission Factor Correction			Moving Average F	tule					
3 1.87 4 1.74 5 0.73 6 0.63 7 - 1.68 kgN20 / tH1		- 0	2.17	2.57						
4 1.74 5 0.73 6 0.63 7 . 1.68 kgN2O / tH1		e	1.87	2.34						
6 0.63 6 0.63 7 - 1.68 kgN2O / tH1		4 1	1.74	2.19						
F		e o	0.73	1.68						
		7	I							
	Dusiant Emission Factor (CF D)		7 00							
			1.60							

© 2008, Vertis Finance

2

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 5MONITORINGPERIOD:FROM:11/07/2012

TO: 31/12/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS	•
	3.1	VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	-	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.		PROJECT EMISSIONS	8
	4.1	1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 5 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the sixth project campaign on Line 5.

The first project campaign on Line 5 started on 02/07/2008. Secondary catalyst was installed on 02/07/2008. Total quantity of emission reductions generated during the sixth project period from 11/07/2012 through 31/12/2012 on Line 5 is **90 625 ERUs**.

EMISSI			
Baseline Emission Factor	EF BL	6.61	kgN2O/tHNO3
Project Campaign Emission Factor	EF P		kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP BL		tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	55 079	tHNO3
Nitric Acid Produced in the Project Campaign	NAP_P	60 029	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	90 625	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		79.1%)

T 1 Emission reduction calculations

EMISSION REDUCT	ION PER YE	EAR	
Year	2011	2012	2013
Date From		11 Jul 2012	
Date To		31 Dec 2012	
Nitric Acid Production		60 029	
Emission Reduction	90 625		
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 5 during baseline measurement carried from 29/11/2007 through 17/06/2008 is 6.61 kgN₂O/tHNO₃.

Project emission factor during the sixth project campaign after installation of secondary catalysts on Line 5, which started on 11/07/2012 and went through 31/12/2012 with secondary catalyst installed and commissioned on 02/07/2008, is $1.74 \text{ kgN}_2\text{O/tHNO}_3$.

During the project campaign 60 029 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 5 emission reductions including information on baseline emission factor setting for the Line 5.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 5 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 5 has been carried out from 29/11/2007 through 17/06/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

 $BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$

where:

Variable	Definition
EF_{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 5 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 5 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N_2O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 Project Campaign Length

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

4.4 Leakage

No leakage calculation is required.

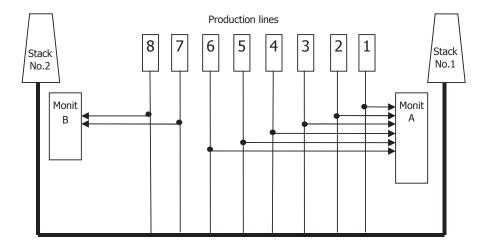
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N₂O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

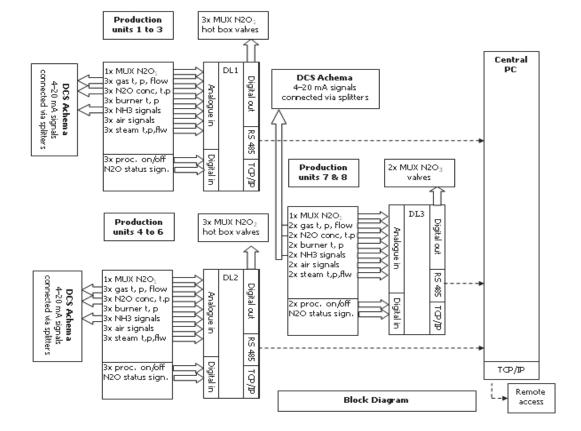
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

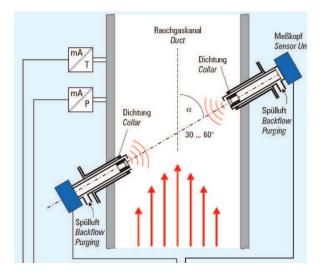
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

N₂O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

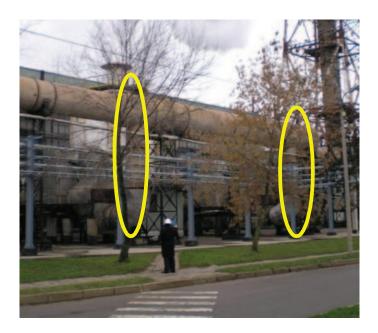
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

MONITORING REPORT

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

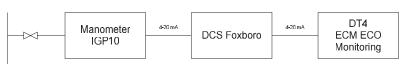
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

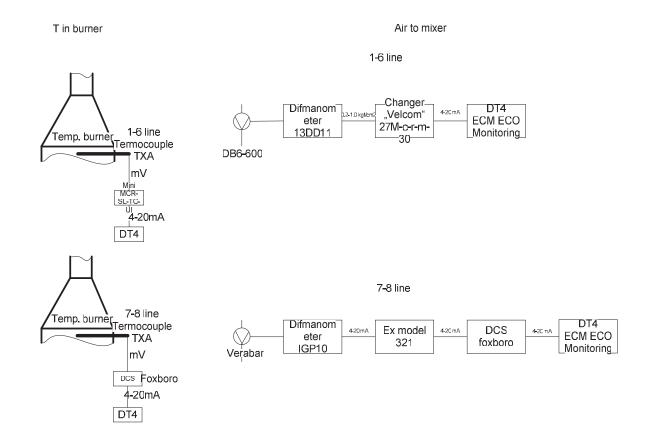
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 15/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

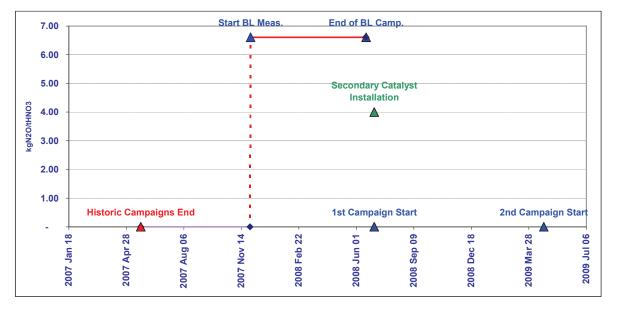
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 64 818 tHNO₃ and time duration was on average 238 days. Table contains also information on suppliers of primary catalysts for the line 5.

Line	ACHEMA UKL-5	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	65 664	06 Jun 2003	23 Dec 2003	200	328	Heraeus	N/A *
	2 t HNO3	63 844	23 Dec 2003	24 Aug 2004	245	261	Heraeus	N/A *
	3 t HNO3	58 961	01 Sep 2004	10 May 2005	251	235	Johnson Matthey	N/A *
	4 t HNO3	66 432	12 May 2005	06 Mar 2006	298	223	Johnson Matthey	N/A *
	5 t HNO3	69 189	06 Nov 2006	23 May 2007	198	349	Heraeus	N/A *
Average HNO3								
production	t HNO3	64 818			238	272	* Confidential but availa	able for the verification
Project Campaigns	BL t HNO3	55 079	29 Nov 2007	17 Jun 2008	201	274	Umicore	N/A *
	PL t HNO3	60 029	11 Jul 2012	31 Dec 2012	174	345	Umicore	N/A *

T 2 Historic campaigns

The project campaign production value of 60 029 tHNO3 was lower than historic nitric acid production set at level of 64 818 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 29/11/2007 and continued through 17/06/2008 when the 55 079 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-5	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 May 23	2007 Nov 29	2008 Jun 17	2008 Jun 17	2008 Jun 18
Baseline Factor kgN2O/tHNO3	-	-	6.61	6.61	6.61
Production tHNO3		-	55 079	55 079	-
Per Day Production tHNO3	271.9				
Baseline less Historic Production	(9 739.2)				
Baseline less Historic Days	(35.8)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 5 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 29/11/2007 through 17/06/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 385 tN_2O .

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.450%, which is further modified by an uncertainty of 0.126% due to under-sampling. As a result we have arrived to the baseline emission factor of 6.61 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 5 during the project campaign. Project campaign started on 11/07/2012 and went through 31/12/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

 $PE_n = VSG * NCSG * 10-9 * OH (tN2O)$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.74 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

BASELINE EMI	10	SION FACTOR									
Parameter	<u> </u>	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxidation Pressure	AM S in Operation	Nitric Acid Production
Co Co	Code Unit	ЧЧ	NAP t/h	NCSG mg N20/Nm3	VSG Nm3/h	AFR Nm3/h	като AIFR %	oT °C	оР кРа	h	NCSG NAP t/h
Elimination of extreme values											
Lower limit Upper Limit			0 50.00	3 000	0 120 000	0 10 000	0 20.00	50 1 200	0 1 000		0 50
Raw Data Measured Range											
Count as % of Dataset		4 519 94%	4 571 95%	4 660 - 97%	4 558 04%	4 701 07%	4 414 02%	4797 00%	4	4 064 84%	4 571 05%
Minimum			-	0		315	- 10	(0)		2/10	-
Maximum Mean			15.02	2 289 1 239	82 389 65 232	6 482 5 032	19.73	908 844	673 613		15
Standard Deviation Total			3.12 55 079	268	15 041	066 066	0.81	195			12 3 55 079
N20 Emissions (VSG * NCSG * 0H)			t N2O								
Emission Factor		6.27	kgN20 / tHN03								
Permitted Range						1 500	c	Ugg	c		
Maximum Maximum						4 500 7 500	11.70	910 910	800		
Data within the permitted range											
Count		4 249		4 211	4 211					4 064	
as % of Operating Hours Minimum		34%		93%	93% 6728					80%	
Maximum				2 289	78 602						
Mean Standard Deviation				1 234	68 731 2 256						
N2O Emissions (VSG * NCSG * OH) Emission Eactor		383 658	t N2O kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval Lower bound				793	64 309						
Upper bound				1 675	73 153						
Count as % of Operating Hours				4 009 89%	4 063 9 <i>0</i> %						
Minimum Maximum				796 1 674	64 317 73 152						
Mean Standard Deviation				1 240 204	68 711 1 796						
N2O Emissions (VSG * NCSG * OH) Emission Factor (EF_BL)		385 6.61	385 t N20 6.61 kgN20 / tHN03								

