page 1

# **MONITORING REPORT**

# JI0079 - CMM utilisation on the Joint Stock Company named Komsomolets Donbassa Coal Mine of DTEK (Donbasskaya Toplivnaya Energeticheskaya Kompanya)

# Monitoring Report 01 Monitoring period 09/08/2008 to 03/11/2009

Version 1.c 28 January 2010

# CONTENTS

- A. General project activity and monitoring information
- B. Key monitoring activities
- C. Quality assurance and quality control measures
- D. Calculation of GHG emission reductions

# <u>Annexes</u>

Annex 1: References Annex 2: Installation scheme including metering positions Annex 3: Data flowchart Annex 4: Deviation from the monitoring plan as stated in the PDD Annex 5: Photo of the plant

#### page 2

# SECTION A. General project activity information

# A.1 Title of the project activity:

CMM utilisation on the Joint Stock Company named Komsomolets Donbassa Coal Mine of DTEK (Donbasskaya Toplivnaya Energeticheskaya Kompanya)

# A.2. JI registration number:

JI0079

## A.3. Short description of the project activity:

In this project CMM, which has been sucked out of the active coal mine "Komsomolets Donbassa", has been utilised in two enclosed flares. The methane has been burned to less harmful CO<sub>2</sub>.

In this monitoring report credits, produced in the first monitoring period should be monitored for the purpose of the verification as Emission Reductions Units ERU.

| Unit      | period                | CH <sub>4</sub> [t/period] |
|-----------|-----------------------|----------------------------|
| Flare 3+4 | 09/08/2008-31/12/2008 | 975                        |
| Flare 3+4 | 01/01/2009-03/11/2009 | 2,794                      |
| Total     | 09/08/2008-03/11/2009 | 3,769                      |

Table-1 Amount of methane utilised for flaring

## A.4. Monitoring period:

Start date 09/08/2008 (Flare 3) 27/10/2008 (Flare 4)

End date 03/11/2009 (both flares)

Start day and end day included.

## A.5. Methodology applied to the project activity (incl. version number):

## A.5.1. Baseline methodology:

The approved consolidated methodology ACM0008 / Version 03 "Consolidated baseline methodology for coal bed methane and coal mine methane capture and use for power (electrical or motive) and heat and/or destruction by flaring") has been used to identify the baseline scenario of the proposed JI project [ACM0008].

According to ACM0008 the methodological "Tool to determine project emissions from flaring gases containing methane", EB 28 Meeting report, Annex 13, has been taken for the determination of the project emissions from flaring. In difference to the flaring tool a combustion

efficiency of 99.5%, according to the IPCC guidelines (see also ACM0008 Version 1 and Version 2), has been taken into account instead of the default value of 90% as given in the flaring tool.

#### A.5.2. Monitoring methodology:

A monitoring plan provided by the "Approved consolidated baseline methodology ACM0008", Version 03, Sectoral Scope: 8 and 10, EB28 is applied to the project [ACM0008].

Applicability requirements for the monitoring plan of the ACM008 methodology are identical to respective requirements of the baseline setting.

According to ACM0008 the methodological "Tool to determine project emissions from flaring gases containing methane", EB 28 Meeting report, Annex 13, has been taken for the determination of the project emissions from flaring. In difference to the flaring tool a combustion efficiency of 99.5%, according to the IPCC guidelines (see also ACM0008 Version 1 and Version 2), has been taken into account instead of the default value of 90% as given in the flaring tool.

#### A.6. Status of implementation including time table for major project parts:

Table-2 Status of Implementation

| Unit: Flare 3                    |                                                         |  |  |
|----------------------------------|---------------------------------------------------------|--|--|
| Manufacturer: OAO "NPAO Vniikomp | pressormash" a subsidiary of Ukrrosmetal, Sumy, Ukraine |  |  |
| Type:UKG-5/8                     |                                                         |  |  |
| Serial Numbers: 03-08            |                                                         |  |  |
| Capacity: 5-8 MW                 |                                                         |  |  |
| Activity                         | Status                                                  |  |  |
| Date of commission               | 14/02/2008                                              |  |  |
| Last major overhaul none         |                                                         |  |  |
| Last inspection                  | August 2009 – Eco-Alliance                              |  |  |
| Start of operation               | 09/08/2008                                              |  |  |
| Planned installation date [PDD]  | Sept 2007                                               |  |  |