VERTIS

MONITORING REPORT

factor
emission
T 5 Project

	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	HO H	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AFR %	от °С	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000
Raw Data Measured Range									
Count		4 009 06%	4 019 06%	3 934 04%	4 002 06%	4 171	4 155	4 172	4 172 10002
as % of Dataset Minimum		20./0		34 % 186	30% 45875	510	4	33	2
Maximum			16.33	821	87 808	6 398	17.49	911	753
Mean Standard Deviation Total			14.94 1.02 60 029	323 51	64 552 2 854	5 910 953	10.62 0.41	860 153	677 67
N2O Emissions (VSG * NCSG * OH)		18 10	t N20						
Emission ractor		1.39	KGNZU / THINUS						
Data within the confidence interval									
95% Contigence Interval Lower bound				223	58 959				
Upper bound				424	70 145				
Count				3 784	3 774				
as % of Operating Hours				94%	94% 50.157				
Maximum				424	70 120				
Mean				321	64 458				
Standard Deviation				44	1 799				
N2O Emissions (VSG * NCSG * OH)		83							
Actual Project Emission Factor (EF_PActual) Abatement Ratio		1.38 79.1%	kgN20 / tHN03						
Moving Average Emission Factor Correction		Actual Factors	Moving Average Rule	ula					
	F								
	7	2.90							
	ς Γ	1.38							
	4 4	1.72							
	. 0	1.38	1.74						
	7	1							
Project Emission Factor (FF_D)		174	kaN2O / tHNO3						
		109 04							

© 2008, Vertis Finance

2

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 6MONITORINGPERIOD:FROM:26/04/2012

TO: 22/10/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS	
	3.1	VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	-	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.		PROJECT EMISSIONS	8
	4.1	1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 6 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the sixth project campaign on Line 6.

The first project campaign on Line 6 started on 21/07/2008. Secondary catalyst was installed on 25/07/2008. Total quantity of emission reductions generated during the sixth project period from 26/04/2012 through 22/10/2012 on Line 6 is **125 686 ERUs**.

EMISSI	ON REDUCTION		
Baseline Emission Factor	EF_BL	10.32	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	3.52	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 850	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	59 549	tHNO3
Nitric Acid Produced in the Project Campaign	NAP_P	59 623	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	125 686	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		76.4%	

T 1 Emission reduction calculations

EMISSION REDUCTI	ON PER YE	EAR	
Year	2011	2012	2013
Date From		26 Apr 2012	
Date To		22 Oct 2012	
Nitric Acid Production		59 623	
Emission Reduction		125 686	
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 6 during baseline measurement carried from 11/01/2008 through 21/07/2008 is 10.32 kgN₂O/tHNO₃.

Project emission factor during the sixth project campaign after installation of secondary catalysts on Line 6, which started on 26/04/2012 and went through 22/10/2012 with secondary catalyst installed and commissioned on 25/07/2008, is $3.52 \text{ kgN}_2\text{O/tHNO}_3$.

During the project campaign 59 623 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 6 emission reductions including information on baseline emission factor setting for the Line 6.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 6 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 6 has been carried out from 11/01/2008 through 21/07/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

 $BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$

where:

Variable	Definition
EF_{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 6 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 6 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N_2O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 Project Campaign Length

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was lower than the baseline, the NCSG values of the baseline beyond the project NAP were eliminated at 59 549 tHNO3.

4.4 Leakage

No leakage calculation is required.

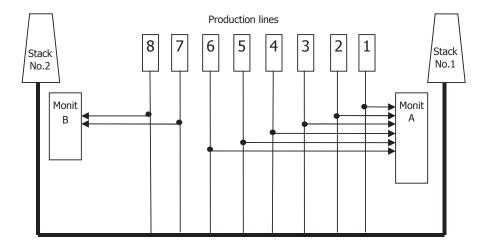
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N₂O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

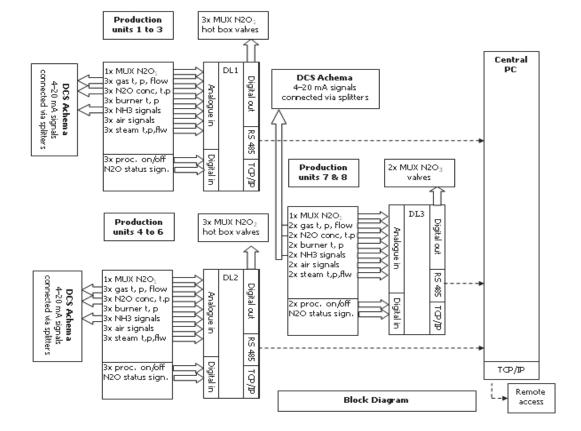
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

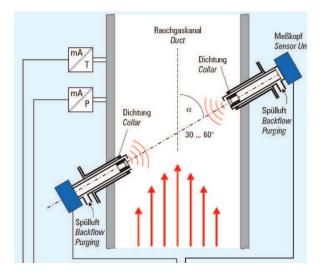
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

N₂O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

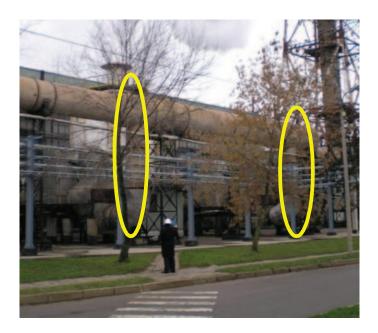
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

MONITORING REPORT

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

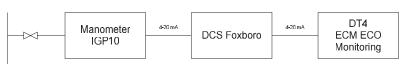
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

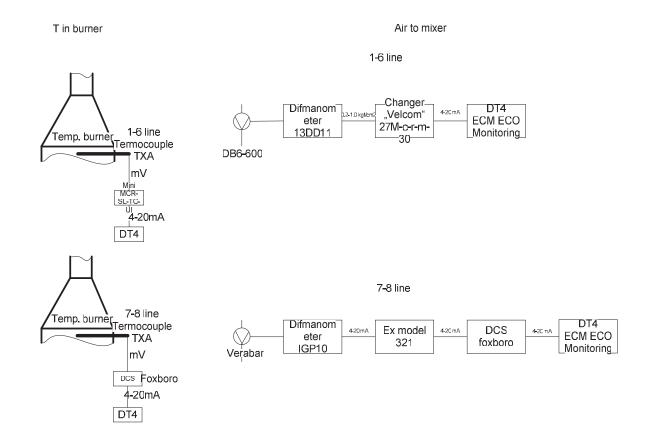
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 08/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

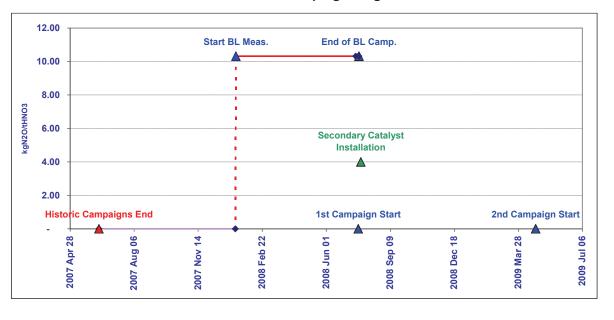
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 61 599 tHNO₃ and time duration was on average 241 days. Table contains also information on suppliers of primary catalysts for the line 6.

Line	ACHEMA UKL-6	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	62 918	28 Aug 2003	25 Mar 2004	210	300	Heraeus	N/A *
	2 t HNO3	61 366	01 Apr 2004	02 Feb 2005	307	200	Johnson Matthey	N/A *
	3 t HNO3	64 872	26 Jul 2005	10 Mar 2006	227	286	Johnson Matthey	N/A *
	4 t HNO3	55 693	10 Mar 2006	29 Nov 2006	264	211	Umicore	N/A *
	5 t HNO3	63 148	29 Nov 2006	12 Jun 2007	195	324	Heraeus	N/A *
Average HNO3								
production	t HNO3	61 599			241	256	* Confidential but availa	able for the verification
Project Campaigns	BL t HNO3	60 850	11 Jan 2008	21 Jul 2008	192	317	Heraeus	N/A *
	PL t HNO3	59 623	26 Apr 2012	22 Oct 2012	180	331	Heraeus	N/A *

T 2 Historic campaigns

The project campaign production value of 59 623 tHNO3 was lower than historic nitric acid production set at level of 61 599 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 11/01/2008 and continued through 21/07/2008 when the 60 850 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-6	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jun 12	2008 Jan 11	2008 Jul 17	2008 Jul 21	2008 Jul 22
Baseline Factor kgN2O/tHNO3 Production tHNO3	-	-	10.32 59 549	10.32 60 850	10.32
Per Day Production tHNO3	256.0	-	59 549	00 000	-
Baseline less Historic Production	(749.3)				
Baseline less Historic Days	(2.9)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 6 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 11/01/2008 through 21/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 665 tN_2O .