| Unit: Flare 4                              |                                                     |  |  |  |
|--------------------------------------------|-----------------------------------------------------|--|--|--|
| Manufacturer: OAO "NPAO Vniikompres        | sormash" a subsidiary of Ukrrosmetal, Sumy, Ukraine |  |  |  |
| Type:UKG-5/8                               |                                                     |  |  |  |
| Serial Numbers: 04-08                      |                                                     |  |  |  |
| Capacity: 5-8 MW                           |                                                     |  |  |  |
| Activity                                   | Status                                              |  |  |  |
| Date of commission                         | 14/02/2008                                          |  |  |  |
| Last major overhaul none                   |                                                     |  |  |  |
| Last inspection August 2009 – Eco-Alliance |                                                     |  |  |  |
| Start of operation 27/10/2008              |                                                     |  |  |  |
| Planned installation date [PDD]            | April 2008                                          |  |  |  |

Installation of further units as stated in the PDD is delayed due to the Global Financial Crisis and should follow in late 2009 and 2010.

## A.7. Intended deviations or revisions to the registered PDD:

The installation of further units as stated in the PDD is delayed due to the Global Financial Crisis.

#### Central Shaft

At the time the main degasification pipe is renewed. The works should be finalised in summer 2011. The installation of the flares 1 and 2 as well as the boiler 1 is planned for late 2011 or early 2012.

#### <u>Air shaft</u>

The boiler 2 at Air Shaft has been upgraded with a CMM burner system and started operation in November 2009. A monitoring system for the boiler has not been installed yet, the installation is planned for early 2010.

The installation of the cogeneration units is planned for summer 2011.

The maximum supply pressure from the existing central gas suction system turned out to be not sufficient for the supply of the flares and the boiler with gas. Both flares have been equipped with compressors for additional pressure generation.

#### A.8. Intended deviations or revisions to the registered monitoring plan:

As both flares have been equipped with compressors for additional pressure generation, additional power has been consumed by the project. This power consumption has been included into the project emissions using the Baseline Carbon Emission Factor for the Ukrainian power grid, which has been specified in the PDD.

Because the consumed power amount is small, it has not been measured, but has been calculated using the operation hours of the flares, see Annex 4.

The project emissions for uncombusted methane have been calculated using formulae referring to the flaring tool and not formula (9) from the PDD, see Annex 4.

## A.9. Changes since last verification:

None. 1<sup>st</sup> verification

## A.10. Person(s) responsible for the preparation and submission of the monitoring report:

Coal Mine Komsomolets Donbassa

- Alexander Mikhaylovich Agramakov, Techical Director until 28/04/2009
- Vladimir Raskidkin, Techical Director from 01/03/2009

#### Eco-Alliance OOO

- Vladimir Kasyanov, Managing director
- Olga Samus, Monitoring Engineer

#### Carbon-TF B.V

- Dr. Jürgen Meyer, Managing director
- Adam Hadulla, Consultant

# SECTION B. Key monitoring activities according to the monitoring plan for the monitoring period stated in A.4.

#### B.1. Monitoring equipment:

B.1.2. Table providing information on the equipment used (incl. manufacturer, type, serial number, date of installation, date of last calibration, information to specific uncertainty, need for changes and replacements):

Table-4 Monitoring equipment

| ID | Data                          | Method                  | Manufacturer           | Classification              | Serial number               | Uncertainty<br>level of data | Frequency of<br>Measurement | Instal-<br>lation |
|----|-------------------------------|-------------------------|------------------------|-----------------------------|-----------------------------|------------------------------|-----------------------------|-------------------|
| 1  | Methane<br>amount to<br>flare | Calculation             | Vniikompresso-<br>mash | GOST 8.586                  | -                           | low                          | Every 15 min.               | 2008              |
| 2  | Gas flow                      | Standard orifice        | Siemens                | ME 11202CC22<br>1BA3        | Flare 3: K2989B             | low                          | -                           | 2008              |
|    |                               |                         |                        | IDAS                        | Flare 4: K2989A             |                              |                             |                   |
| 3  | Pressure<br>difference        | Pressure<br>difference  | Siemens                | SITRANS P<br>PED:SEP DS III | Flare 3:<br>N1-W401-9002993 | low                          | Every 15 min.               | 2008              |
|    |                               | transmitter             |                        | 7MF4433-<br>1CA02-1AB1-Z    | Flare 4:<br>N1-W401-9002992 |                              |                             |                   |
| 4  | Pressure                      | Pressure<br>transmitter | Siemens                | SITRANS P<br>Serie Z        | Flare 3:<br>AZB/W4117535    | low                          | Every 15 min.               | 2008              |
|    |                               |                         |                        | AZB/W4117535                | Flare 4:<br>AZB/V7119314    |                              |                             |                   |
| 5  | Temperature                   | Resistance              | JSC "Tera",            | ТСПУ 1-3Н                   | Flare 3: 08262              | low                          | Every 15 min.               | 2008              |
|    |                               | thermometer             | Chernigov              | Рt-100 0,5%<br>80Ф8         | Flare 4: 08269              |                              |                             |                   |