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.620%, which is further modified by an uncertainty of 0.107% due to under-sampling. As a result we have arrived to the baseline emission factor of $10.32 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Table T 5 shows the calculation of the project emission factor on Line 6 during the project campaign. Project campaign started on 26/04/2012 and went through 22/10/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

 $PE_n = VSG * NCSG * 10-9 * OH (tN2O)$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 3.52 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

BASELINE EN	ISSION FACTOR									
	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxidation Pressure	AM S in Operation	Nitric Acid Production
Code Unit	it OH	NAP t/h	NCSG mg N20/Nm3	VSG Nm3/h	AFR Nm3/h	Ratio AIFR %	OT °C	0P kPa	۲	NCSG NAP t/h
Elimination of extreme values										
Lower limit Upper Limit		0 50.00	3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000		0 50
Raw Data Measured Range										
Count as % of Dataset	4 233 92%	4 363 95%	4 398 95%	4 290 93%	4 324 94%	4 361 95%	4 585 100%	4 564 99%	3 944 86%	4 267 93%
Minimum			1 208 0	2	568	16 50	(1)	0		
Maximum Mean Standard Devlation		13.95 3.18	2 303 1 416 418	99 960 99 960 17 673	0 423 6 050 456	10.50 1.70	833 833 201	583 583 44		<u>5 4 </u> 0
Total		60 850	İ							59 549
N2O Emissions (VSG * NCSG * OH) Emission Factor	599 9.29	599 t N2O 9.29 kgN2O / tHNO3								
Permitted Range										
Minimum Maximum					4 500 7 500	0 11.70	880 910	0 800		
Data within the permitted range										
Count	4 116		3 920	4 015					3 944	
as % of Operating Hours Minimum	A1 %		93%	95% 10 156					93%	
Maximum			2 062	110 925						
Standard Deviation			313	2 541						
N2O Emissions (VSG * NCSG * OH) Emission Factor	633 9.82	t N2O kgN2O / tHNO3								
Data within the confidence interval										
95% Confidence interval Lower bound Upper bound			837 2 064	98 078 108 039						
Count			3 603							
as % of Operating Hours			85%	94%						
wiinitati Maximum Mean			2 062 1 524							
Standard Deviation			202							
N2O Emissions (VSG * NCSG * OH) Emission Factor (EF_BL)	665 10.32	665 t N2O 10.32 kgN2O / tHNO3								
										-

T 4 Baseline emission factor

~

VERTIS

MONITORING REPORT

Ictor
on fa
nissi
ect el
Proje
T 5

	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	HO H	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AFR %	от °С	0P kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000
Raw Data Measured Range									
Count		4 023	4 243	3 957	4 010	4 320	4 156 068/	4 320	4 274
as % or uataset Minimum		93%		92% 83	4	100%	%06	40 40	
Maximum			16.72	753	91 100	6 452	19.97	1 100	ġ
Mean			14.05	451	80 862	5 720	10.47	857	40
Standard Deviation Total			2.43 59 623	55	2 543	1 449	1.52	185	41
N2O Emissions (VSG * NCSG * OH) Emission Factor		147 2.46	t N2O kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				343	75 878				
Upper bound				559	85 847				
Count				3 677	3 809				
as % of Operating Hours Minimum				91% 343	95% 75 925				
Maximum				559	85 820				
Mean				445	81 014				
Standard Deviation				44	2 154				
N2O Emissions (VSG * NCSG * OH)		145							
Actual Project Emission Factor (Er_PActual) Abatement Ratio		Z.44 76.4%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average Rule	ule					
	F		4.94						
	2	4.39	4.67						
	ς	4.31	4.55						
	41	2.48	4.03						
	5.0	2.60	3.74						
	• ~	2.44	20.0						
Project Emission Factor (EF_P)		3.52	kgN2O / tHNO3						

© 2008, Vertis Finance

2

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N₂O abatement projectLINE:Line 6MONITORINGPERIOD:FROM:12/12/2012

TO: 31/12/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS	
	3.1	VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	-	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.		PROJECT EMISSIONS	8
	4.1	1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 6 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the seventh project campaign on Line 6.

The first project campaign on Line 6 started on 21/07/2008. Secondary catalyst was installed on 25/07/2008. Total quantity of emission reductions generated during the seventh project period from 12/12/2012 through 31/12/2012 on Line 6 is **9 224 ERUs**.

EMISSI	ON REDUCTION		
Baseline Emission Factor	EF_BL	8.25	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	3.13	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 850	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	5 667	tHNO3
Nitric Acid Produced in the Project Campaign	NAP P	5 811	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	9 224	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		90.6%	1

T 1 Emission reduction calculations

EMISSION REDUCT	ION PER YE	EAR	
Year	2011	2012	2013
Date From		12 Dec 2012	
Date To		31 Dec 2012	
Nitric Acid Production		5 811	
Emission Reduction		9 224	
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 6 during baseline measurement carried from 11/01/2008 through 21/07/2008 is 8.25 kgN₂O/tHNO₃.

Project emission factor during the seventh project campaign after installation of secondary catalysts on Line 6, which started on 12/12/2012 and went through 31/12/2012 with secondary catalyst installed and commissioned on 25/07/2008, is $3.13 \text{ kgN}_2\text{O/tHNO}_3$.

During the project campaign 5 811 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 6 emission reductions including information on baseline emission factor setting for the Line 6.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 6 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 6 has been carried out from 11/01/2008 through 21/07/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

 $BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$

where:

Variable	Definition
EF_{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 6 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 6 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N_2O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 Project Campaign Length

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was lower than the baseline, the NCSG values of the baseline beyond the project NAP were eliminated at 5 667 tHNO3.

4.4 Leakage

No leakage calculation is required.

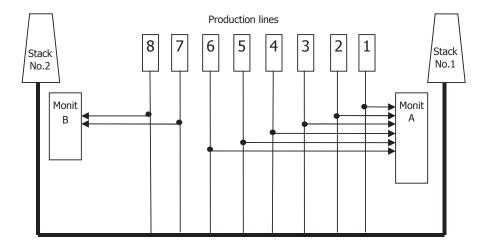
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF _{ma,n} and EF _n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N₂O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

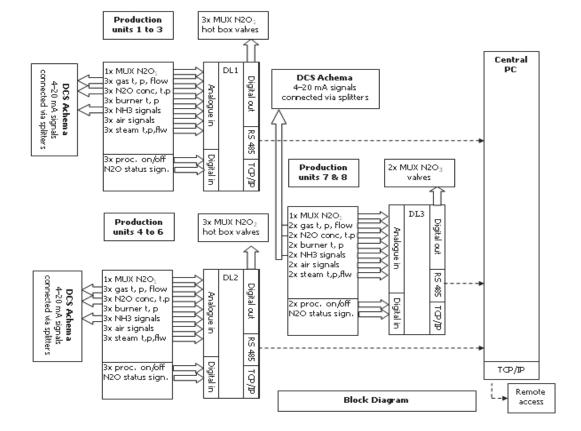
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

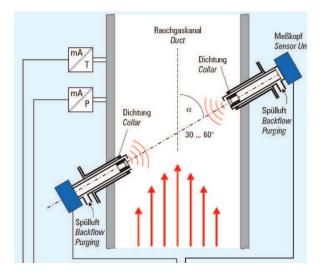
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

N₂O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

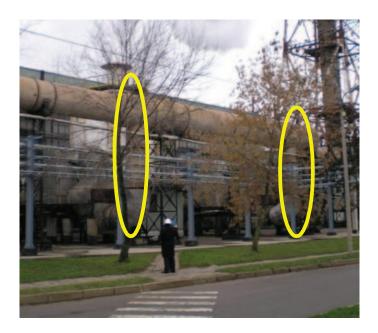
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

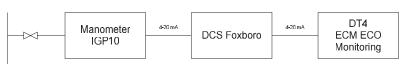
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

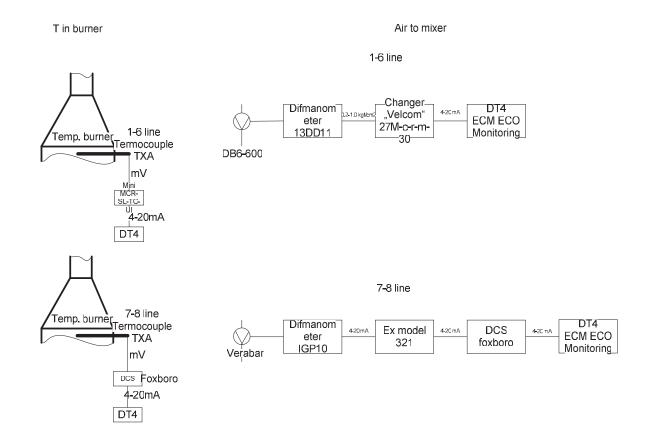
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 08/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

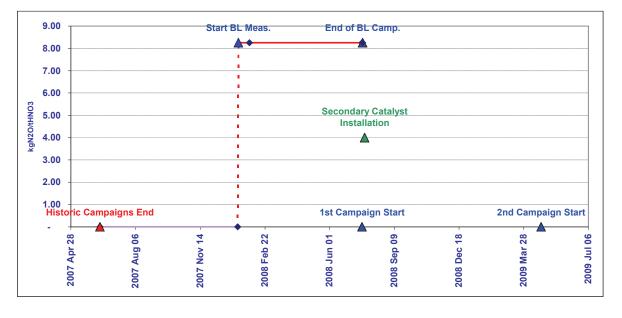
The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 61 599 tHNO₃ and time duration was on average 241 days. Table contains also information on suppliers of primary catalysts for the line 6.

Line	ACHEMA UKL-6	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	62 918	28 Aug 2003	25 Mar 2004	210	300	Heraeus	N/A *
	2 t HNO3	61 366	01 Apr 2004	02 Feb 2005	307	200	Johnson Matthey	N/A *
	3 t HNO3	64 872	26 Jul 2005	10 Mar 2006	227	286	Johnson Matthey	N/A *
	4 t HNO3	55 693	10 Mar 2006	29 Nov 2006	264	211	Umicore	N/A *
	5 t HNO3	63 148	29 Nov 2006	12 Jun 2007	195	324	Heraeus	N/A *
Average HNO3								
production	t HNO3	61 599			241	256	* Confidential but availa	able for the verification
Project Campaigns	BL t HNO3	60 850	11 Jan 2008	21 Jul 2008	192	317	Heraeus	N/A *
	PL t HNO3	5 811	12 Dec 2012	31 Dec 2012	20	291	Heraeus	N/A *

T 2 Historic campaigns


The project campaign production value of 5 811 tHNO3 was lower than historic nitric acid production set at level of 61 599 tHNO3.

It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 11/01/2008 and continued through 21/07/2008 when the 60 850 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-6	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jun 12	2008 Jan 11	2008 Jan 29	2008 Jul 21	2008 Jul 22
Baseline Factor kgN2O/tHNO3	-	-	8.25	8.25	8.25
Production tHNO3		-	5 667	60 850	-
Per Day Production tHNO3	256.0				
Baseline less Historic Production	(749.3)				
Baseline less Historic Days	(2.9)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 6 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 11/01/2008 through 21/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 532 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.620%, which is further modified by an uncertainty of 0.198% due to under-sampling. As a result we have arrived to the baseline emission factor of 8.25 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 6 during the project campaign. Project campaign started on 12/12/2012 and went through 31/12/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

 $PE_n = VSG * NCSG * 10-9 * OH (tN2O)$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 3.13 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

BASELINE EM	EMISS	ON FACTOR									
		Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Batto	Oxidation Temperature	Oxidation Pressure	AM S in Operation	Nitric Acid Production NCSG
82	Code Unit	HO 4	NAP t/h	NCSG mg N20/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	OT °C	0P kPa	ч	NAP t/h
Elimination of extreme values											
Lower limit Upper Limit			0 50.00	3 000	0 120 000	0 10 000	0 20.00	50 1 200	0 1 000		0 50
Raw Data Measured Range											
Count as% of Dataset		4 233 02%	4 363 95%	412	4 290 03%	4 324 04%	4 361 05%	4 585	4 564 00%	3 944 86%	394 0%
Minimum				72	22	568		(1)			20 -
Maximum Mean			16.37	1 611 1 196	117 970 00 060	6 423 6 050	15.58	905	634 502		16
Standard Deviation Total			3.18 60 850	200	99 900 17 673	456		201			14 4 5 667
N2O Emissions (VSG * NCSG * OH) Emission Factor		506 7.85	t N2O kgN2O / tHNO3								
Permitted Range											
Minimum Maximum						4 500 7 500	0 11 70	880	0 008		
Data within the normitted rance						-		2	2		
		1115		340	1 015					0.044	
as % of Oberating Hours		811 +		8% 8	4 013					0.3%	
Minimum				677	10 156						
Maximum				1 362	110 925						
Mean Standard Deviation				1 190	103 058 2 541						
N2O Emissions (VSG * NCSG * OH) Emission Factor		519 8.05	t N2O kaN2O / tHNO3								
Data within the confidence interval			, ,								
95% Confidence interval											
Lower bound Upper bound				896 1 484	98 078 108 039						
Count				330	3 991						
as % of Operating Hours				88							
Maximum				997 1 362							
Mean Standard Deviation				1 219 91	103 105 1 728						
N2O Emissions (VSG * NCSG * OH)		532	532 t N20								
Emission Factor (EF_BL)		8.25	kgN20 / tHNO3								

VERTIS

MONITORING REPORT

factor
emission
5 Project
F

	Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Batio	Oxidation Temperature	Oxidation Pressure
	Code Unit	но	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AFR %	от °с	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000
Raw Data Measured Range									
Count		438		438	479	480	440	480	480
as % of Dataset		91%		91%	100%	100%	92%	100%	100%
Maximum			15.41	280	123 66 719	330 7 178	10 18.09	0 871	0 644
Mean			12.11	164	57 361	6 384	10.50	796	553
Standard Deviation Total			3.56 5 811	16	17 855	1 1 1 1	0.54	207	178
N2O Emissions (VSG * NCSG * OH)		4							
Emission Factor		0.71	kgN20 / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound Upper bound				133 195	22 366 92 356				
					1				
Count				430	436				
as % of Operating nous Minimum				30%	59 114				
Maximum				192	66 719				
Mean				164	62 871				
standard Deviation					1 885				
N2O Emissions (VSG * NCSG * OH)		5 2	t N2O LeoN2O / HNO2						
Abatement Ratio		90.6%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average Rule	ule					
	-								
	0	4.39							
	e	4.31							
	4 4	2.48	4.03						
	9	2.44							
	7	0.78							
- - - - - - - - - - - - - - - - - - -		,							
Project Emission Factor (EF_P)		3.13	3.13 kgN20 / tHN03						

© 2008, Vertis Finance

2

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 7MONITORINGPERIOD:FROM:08/05/2012

TO: 31/12/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS	
	3.1	VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	-	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.		PROJECT EMISSIONS	8
	4.1	1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 7 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the sixth project campaign on Line 7.

The first project campaign on Line 7 started on 28/03/2008. Secondary catalyst was installed on 03/07/2008. Total quantity of emission reductions generated during the sixth project period from 08/05/2012 through 31/12/2012 on Line 7 is **136 442 ERUs**.

EMISSI	ON REDUCTION		
Baseline Emission Factor	EF_BL	9.09	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	1.85	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	55 626	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	55 626	tHNO3
Nitric Acid Produced in the Project Campaign	NAP_P	60 792	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	136 442	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		81.2%)

T 1 Emission	reduction	calculations
--------------	-----------	--------------

EMISSION REDUCTI	ON PER Y	EAR				
Year	2011	2012	2013			
Date From		08 May 2012				
Date To 31 Dec 2012						
Nitric Acid Production	Nitric Acid Production 60 792					
Emission Reduction		136 442				
ER_YR = ER * NAP_P_YR / NAP_P						

Baseline emission factor established for the Line 7 during baseline measurement carried from 12/09/2007 through 27/03/2008 is $9.09 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Project emission factor during the sixth project campaign after installation of secondary catalysts on Line 7, which started on 08/05/2012 and went through 31/12/2012 with secondary catalyst installed and commissioned on 03/07/2008, is $1.85 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 60 792 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 7 emission reductions including information on baseline emission factor setting for the Line 7.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 7 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 7 has been carried out from 12/09/2007 through 27/03/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

 $BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$

where:

Variable	Definition
EF_{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 7 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 7 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N_2O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 Project Campaign Length

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was higher than the baseline, all of the baseline NCSG values were used to determine the baseline emission factor.

4.4 Leakage

No leakage calculation is required.

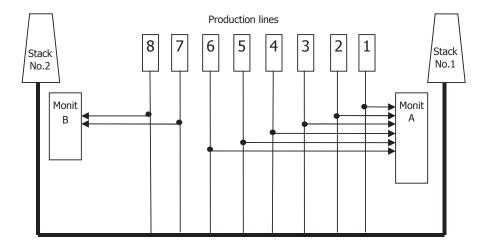
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF _{ma,n} and EF _n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N₂O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

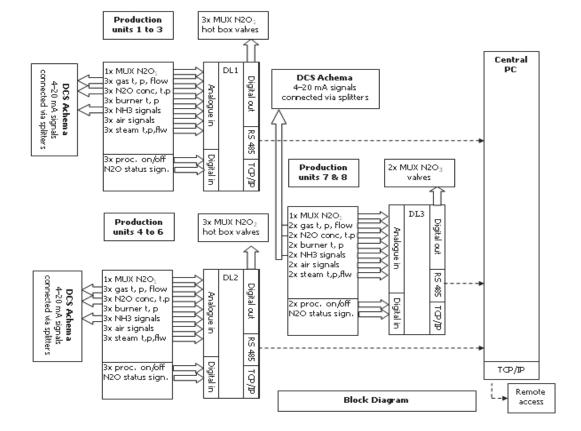
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

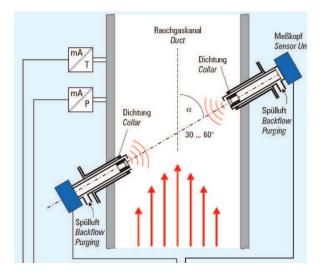
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

N₂O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

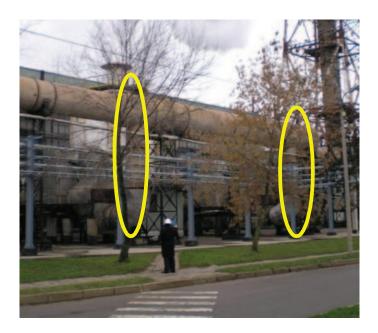
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

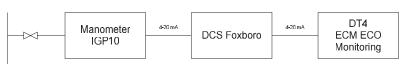
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

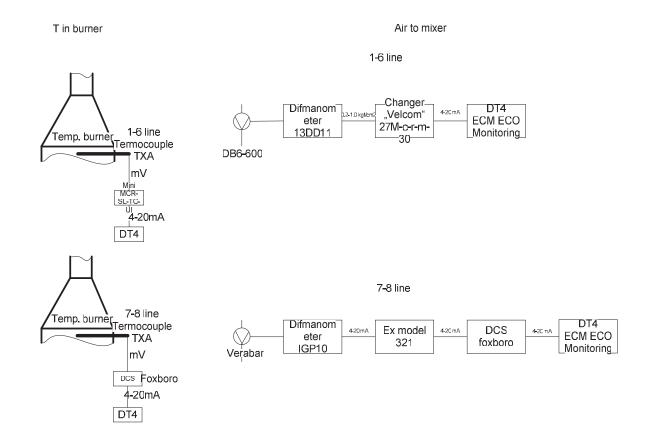
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 04/05/2008 and ending on 18/08/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

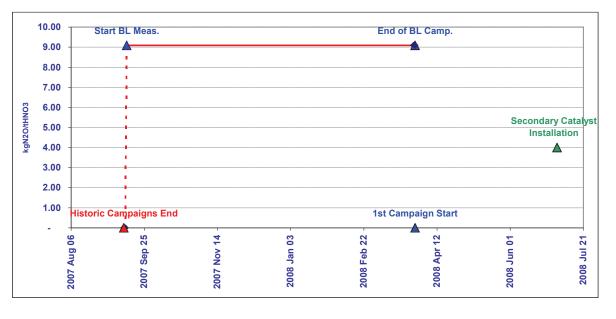
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 64 274 tHNO₃ and time duration was on average 218 days. Table contains also information on suppliers of primary catalysts for the line 7.