Flame 2008 6 Thermocouple Herth GmbH Type S, Pt/PtRh Every 15 min. none low Temperature  $CH_4$ 2008 7 Infrared Siemens Ultramat 23 Flare 3: N1 W4-339 low Every 15 min. concentration measurement Flare 4: N1 W4-340 CH<sub>4</sub> n.n. 7a Infrared Analitpribor Gamma 100 2 units Continuous low concentration measurement Smolensk CH<sub>4</sub> n.n. 7b Infrared Azov optic-SHI-12 3 units daily low concentration mechanics plant measurement NMHC n.n. 8 Gas Very low yearly n.n. n.n n.n. concentration chromatography CMM flow n.n. 9 Pitot Tube Paul Gothe, 'V9 '777 daily low none Bochum

The CH<sub>4</sub> measurement units 7a and 7b are installed in the central suction system of the Air Shaft Nr. 3 and are taken for consistency and plausibility checks only. The SHI-12 units are hand held units which are used by the coal mine personnel to check the indication of the Gamma 100 units for plausibility.

page 6

# B.1.3. Calibration procedures:

Table-5 Monitoring equipment

| ID | Data                                            | Uncertainty<br>level of data<br>(high/medium/l<br>ow)                                 | Calibration procedure                                                                                                                            | Last<br>calibration                                         | Calibrator                                        |
|----|-------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|
| 1  | Methane<br>amount to<br>flares                  | calculation                                                                           | none                                                                                                                                             | none                                                        | none                                              |
| 2  | Standard orifice                                | 0.5 % of FSV*)                                                                        | Calibration made using procedu-<br>res of Sumystandartmetrology                                                                                  | 14.12.2009                                                  | Sumystandart-<br>metrology                        |
| 3  | Pressure difference                             | 0.075 % of<br>FSV*)                                                                   | Calibration made using procedu-<br>res of Sumystandartmetrology                                                                                  | 07.10.2009                                                  | Sumystandart-<br>metrology                        |
|    |                                                 | Drift 0,25% in five years                                                             |                                                                                                                                                  |                                                             |                                                   |
| 4  | Pressure                                        | 0.5% of FSV*)                                                                         | Calibration made using procedu-<br>res of Sumystandartmetrology                                                                                  | 07.10.2009                                                  | Sumystandart-<br>metrology                        |
|    |                                                 | Drift 0,3% per<br>year                                                                | ies of Sunystandartifiedology                                                                                                                    |                                                             | metrology                                         |
| 5  | Temperature                                     | 2.5% of FSV*)                                                                         | Calibration made using procedu-<br>res of Sumystandartmetrology                                                                                  | 07.10.2009                                                  | Sumystandart-<br>metrology                        |
| 6  | Flame<br>temperature                            | ± 1.5 K in the<br>range from<br>[0-600°C]**)<br>0.25% from<br>value above<br>600°C**) | none, thermocouple is supposed<br>to be changed at least one time<br>per year, according to the flaring<br>tool                                  | none                                                        | none                                              |
| 7  | CH <sub>4</sub><br>concentration<br>(Ultramat)  | 1.0 % of FSV*)                                                                        | Calibration made using procedu-<br>res of Sumystandartmetrology<br>Calibrations made using procedu-<br>es of Eco-Alliance OOO every<br>two weeks | 07.10.2009 –<br>Sumystandart-<br>metrology<br>25.11.09 – EA | Sumystandart-<br>metrology<br>Eco-Alliance<br>OOO |
| 7a | CH <sub>4</sub><br>concentration<br>(Gamma 100) | 1.0% of FSV*)                                                                         | Calibration made using procedu-<br>res of Sumystandartmetrology<br>Monthly calibration by coal mine                                              | 07.10.2009                                                  | Sumystandart-<br>metrology<br>Coal mine           |
| 7b | CH <sub>4</sub><br>concentration<br>(SHI-12)    | 2.5% of FSV*)                                                                         | Yearly calibrations using<br>procedures of Derzhpromnaglyad                                                                                      | 2008                                                        | Derzhprom-<br>naglyad<br>Donetsk                  |
| 8  | NMHC concentration                              | 0.001%                                                                                | Calibration made using procedures of MAKNII                                                                                                      | n.n.                                                        | MAKNII                                            |
| 9  | CMM flow                                        | 1.5%                                                                                  | none                                                                                                                                             | none                                                        | none                                              |