Line	ACHEMA UKL-7	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	57 671	10 Sep 2004	16 Mar 2005	187	308	Heraeus	N/A *
	2 t HNO3	70 015	16 Mar 2005	07 Nov 2005	236	297	Johnson Matthey	N/A *
	3 t HNO3	55 426	08 Nov 2005	20 May 2006	193	287	Heraeus	N/A *
	4 t HNO3	67 588	24 May 2006	04 Jan 2007	225	300	Johnson Matthey	N/A *
	5 t HNO3	70 670	04 Jan 2007	11 Sep 2007	250	283	Umicore	N/A *
Average HNO3								
production	t HNO3	64 274			218	295	* Confidential but availa	ble for the verification
Project Campaigns	BL t HNO3	55 626	12 Sep 2007	27 Mar 2008	197	282	Heraeus	N/A *
	PL t HNO3	60 792	08 May 2012	31 Dec 2012	238	255	Heraeus	N/A *

T 2 Historic campaigns

The project campaign production value of 60 792 tHNO3 was lower than historic nitric acid production set at level of 64 274 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 12/09/2007 and continued through 27/03/2008 when the 55 626 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-7	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Sep 11	2007 Sep 12	2008 Mar 27	2008 Mar 27	2008 Mar 28
Baseline Factor kgN2O/tHNO3	-	· · · · ·	9.09	9.09	9.09
Production tHNO3		-	55 626	55 626	-
Per Day Production tHNO3	294.6				
Baseline less Historic Production	(8 647.4)				
Baseline less Historic Days	(29.4)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 7 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 12/09/2007 through 27/03/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 536 tN_2O .

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.640%, which is further modified by an uncertainty of 0.124% due to under-sampling. As a result we have arrived to the baseline emission factor of 9.09 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 7 during the project campaign. Project campaign started on 08/05/2012 and went through 31/12/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

 $PE_n = VSG * NCSG * 10-9 * OH (tN2O)$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.85 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

- 10									
BASELINE EMIS	SION FACTOR								
Parameter	Parameter Operating Hours	Nitric Acid	N2O	Gas Volume Ammonia Ammonia	Ammonia	Ammonia	Oxidation	Oxidation	3MR
		Production	Concentration	Flow	Flow Rate to Air	to Air	Temperature	Pressure	Opera
						Ratio			
Code	ы	NAP	NCSG	VSG	AFR	AIFR	от	P	
Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	ပ	kPa	-
		0	0	0	0	0	50	0	
		000		0000	0000	00 00		000	

factor
emission
Baseline
Τ4

BASELINE EI		MISSION FACTOR									
Parameter	er	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air	Oxidation Temperature	Oxidation Pressure	AM Sin Operation	Nitric Acid Production
0	Code Unit	Ч	NAP t/h	NCSG mg N20/Nm3	VSG Nm3/h	AFR Nm3/h	Ratio AIFR %	от °c	оР кРа	Ч	NCSG NAP t/h
Elimination of extreme values											
Lower limit Upper Limit			0 50.00	3 000	0 150 000	0 10 000	0 - 20.00 -	50 1 200	0 1 000		20 0
Raw Data Measured Range											
Count as % of Dataset		4 097 87%	4 238 00%	4 385 03%	4 238 00%	4 708 100%	4 485 0 <i>5%</i>	4 708	4 708 100%	3 890 8 20/2	4 238
Minimum			0.00		1 7 28	0	0	33		0/70	0
Maximum			16.41	1 933	112 864	6 476	18.83	915			16
mean Standard Deviation Total			13.13 4.69 55 626	448	81 34/ 24 945	5 394 1 806	9.92	228	590 112		13 5 55 626
N3O Emissions / VSG * NCSG * OH)		417	OCN+								
Emission Factor		7.07	kgN20 / tHN03								
Permitted Range											
Minimum							0	880	550		
Maximum						7 500	11.20	910	800		
Data within the permitted range											
Count		3 145		2 856	2 856					3 890	
as % of Operating Hours		77%		20%	20%					95%	
Minimum				122	57 328						
Mean				1 433	99 189 89 644						
Standard Deviation				281	5 811						
N2O Emissions (VSG * NCSG * OH) Emission Factor		526 8.93	t N2O kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound Upper bound				882 1 984	78 254 101 034						
				2 763	2 8.41						
as % of Operating Hours				67%	69%						
Minimum				913	78 697						
Maximum Mean				1 933 1 457	99 189 89 755						
Standard Deviation				257	5 588						
N2O Emissions (VSG * NCSG * OH)		536	536 t N2O								
Emission Factor (EF_BL)		60.6	9.09 kgN20 / tHNO3								

VERTIS

MONITORING REPORT

Ictor
on fa
nissi
ect el
Proje
T 5

Terroreter (International Constraint) Terroreter (International Constraint) Terroretor (International Constraint) Terroretor (International Constraint) Constraintinal (International Constraint) Constraint (International Constraint) Constraint (Internation Constraint) Constraint (Internation										
Code OH NUCSG MUCSG MUC		Parameter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
values 50.00 3.00 150.00 0.00 200 1 rge 75% 57.00 7.00 53.7 53.7 57.00 56.7 rge 75% 57.00 7.00 56.7 56.7 57.0 56.7 res 75% 57.00 7.00 56.7 57.6 56.7 57.0 56.7 57.0 56.7 57.0 56.7 57.0 56.7 57.0 56.7 57.0 56.7 57.0 56.7 57.0 56.7 56.7 57.0 56.7 56.7 57.0 56.7 56.7 57.0 56.7 57.7 57.3 57.7		Code Unit		NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AFR %	от °C	OP kPa
ng 0	Elimination of extreme values									
Inge 4279 5709 4271 5708 5637 7555 7005 755 7555 7006 5637 7555 7005 755 7555 5006 5637 7555 7005 755 755 5006 5637 1005 18.02 755 5175 506 5637 1005 1005 86 60.02 4210 0.04 1005 174 49020/HVIO3 174 4203 9695 1005 174 49020/HVIO3 174 4203 9695 1015 174 49020/HVIO3 174 2036 955 1015 174 49020/HVIO3 173 2037 2036 117 174 40020/HVIO3 173 2035 2035 2035 118 117 111 101 101 101 101 101 101 101 101 101 101 101 101 101	Lower limit Upper Limit			0 50.00	0 3 000	0 150 000	0 10 000		50 1 200	0 1 000
4279 5700 4271 578 500 537 566 567 566 576 500 567 500<	Raw Data Measured Range									
7% 7.0% 7.0% 7.0% 7.0% 7.0% 7.0% 7.0% 7.0% 95% 18.02 778 93815 6.343 9586 6.343 9586 NCSG * OH) 106 1/26 85 2.225 2.351 0.04 MCSG * OH) 1/14 KgN20 / HNG3 197 6.366 6.343 866 Mos 17.14 KgN20 / HNG3 197 6.3660 6.361 860 Mos 17.14 KgN20 / HNG3 197 6.3660 6.3671 860 Mos 95% 6.798 3.37 6.798 871 873 Mos 1.11 1.11 81.2% 108 2.072 331 6.793 Mos 1.11 1.11 1.11 81.2% 7 2.072 331 6.793 Mos 1.11 1.11 1.11 1.11 1.01 1.01 1.01 1.01 Mos 2.33 2.33 2.31 <	Count		4 279		4 281		5 708		5 708	5 708
NCSG * CH) 100.2 100.2 100.4 86.020 4.210 0.015 86.02 NCSG * CH) 106 100.4 85.225 2351 0.04 NCSG * CH) 1.74 40/20 106 1.20 0.015 8.60 NCSG * CH) 1.74 40/20 1.73 80.6 8.61 0.015 note interval 1.74 40/20 1.74 40/20 1.015 1.01 1.015 1.016 1.023 1.016 1.023 1.015 1	as % of Dataset		75%		75%		100% 7		100%	
10.65 364 68.20 4.210 10.15 NCS3 * OH) 1/1	Minimum Maximum			0.02	167 778	61 /51 93 815	с 6 343	0 18.68	38 910	681
60.92 60.4 65 2.25 2.351 0.64 •NCSG * OH) 106 NXO 106 NXO 106 NXO noo interval 1.74 kgN2O/1HNO3 197 63.680 531 72.341 noo interval 1.74 kgN2O/1HNO3 197 63.680 531 72.341 noo 1.74 kgN2O/1HNO3 197 63.680 69% 96%<	Mean			10.65	364	68 020	4 210	10.15	697	568
* NCSG * OH) 106 T N2O noe interval 1.74 kgN2O / HNO3 noe interval 4121 4 851 72 851 72 851 72 853 851 72 866 83 878 220 81.2% 81.2% 81.2% 81.2% 81.2% 104 T N2O 104 T N2O 105 85 108 2.18 108 2.18 108 2.18 111 2.01 81.2% 108 2.18 111 2.01 81.2% 111 2.01 81.2% 111 2.01 111 2.01 111 2.01 111 2.01 111 2.01 111 2.01 111 2.01 111 2.01 112 1.18 111 2.01 111 2.01 111 2.01 111 1.18 111	Standard Deviation Total			6.04 60 792	85	2 225	2 351	0.64	337	126
noe interval 197 63 197 63 531 72 531 72 96% 63 531 72 206 63 531 73 531 72 531 73 531 72 531 71 40 72 78 218 73 78 218 73 78 218 218 6 1,71 40/10 78 2,93 2,18 79 2,18 2,18 6 1,71 1,11 7 1,11 2,01 6 1,71 1,18 7 1,11 2,01 7 1,11 2,13 7 1,11 1,18 6 1,71 1,18 7 1,11 1,18 7 1,11 1,18 7 1,11 1,18 6 1,71 1,18 7 1,11 1,18 7 1,11 1,18 7 1,11 1,11 7 1,11 1,11 7 1,11 1,11 7 1,11<	N2O Emissions (VSG * NCSG * OH) Emission Factor		106 1.74	t N20 kgN20 / tHN03						
197 197 197 197 197 131 172 108 110 110 111 100 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 218 2.33 1.35 1.35 1.35 111 2.18 2.33 2.33 1.11 2.01 111 2.01 1.35 1.35 1.35 1.35 111 2.01 1.35 1.35 1.35 111 2.01 1.15 1.15 111 2.01 1.35 1.35 111 2.01 1.35 1.35 111 2.01 1.35 1.35 111 2.01 1.35 1.35 111 2.01 1.35 1.35 111 2.01 1.35 1.35 111 2.01 1.35 1.35 111 1.35 1.35 1.35 111 1.35 1.35 1.35 111 1.35 1.35 1.35 111 1.35 1.35 1.35	Data within the confidence interval									
197 197 197 153 531 72 96% 66% 96% 96% 78 200 63 * NCSG * OH) 1.71 81.2% 78 2.18 2.18 97 2.33 37 78 2.31 37 78 2.33 37 78 2.33 37 78 2.33 37 78 2.33 37 78 2.33 31.3% 78 2.33 1.11 201 2.33 2.33 8 1.11 2.01 8 1.35 1.88 6 1.71 1.85 7 1.85 1.85 6 1.71 1.85 7 1.85 1.85	95% Confidence interval									
10 104 103 104 104 104 104 104 104 104 103 104 104 103 104 <td>Lower bound</td> <td></td> <td></td> <td></td> <td>197</td> <td>63 660</td> <td></td> <td></td> <td></td> <td></td>	Lower bound				197	63 660				
4 121 96% 96% 200 853 357 357 357 357 357 357 357 3	Upper bound				531	72 381				
96% 96% 96% 96% 96% 96% 96% 978 978 978 978 978 978 978 97 971 970 971 972 978 97 97 978 97 978 97 978 978	Count				4 121	4 203				
10 104 N20 57 357 357 357 357 357 357 371 kgN20 / tHN03 357 81.2% 81.2% Moving Average Rule 1 Actual Factors Moving Average Rule 1 1 3 1.11 2.18 2.31 1 3 1.11 2.01 1 1 5 1.71 1.88 2.31 1 6 1.71 1.88 1 1 7 - - 1 1 1 7 - - 1 1 1 1	as % of Operating Hours				96% 300	98% 55 55				
Actual Factors Moving Average Rule Actual Factors Moving Average Rule Actual Factors Moving Average Rule 1 2:18 2 2:93 3 1.11 4 1.13 5 1.71 6 1.71 1.88 2.31 6 1.71 1.88 2.01 5 1.71 1.88 1.88 6 1.71 1.85 4.01	Mavimum				200 531	72 372				
1) 104 t N20 1) 1.71 kgN20 / tHN03 81.2% 81.2% Actual Factors Moving Average Rule 3 1.11 2.18 4 1.11 2.01 5 1.71 1.88 6 1.71 1.88 7 - 1.85	Mean				357	67 983				
Actual Factors 1.71 Actual Factors 81.2% Actual Factors 218 1 1 2 218 3 1.83 4 1.11 5 1.31 6 1.71 7 -	Standard Deviation				78	2 072				
I) 1.71 Actual Factors 81.2% Actual Factors 218 1 2 293 3 1.11 5 1.135 6 1.77 7 - 7 7 - 1.355	N2O Emissions (VSG * NCSG * OH)		104							
Actual Factors Actual Factors 1 218 2 218 3 1.11 5 1.35 6 1.71 7 -	Actual Project Emission Factor (EF_PActual) Abatement Ratio		1.71 81.2%							
1 2.18 2 293 3 1.83 1.13 5 1.131 6 1.71 7 - 1.71 1.71 1.71	Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule					
2 293 3 1.183 4 1.11 5 1.35 6 1.71 7 .		F		2.18	200					
3 1.183 4 1.11 5 1.35 6 1.71 7 -		0 0		2.93						
4 1.11 5 1.35 6 1.71 7 - 1.85 kgN20 / tHI		ς, ι		2.31						
6 1.71 7 - 1.85 kgN20 / tHN		4 v.		2.01						
4		99		1.85						
		7	I							
	Project Emission Factor (EF P)		1.85	kaN20 / tHNO3						
Abatement Ratio	Abstamont Datio		70.507	0						