\*) FSV: full scale value \*\*) Fixed within EN 60584-2: 1996, Type S, Class 2

page 7

#### **B.1.4.** Involvement of Third Parties:

- The lab analysis for the determination of the NMHC concentration has been done by MAKNII
- The calibrations of CH<sub>4</sub>-concentration meters in the flares have been done by Eco-Alliance
- The calibrations of CH<sub>4</sub>-concentration meters in the central suction station have been done by Ukrteplostroy
- Yearly calibrations of all CH<sub>4</sub> meters are provided by Derzhpromnaglyad Donetsk
- Calibration of the monitoring equipment has been done by Sumy Standartmetrology
- Eco-Alliance OOO supported the coal mine with the collecting of the monitoring data.
- Emissions-Trader ET GmbH has supervised the data for plausibility and completeness.

#### B.2. Data collection (accumulated data for the whole monitoring period):

#### B.2.1. List of fixed default values:

Table-6 List of ex-ante fixed values – variables not needed in this monitoring report but stated in the PDD are marked grey (this variables are referring to project components which are not installed yet)

| ID<br>number                          | Data variable                                                                | Source of data                              | Data unit                              | Comment                                                                                                                                                                                           |
|---------------------------------------|------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P8, B49<br>CEF <sub>ELEC,PJ</sub>     | Carbon emission factor of CONS <sub>ELEC,PJ</sub>                            | official data<br>of Ukrainian<br>power grid | tCO <sub>2eq</sub> /MWh                | SenterNovem data taken<br>instead of not available<br>Ukrainian data, according<br>to information given un the<br>PDD:<br>2008: 0.695<br>2009: 0.680<br>2010: 0.666<br>2011: 0.651<br>2012: 0.636 |
| P13<br>Eff <sub>FL</sub>              | Flare combustion efficiency                                                  | ACM0008<br>Version 1&2 /<br>IPCC            | t CH₄                                  | Set to 99.5 % (IPCC)                                                                                                                                                                              |
| ₽16<br>Eff <sub>ELEC</sub>            | Efficiency of methane<br>destruction/ oxidation by heat<br>generation        | ACM0008 /<br>IPCC                           | %                                      | Set to 99.5 % (IPCC)                                                                                                                                                                              |
| P19<br>Eff <sub>HEAT</sub>            | Efficiency of methane<br>destruction / oxidation in<br>heat plant            | ACM0008 /<br>IPCC                           | %                                      | set at 99.5% (IPCC)                                                                                                                                                                               |
| P23, B19<br>CEF <sub>CH4</sub>        | Carbon emission factor for combusted methane                                 | ACM0008 /<br>IPCC                           | t CO <sub>2</sub> eq/t CH <sub>4</sub> | set at 2.75 t $CO_2eq/t CH_4$                                                                                                                                                                     |
| P28, B18<br>GWP <sub>CH4</sub>        | Global warming potential of methane                                          | ACM0008 /<br>IPCC                           | t CO <sub>2</sub> eq/t CH <sub>4</sub> | set at 21                                                                                                                                                                                         |
| B55<br>EF <sub>CO2,Coal</sub>         | CO <sub>2</sub> emission factor of fuel<br>used for captive power or<br>heat | IPCC-2006<br>1 Introduction<br>Table 1.2    | tCO₂/MWh                               | Set to 0.3406 tCO <sub>2</sub> /MWh<br>Using the value for "Other<br>Bituminous Coal" of<br>94,600 kg CO <sub>2</sub> /TJ                                                                         |
| <del>B57</del><br>Eff <sub>heat</sub> | Energy efficiency of heat<br>plant                                           | <del>Boiler</del><br><del>pass</del>        | %                                      | 91 % old coal boiler<br>91 % upgraded boiler                                                                                                                                                      |