© 2008, Vertis Finance

2

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 8MONITORINGPERIOD:FROM:17/05/2012

TO: 31/12/2012

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1	MEASUREMENT PROCEDURE FOR N₂O CONCENTRATION AND TAIL GAS	
	3.1	VOLUME FLOW 1 TAIL GAS N ₂ O CONCENTRATION	6 6
	3.1	-	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	HISTORIC CAMPAIGN LENGTH	7
4.		PROJECT EMISSIONS	8
	4.1	1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	20
	6.1	APPLIED PRINCIPLE	20
	6.2	STACK GAS VOLUME FLOW	21
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	21
	6.4	STACK GAS TEMPERATURE	21
	6.5	STACK GAS PRESSURE	21
7.		EMISSION REDUCTION CALCULATIONS	22

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 8 of ACHEMA UKL nitric acid plant and quantity of emission reduction generated during the sixth project campaign on Line 8.

The first project campaign on Line 8 started on 17/04/2008. Secondary catalyst was installed on 11/06/2008. Total quantity of emission reductions generated during the sixth project period from 17/05/2012 through 31/12/2012 on Line 8 is **72 018 ERUs**.

EMISSI	ON REDUCTION		
Baseline Emission Factor	EF_BL	6.93	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	2.41	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	63 577	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	51 059	tHNO3
Nitric Acid Produced in the Project Campaign	NAP P	51 398	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	72 018	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		95.3%	1

T 1 Emissior	n reduction	calculations
--------------	-------------	--------------

EMISSION REDUCTION PER YEAR			
Year	2011	2012	2013
Date From		17 May 2012	
Date To		31 Dec 2012	
Nitric Acid Production		#N/A	
Emission Reduction		#N/A	
ER_YR = ER * NAP_P_YR / NAP_P			

Baseline emission factor established for the Line 8 during baseline measurement carried from 01/09/2007 through 15/04/2008 is 6.93 kgN₂O/tHNO₃.

Project emission factor during the sixth project campaign after installation of secondary catalysts on Line 8, which started on 17/05/2012 and went through 31/12/2012 with secondary catalyst installed and commissioned on 11/06/2008, is 2.41 kgN₂O/tHNO₃.

During the project campaign 51 398 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 8 emission reductions including information on baseline emission factor setting for the Line 8.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 8 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 8 has been carried out from 01/09/2007 through 15/04/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N₂O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

 $BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$

where:

Variable	Definition
EF_{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
BE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN_2O/m^3)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 8 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD..

3.3 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous 5 campaigns), has been used as a cap on the length of the baseline campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 8 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PE_n = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N_2O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 Project Campaign Length

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

Because the nitric acid production during the project was lower than the baseline, the NCSG values of the baseline beyond the project NAP were eliminated at 51 059 tHNO3.

4.4 Leakage

No leakage calculation is required.

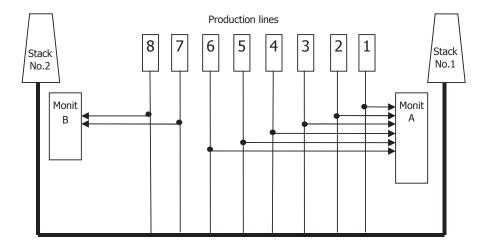
4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)


5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N₂O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

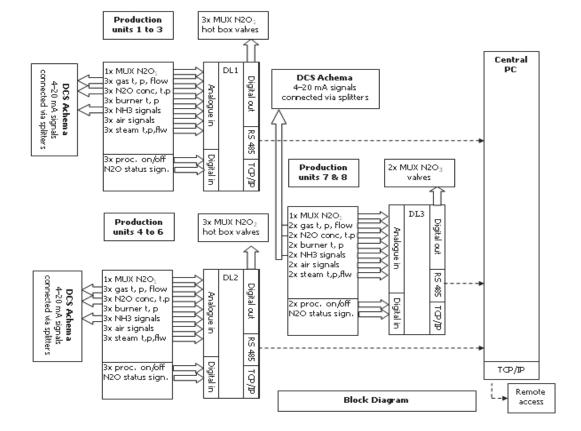
Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;


Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS)

N₂O concentration in the stack Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

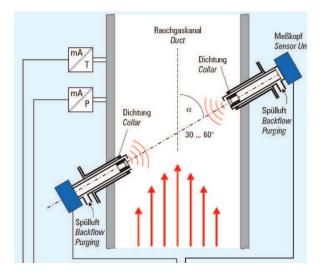
Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

N₂O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

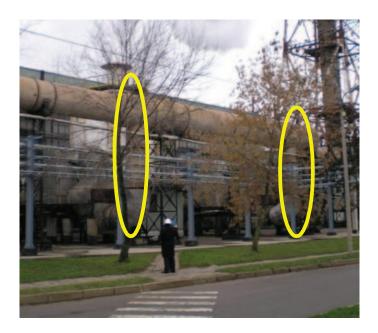
Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.


 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.


Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas steam injection elimination

Steam injected into the Achema UKL-7 tail gas for purpose of increasing the turbine output is eliminated from the tail gas mass flow calculation by following formulae:

flow - STVF= Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325)*((100-Humi)/100)

where Humi (water content)=

(Flow_steam*1.2436)/(Flow_N2O*(273.15/(273.15+Temp))*(Press/101.325))*100+0.6

where 1.2436 is the conversion factor from kg/h to Nm3/h and 0.6% is a value of humidity present in a flue gas permanently without steam injection

The Flow_steam parameter necessary for calculation of the water content in the dataloggers is provided in the kg/h unit.

MONITORING REPORT

Achema measures steam flow in kg/h using formula Q=C*sqrt(dp), where C is flow constant which is already integrated using an orifice plate sizing program. The orifice plate calculation for injection steam has been done for temperature 250°C and pressure 6 bar.