# B.2.2. List of variables:

| Table-7 List of variables – variables not needed in this monitoring report but stated in the PDD are |
|------------------------------------------------------------------------------------------------------|
| marked grey (this variables are referring to project components which are not installed yet)         |

| ID number                            | Data variable                                                                                                             | Source of data                          | Data unit           | Comment                                                             |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------|---------------------------------------------------------------------|
| P1<br>PE <sub>v</sub>                | Project emissions in year y                                                                                               | monitored<br>data                       | t CO <sub>2eq</sub> | calculated using formulae from the PDD                              |
| P2<br>PE <sub>ME</sub>               | Project emissions from<br>energy use to capture and<br>use methane                                                        | monitored<br>data                       | t CO <sub>2eq</sub> | calculated using formulae from the PDD                              |
| P3<br>PE <sub>MD</sub>               | Project emissions from methane destroyed                                                                                  | monitored<br>data                       | t CO <sub>2eq</sub> | calculated using formulae from the PDD                              |
| P4<br>PE <sub>UM</sub>               | Project emissions from<br>uncombusted methane                                                                             | monitored<br>data                       | t CO <sub>2eq</sub> | calculated using formulae from the PDD                              |
| P5<br>CONS <sub>ELEC,PJ</sub>        | Additional electricity consumption by project                                                                             | monitored<br>data                       | MWh                 | calculated using<br>operation hours of the<br>flares                |
| P11<br>MD <sub>FL</sub>              | Methane destroyed by flaring                                                                                              | monitored<br>data                       | t CH <sub>4</sub>   | calculated using formulae from the PDD                              |
| P12<br>MM <sub>FL</sub>              | Methane sent to flare                                                                                                     | monitored<br>data                       | t CH <sub>4</sub>   | calculated using formulae from the PDD                              |
| P14<br>MD <sub>ELEC</sub>            | Methane destroyed by power generation                                                                                     | <del>monitored</del><br><del>data</del> | t CH₄               | calculated using<br>formulae from the PDD                           |
| <del>P15</del><br>MM <sub>ELEC</sub> | Methane sent to power plant                                                                                               | <del>monitored</del><br>data            | t CH₄               |                                                                     |
| P17<br>MD <sub>HEAT</sub>            | Methane destroyed by heat generation                                                                                      | <del>monitored</del><br><del>data</del> | t-CH <sub>4</sub>   | calculated using<br>formulae from the PDD                           |
| P18<br>MM <sub>HEAT</sub>            | Methane sent to heat generation                                                                                           | flow meter                              | t CH <sub>4</sub>   |                                                                     |
| P24<br>CEF <sub>NMHC</sub>           | Carbon emission factor for<br>combusted non methane<br>hydrocarbons (various)                                             | <del>lab</del><br><del>analysis</del>   | -                   | Calculated if applicable                                            |
| Р25<br>РС <sub>СН4</sub>             | Concentration of methane in extracted gas                                                                                 | IR<br>measurement                       | %                   |                                                                     |
| <del>P26</del><br>PC <sub>NMHC</sub> | NMHC<br>concentration in coal mine<br>gas                                                                                 | <del>lab</del><br>analysis              | %                   | Used to check if more<br>than 1% of emissions<br>and to calculate r |
| <del>₽27</del><br>f                  | Relative proportion of NMHC compared to methane                                                                           | <del>lab</del><br>analysis              | %                   | Calculated if applicable,<br>based on the lab<br>analysis.          |
| B1<br>BE <sub>v</sub>                | Baseline emissions in year y                                                                                              | monitored<br>data                       | t CO <sub>2eq</sub> | calculated using<br>formulae from the PDD                           |
| B3<br>BE <sub>MR,y</sub>             | Baseline emissions from<br>release of methane into the<br>atmosphere in year y that is<br>avoided by the project activity | monitored<br>data                       | t CO <sub>2eq</sub> | calculated using formulae from the PDD                              |

| ₿4<br>₿Е <sub>⊎se;y</sub>           | Baseline emissions from the<br>production of power, heat or<br>supply to gas grid replaced<br>by the project activity in year | monitored<br>data                       | <del>t CO<sub>269</sub></del> | calculated using<br>formulae from the PDD                         |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------|-------------------------------------------------------------------|
| B14<br>CMM <sub>PJ,y</sub>          | CMM captured and<br>destroyed in the project<br>activity in year y                                                            | flow meter                              | t CH₄                         | calculated using formulae from the PDD                            |
| <del>B46</del><br>GEN <sub>y</sub>  | electricity generation by<br>project                                                                                          | <del>monitored</del><br>data            | <del>MWh</del>                |                                                                   |
| <del>B47</del><br>HEAT <sub>y</sub> | Heat generation by project                                                                                                    | <del>monitored</del><br><del>data</del> | MWh                           |                                                                   |
| PE <sub>Flare</sub>                 | Project emissions from<br>flaring                                                                                             | monitored<br>data                       | t CO <sub>2eq</sub>           | Calculated using<br>formula from the flaring<br>Tool (AM_Tool_07) |

## B.2.3. Data concerning GHG emissions by sources of the project activity

Table-8 GHG emissions by sources of the project activity – variables not needed in this monitoring report but stated in the PDD are marked grey (this variables are referring to project components which are not installed yet)

| ID<br>number              | Data variable                   | Source of data    | Data unit         | Comment |
|---------------------------|---------------------------------|-------------------|-------------------|---------|
| P12<br>MM <sub>FL</sub>   | Methane sent to flare           | monitored<br>data | t CH <sub>4</sub> |         |
| P15<br>MM <sub>ELEC</sub> | Methane sent to power plant     | monitored<br>data | t CH <sub>4</sub> |         |
| P18<br>MM <sub>HEAT</sub> | Methane sent to heat generation | flow meter        | t-CH <sub>4</sub> |         |

## B.2.4. Data concerning GHG emissions by sources of the baseline

Table-9 GHG emissions by sources of the baseline – variables not needed in this monitoring report but stated in the PDD are marked grey (this variables are referring to project components which are not installed yet)

| ID<br>number               | Data variable                                                      | Source of data                          | Data unit | Comment |
|----------------------------|--------------------------------------------------------------------|-----------------------------------------|-----------|---------|
| B14<br>CMM <sub>PJ,y</sub> | CMM captured and<br>destroyed in the project<br>activity in year y | Sum of flow<br>meters                   | t CH₄     |         |
| B46<br>GEN <sub>y</sub>    | electricity generation by<br>project                               | <del>monitored</del><br><del>data</del> | MWh       |         |
| B47<br>HEAT <sub>y</sub>   | Heat generation by project                                         | calculation                             | MWh       |         |

## B.2.5. Data concerning leakage

Not applicable.

## B.2.6. Data concerning environmental impacts

Not applicable.

page 12

## B.3. Data processing and archiving (incl. software used):

The data are collected, processed and stored using a Siemens SIMATIC PLC S7 system and Siemens WINCC programming software. All data is stored in the internal memory about 2 GB. One time per hour the data are sent via GPS to an Internet-based Server data base. The server provider ensures regular back ups and archiving. Further on the data is stored and archived by Eco-Alliance OOO. The data can be read any time from the internet data base by authorised personnel. The utilised methane amount is automatically calculated and stored in the PLC. As all input data are stored, the automatically calculation can by checked in retrospect any time.

For plausibility checks and potential data back up the data logged in the hand written journals of the suction system can be taken.

## B.4. Special event log:

No special events.

# **SECTION C. Quality assurance and quality control measures**

#### C.1. Documented procedures and management plan:

#### C.1.1. Roles and responsibilities:

The general project management is implemented by the Technical Director of the Coal Mine Komsomolets Donbassa through supervising and coordinating activities of his subordinates, such as the Director of Capital Development, the Deputy Director on surface degasification, heat technician, head of safety engineering departments, etc.

Daily a group of mechanics and electricians who are responsible for the measures and maintenance of all technological equipment and measuring instruments are present on-site. There are two shifts, 12 h each. For every shift there is one person on-duty responsible for the proper operation and keeping of the journals.

Overview calculations about the methane amount utilised are made on a monthly and yearly basis and notified in the journal. The monitoring system is supervised by the administration of the coal mine under the existing control and reporting system. The general supervision of the electronically monitoring system is executed by Eco-Alliance OOO, who is consultant for the coal mine.