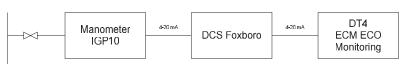
Flow steam in kg/h measured by using the constant steam T and P values is then recalculated to actual steam T and P values valid for relevant hours and as result the STVF value cleaned of the steam injected is used for further emission reductions calculations.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

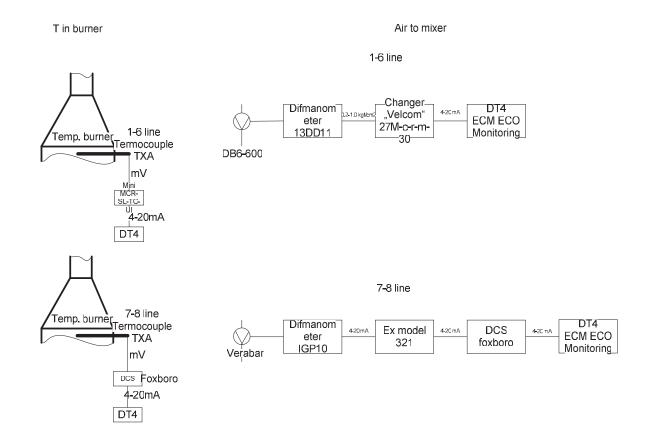
Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:


Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line



NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 20/10/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

$$Y = a + bX$$

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Xo: X old This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

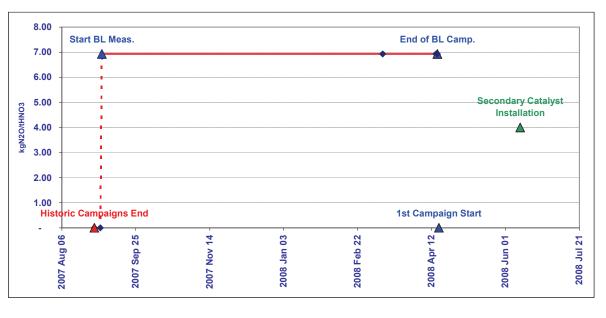
7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 63 620 tHNO₃ and time duration was on average 228 days. Table contains also information on suppliers of primary catalysts for the line 8.

Line	ACHEMA UKL-8	Production	Start	End	Days	Production per day	Primary Catalyst	Composition
Historic Campaigns	1 t HNO3	-	00 Jan 1900	00 Jan 1900	-	n/a		0 N/A *
	2 t HNO3	62 575	10 Dec 2004	17 Aug 2005	250	250	Heraeus	N/A *
	3 t HNO3	63 418	02 Nov 2005	14 Jun 2006	224	283	Umicore	N/A *
	4 t HNO3	63 138	15 Jun 2006	01 Feb 2007	231	273	Johnson Matthey	N/A *
	5 t HNO3	65 347	02 Feb 2007	28 Aug 2007	207	316	Johnson Matthey	N/A *
Average HNO3								
production	t HNO3	63 620			228	279	* Confidential but avail	able for the verification
Project Campaigns	BL t HNO3	63 577	01 Sep 2007	15 Apr 2008	227	280	Umicore	N/A *
	PL t HNO3	51 398	17 May 2012	31 Dec 2012	228	225	Umicore	N/A *

T 2 Historic campaigns

The project campaign production value of 51 398 tHNO3 was lower than historic nitric acid production set at level of 63 620 tHNO3.


It is business as usual scenario in Achema UKL-7 plant to keep using primary catalysts from several suppliers and with several compositions. Selection of primary catalysts is determined by technical parameters of their use and price levels offered by suppliers in specific time. Primary catalysts used during the baseline campaign, if other than used in previous campaign/s, did not increase emissions of N2O as confirmed by relevant statements provided to the verifier.

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 01/09/2007 and continued through 15/04/2008 when the 63 577 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached - tHNO₃.

ACHEMA UKL-8	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Aug 28	2007 Sep 01	2008 Mar 10	2008 Apr 15	2008 Apr 16
Baseline Factor kgN2O/tHNO3	-		6.93	6.93	6.93
Production tHNO3		-	51 059	63 577	-
Per Day Production tHNO3	279.0				
Baseline less Historic Production	(42.6)				
Baseline less Historic Days	(0.2)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 8 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 01/09/2007 through 15/04/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 468 tN_2O .

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.890%, which is further modified by an uncertainty of 0.108% due to under-sampling. As a result we have arrived to the baseline emission factor of 6.93 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 8 during the project campaign. Project campaign started on 17/05/2012 and went through 31/12/2012.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N_2O emissions (PE_n) as follows:

 $PE_n = VSG * NCSG * 10-9 * OH (tN2O)$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.41 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

BASELINE EMI		SSION FACTOR									
Parameter	meter	Operating Hours	Nitric Acid Production	N2O Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Batio	Oxidation Temperature	Oxidation Pressure	AM S in Operation	Nitric Acid Production NCSC
0	Code Unit	ЧЧ	NAP t/h	NCSG mg N20/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	от °С	0P kPa	Ч	NAP t/h
Elimination of extreme values											
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000		0 50
Raw Data Measured Range											
Count		4 719 87%	4 954 01%	3 939	4 598	4 987	4 663	5425	5 425 4008/	4 129 7.00/	4 108 750/
as % of Dataset Minimum		0/ /0	0.00	0		0 %76		27		/ 0%	0
Maximum			24.99	1 968		6 796		912	654		25
mean Standard Deviation Total			12.83 5.07 63 577	1 056	78 981 16 813	5 591 1 520	10.07 0.93	801 245			12 5 51 059
NOO Emissions / VSC * NCCC * OUV		304									
Emission Factor		5.83	kgN20 / tHN03								
Permitted Range											
Minimum							0	880	550		
Maximum						7 500	11.20	910	800		
Data within the permitted range											
Count		4 453		3 127	4					4 129	
as % of Operating Hours Minimum		34 /0		00% 781	88% -					81%	
Maximum				1 732							
Mean				1 227	77 635						
Standard Deviation				207							
N2O Emissions (VSG * NCSG * OH) Emission Factor		450 6.65	t N2O kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound Upper bound				821 1633	44 549 110 722						
				3 063	3 010						
as % of Operating Hours				55% 65%	84%						
Minimum Maximum				828 1 632	75 503 96 663						
Mean Standard Deviation				1 221	81 213 2 729						
NDO Emissions / NGC + NCSC + OHV		460	4 N3O								
NZU Emissions (VOG = NCGG = OF) Emission Factor (EF_BL)		6.93	400 LN20 6.93 kgN20 / tHNO3								

~

VERTIS

MONITORING REPORT

ject emission fa
ect er
ject
0
T 5 Pr

		:	н.	0014					:
	rarameter	Operating Hours	Nitric Acid Production	N2U Concentration	Gas Volume Flow	Ammonia Flow Rate	Ammonia to Air Ratio	Oxidation Temperature	Oxidation Pressure
	Code Unit	но	NAP t/h	NCSG mg N2O/Nm3	VSG Nm3/h	AFR Nm3/h	AIFR %	от °С	OP kPa
Elimination of extreme values									
Lower limit Upper Limit			0 50.00	0 3 000	0 120 000	0 10 000	0 - 20.00	50 1 200	0 1 000
Raw Data Measured Range									
Count as % of Dataset		3 323 61%	5 453 100%	3 330 61%	3 329 61%	5 452 100%	4 158 76%	5 453 100%	5 452 100%
Minimum				41	43 587	с С	0	(20)	
Maximum			17.39	340 61	104 922 02 566	7 356	18.74	1 037	689 460
mean Standard Deviation Total			7.15 51 398	19	2 215	2 844	3.86	313	
N2O Emissions (VSG * NCSG * OH) Emission Factor		17 0.33	t N2O kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval Lower bound				24	78 225 96 007				
				98	86.907				
Count				3 189 06%	3 202 06%				
as 70 operating rooms Minimum				24	78 240				
Maximum Mean				98 61	86 890 82 547				
Standard Deviation				12	1 854				
N2O Emissions (VSG * NCSG * OH)		17							
Actual Project Emission Factor (EF_PActual) Abatement Ratio		0.32 95.3%	kgN20 / tHN03						
Moving Average Emission Factor Correction		Actual Factors	Moving Average Rule	ule					
	•		4.35						
	2 10	4.20	4.30						
	04		3.03 3.03						
	5		2.83						
	9	0.32	2.41						
				_					
Project Emission Factor (EF_P)		2.41	2.41 kgN20 / tHNO3						
Abatement Ratio		65.2%							

© 2008, Vertis Finance

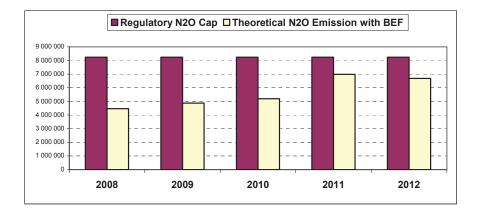
2

Comparison of the baseline emission factors against N₂O mass limit in the IPPC permit

The N2O cap is defined in the IPPC permit on a yearly basis for the whole UKL-7 plant. The emission can be distributed among lines irregularly, as long as the total emission in each year stays under the yearly limit.

The regulatory emission factor EFReg is defined as the emission factor which would result in hitting the emission cap on a plant level.

We apply a method to attribute EFReg values to each campaign in a way that can be considered fair, and demonstrates a balanced scenario. The yearly N2O caps are allocated to campaigns proportionate to the amount of Nitric Acid they produced compared to other lines during the same year. The total cap of a campaign is the sum of such yearly limits. This way the total amount of plant level limit is always allocated. If each and every campaign would operate with those emission levels, the plant would just hit its yearly N2O caps in each year.


In incomplete years, the initial EFReg values will be high for the first campaigns, but will be lowered and balanced out as new campaigns are finished. These values serve informational purposes, and the real IPPC cap is checked on a plant level.

The main indicator of staying under the IPPC limit is the plant level yearly N2O emission calculated with baseline emission factors. Whenever an overflow of N2O emission would occur on plant level in a year, the sum of the product of baseline emission factors and yearly campaign NAP values would immediately indicate this and the projects would not be able to generate more ERU-s in that year.

```
Campaign_N2O_Cap =
    sum( Campaign_NAP[y] / Total_NAP[y] * Plant_N2O_Cap[y]
    for y in [2008,2009,2010,2011,2012] )
Campaign_EFReg = Campaign_N2O_Cap / Campaign_NAP
Plant_N2O_Emission[y] =
    sum( Campaign_BEF[c] * Campaign_NAP[c,y] for c in campaigns )
```

- where Campaign_NAP[y] is the Nitric Acid Produced on a given campaign in year "y"
- Total_NAP is the total production on all lines in that year.
- the campaign EFReg is the campaigns emission cap divided by the campaign's actual production.
- Plant_N2O_Emission[y] is the theoretical level of N2O emitted in year "y" by using the Baseline Emission Factors of each campaign, and calculating the "sumproduct" of BEF-s and yearly Nitric Acid Production of the lines

Regulatory values		2008	2009	2010	2011	2012
Regulatory N2O Cap	kgN2O	8 494 200	9 266 400	9 266 400	9 266 400	9 266 401
Excluding Line 9	kgN2O	8 236 800	8 236 800	8 236 800	8 236 800	8 236 801
Plant emissions under baseline	conditions	2008	2009	2010	2011	2012
Total Nitric Acid Produced	tHNO3	587784	592 413	617 892	838757	823 808
Theoretical N2O Emission with BEF	kgN2O	4 472 161	4 871 985	5 194 928	6 984 596	6 684 348
Weighted average BEF	kgN2O/tHNO3	7.61	8.22	8.41	8.33	8.11
Critical BEF to reach cap with actual NAP	kgN2O/tHNO3	14.01	13.90	13.33	9.82	10.00
N2O emission overflow	kgN2O	0	0	0	0	0

	Nitric acid p		ring project cam		2008	2009	2010	2011	2012		ortionate Reg		
Line	Campaign	BEF	Start	End	NAP					NAP	N2O Cap	EFReg	N2O with BEF
1	0	9.63	14 Mar 2008	21 Oct 2008	60 691					60 69 1	850 482	14.01	584 454
2	0	7.92	09 Nov 2007	20 May 2008	28 951					28 951	405 704	14.01	229 295
3	0	4.42	01 Feb 2008	30 Jun 2008	42 999					42 999	602 557	14.01	190 055
4	0	7.20	28 Dec 2007	31 Jul 2008	57 815					57 815	810 180	14.01	416 268
5	0	6.61	29 Nov 2007	17 Jun 2008	47 192					47 192	661 323	14.01	311 942
6	ō	10.34	11 Jan 2008	21 Jul 2008	60 850					60 850	852 711	14.01	629 190
7	ŏ	7.85	12 Sep 2007	27 Mar 2008	26 856					26 856	376 347	14.01	210 822
8	ŏ	6.61	02 Sep 2007	15 Apr 2008	34 7 16					34 716	486 487	14.01	229 473
1	1	9.63	04 Nov 2008	10 May 2010	1 913	55 103	37 831			94 846	1 297 246	13.68	913 370
2	1	7.92	07 Nov 2008	16 Jan 2009	12 151	241	57 051			12 392	173 627	14.01	98 145
3	1	4.42	04 Jul 2008	27 Aug 2008	13 520	241				12 592	189 455	14.01	59 757
4	1					07.400							
		7.20	06 Oct 2008	28 Apr 2009	11753	27 403				39 157	545 713	13.94	281 927
5	1	6.61	02 Jul 2008	22 Apr 2009	39 871	20 358				60 229	841 780	13.98	398 114
6	1	10.34	25 Jul 2008	21 Apr 2009	41 416	26 902				68 318	954 414	13.97	706 407
7	1	7.85	03 Jul 2008	22 Oct 2008	31 445					31 445	440 647	14.01	246 842
8	1	6.61	11 Jun 2008	26 Nov 2008	45 181					45 181	633 132	14.01	298 644
1	2	9.63	13 Sep 2010	21 Aug 2011			36 738	72 938		109 676	1 206 008	11.00	1 056 183
2	2	9.51	16 Jan 2009	12 Oct 2009		61 628				61 628	856 864	13.90	586 082
3	2	5.45	27 Aug 2008	16 Jun 2009	24 950	31 372				56 322	785 819	13.95	306 953
4	2	7.73	07 May 2009	06 May 2010		42 744	22 505			65 249	894 308	13.71	504 375
5	2	6.61	23 Apr 2009	14 Jan 2010		66 630	4 642			71 273	988 299	13.87	471 111
6	2	10.34	27 Apr 2009	25 Nov 2009		66 297				66 297	921 776	13.90	685 507
7	2	9.09	29 Jan 2009	01 Nov 2009		58 897				58 897	818 894	13.90	535 374
8	2	6.96	09 Dec 2008	20 Nov 2009	5 5 1 3	53 779				59 291	824 982	13.91	412 669
1	3	9.63	23 Aug 2011	21 Mar 2012	0010	00110		41914	28 130	70 044	692 863	9.89	674 525
2	3	9.51	13 Oct 2009	21 Oct 2012		17 444	68 634	41314	20 130	86 079	1 157 471	13.45	818 607
	3												
3		5.45	17 Jun 2009	16 Nov 2010		35 016	49 304	00.000		84 321	1 144 113	13.57	459 548
4	3	7.73	03 Aug 2010	09 Mar 2011			38 627	20 6 08		59 235	717 291	12.11	457 886
5	3	6.61	12 Aug 2010	17 Mar 2011			48 928	27 358		76 285	920 889	12.07	504 247
6	3	10.34	27 Nov 2009	20 Sep 2010		9 863	76 524			86 387	1 157 237	13.40	893 243
7	3	9.09	03 Nov 2009	08 Dec 2010		8 079	63 581			71 660	959 892	13.40	651 388
8	3	6.96	21 Nov 2009	25 Oct 2010		10 657	76 105			86 762	1 162 695	13.40	603 866
1	4	9.63	22 Mar 2012	16 Oct 2012					61 936	61 936	619 264	10.00	596 445
2	4	9.51	22 Oct 2010	12 May 2011			25 426	41966		67 392	751 061	11.14	640 901
3	4	5.46	19 Nov 2010	25 Aug 2011			12 366	70 693		83 058	859 059	10.34	453 498
4	4	7.73	16 Mar 2011	05 Oct 2011				61 337		61 337	602 343	9.82	474 134
5	4	6.61	18 Mar 2011	09 Nov 2011			04 545	58 570		58 570	575 177	9.82	387 151
6	4	10.34	01 Oct 2010	10 Aug 2011			31 515	78 822		110 337	1 194 164	10.82	1 140 887
7	4	9.09	10 Dec 2010	30 Aug 2011			6 843	67 872		74 715	757 741	10.14	679 160
8	4	7.23	09 Nov 2010	01 Sep 2011			18 323	67 589		85 912	907 990	10.57	621 141
1	5	8.39	18 Oct 2012	31 Dec 2012				00.074	22 187	22 187	221 832	10.00	186 146
2	5	9.51	13 May 2011	08 Dec 2011				62 374	50.004	62 374	612 530	9.82	593 179
3	5	5.46	26 Aug 2011	26 Jul 2012				22 845	50 99 1	73 836	734 177	9.94	403 146
4	5	7.73	21 Oct 2011	28 Aug 2012				15819	56 335	72 154	718 612	9.96	557 753
5	5	6.61	28 Nov 2011	10 Jul 2012				8 6 7 7	61 183	69 860	696 944	9.98	461 774
6 7	5 5	10.34 9.09	10 Aug 2011 02 Sep 2011	23 Apr 2012 07 May 2012				47 145 25 709	38 494 41 105	85 639 66 814	847 859	<mark>9.90</mark> 9.93	885 510 607 341
											663 457		
8	5 6	7.23	01 Sep 2011	05 Apr 2012				39 345	26 497	65 842 0	651 305	9.89	476 037
2	6	9.51	00 Dec 2044	17 101 201 2				7 1 75	60.067		672 020	9.98	644 007
			09 Dec 2011	17 Jul 2012				7 175	60 267	67 441	673 030		641 367
3	6	5.45	27 Jul 2012	31 Dec 2012					51 519	51 519	515 107	10.00	280 777
4	6	7.18	28 Aug 2012	31 Dec 2012					37 897	37 897	378 909	10.00	272 099
5	6 6	6.61 10.32	11 Jul 2012	31 Dec 2012					60 029	60 029	600 193	10.00	396 789
6 7			26 Apr 2012	22 Oct 2012					59 623	59 623	596 139	10.00	615 311
8	6	9.09	08 May 2012	31 Dec 2012					60 792	60 792	607 828	10.00	552 602
8	6	6.93	17 May 2012	31 Dec 2012					51 398	51 398	513 896	10.00	356 186
1	7	9.16	17 Jul 2012	16 Nov 2010					40.615	0 49 615	496 072	10.00	454 473
	7	9.10	17 JUI 2012	16 Nov 2012					49 615		490 072	10.00	404 473
3	7									0			
4										0			
5	7	8.25	10 Dec 2040	21 Dec 2040					E 011	0	58 104	10.00	47 943
6 7	7	0.20	12 Dec 2012	31 Dec 2012					5 811	5 811 0	50 104	10.00	47 943
8	7									0			
0	1									0			

The green EFReg values show campaigns which stayed under their theoretical fair N2O emission limit. These have slack values which can compensate for other lines that may go above this relative limit, until the plant level IPPC cap is broken.

The summary table "Plant emission under baseline conditions" contain yearly emission figures, and as all of the "Theoretical N2O Emission with BEF" stay under the yearly caps (made visible by the chart), none of the IPPC limits were ever violated. By taking the currently finished campaigns into account, all the ERU-s can be claimed so far.