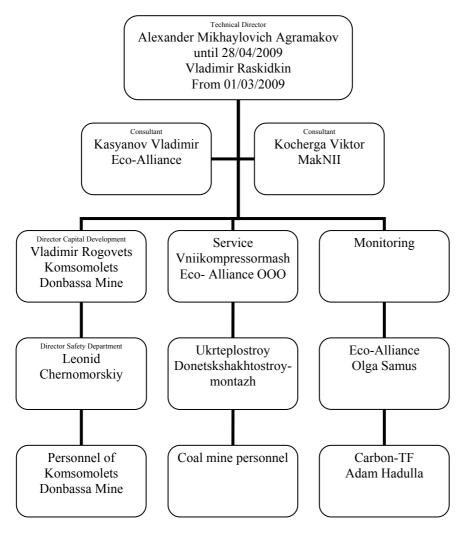



Figure 1 – Organigram

# C.1.2. Trainings:

The employees responsible for the monitoring control have been trained on-the-job during the installation of the system.

The responsible personnel of Eco-Alliance has been trained on the handling with CMM-utilisation units and the applied monitoring systems, during several practical courses in Germany. In this courses which has been carried out by A-TEC Anlagentechnik GmbH, a Joint-Venture participant of Eco-Alliance, also the basic principles of emissions trading and the background of the monitoring has been explained. A-TEC Anlagentechnik GmbH is already running several CMM utilisation plants and monitoring systems in Germany.

These trained personnel is the basis of a team of engineers, which should establish a specialised service team in the Ukraine and instruct further operating and monitoring personnel, as well for this project.

## C.2. Involvement of Third Parties:

- Sumystandartmetrology, has been involved for the yearly examination and calibrations of the measurement equipment
- MakNII Institute, the "State Makeyevka Institute for Research and Education for Safe Work in the Coal Mining Industry", a subsidiary of the "Ukrainian Ministry for Fuel and Energy", has been involved for the lab analysis (NHMHC) of the CMM.
- Ukrteplostroy has been involved for the service and upgrade of the boiler and calibration of the CMM flow meter in the vacuum pump station.
- Donetskshakhtostroymontazh has been involved for installation of pipelines
- Vniikompressormash has delivered the flares been involved for service during the first period
- Eco-Alliance has been involved for monitoring and service of the flares since summer 2009

## C.3. Internal audits and control measures:

Methane concentration and CMM flow data of the flares are compared with the indication of the meters from the vacuum pump station for plausibility. The coal mine personnel has been instructed by Eco-Alliance.

## C.4. Troubleshooting procedures:

The general troubleshooting for the whole coal mine is available at the coal mine. The coal mine personnel are instructed to follow the procedures. The flares are automatically shut down in case of faults. Internal trouble shooting procedures are available inside the flares.

#### page 15

# **SECTION D. Calculation of GHG emission reductions**

#### D.1. Table providing the formulas used:

Table-10 Formulae used taken from the PDD, strike-through symbols are not used in this monitoring report (this symbols are referring to project components which are not installed yet).

| ID<br>number                | Data variable                                                                                                                   | Formula                                                                                                |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| P1<br>PE <sub>v</sub>       | Project emissions in year y                                                                                                     | $PE_{y} = PE_{ME} + PE_{MD} + PE_{UM}$                                                                 |
| P2<br>PE <sub>ME</sub>      | Project emissions from energy<br>use to capture and use<br>methane                                                              | $PE_{ME} = CONS_{ELEC,PJ} X CEF_{ELEC,PJ}$                                                             |
| P3<br>PE <sub>MD</sub>      | Project emissions from<br>methane destroyed                                                                                     | $PE_{MD} = (MD_{FL} + MD_{ELEC} + MD_{HEAT}) \times (CEF_{CH4} + r \times CEF_{NMHC})$                 |
| P4<br>PE <sub>UM</sub>      | Project emissions from uncombusted methane                                                                                      | $PE_{UM} = GWP_{CH4} - x [+ MM_{ELEC} x (1 - Eff_{ELEC}) + MM_{HEAT} x (1 - Eff_{HEAT})] + PE_{Flare}$ |
| P5,<br>CONS <sub>ELEC</sub> | Additional electricity<br>consumption by the project                                                                            | $CONS_{ELEC} = (h_3 + h_4) * P_M * Eff_M / 1000$                                                       |
| <del>P27</del><br>f         | Relative proportion of NMHC<br>compared to methane                                                                              | $r = PC_{NMHC} / PC_{CH4}$                                                                             |
| B1<br>BE <sub>v</sub>       | Baseline emissions in year y                                                                                                    | $BE_y = BE_{MR,y} + BE_{Use,y}$                                                                        |
| B3<br>BE <sub>MR,y</sub>    | Baseline emissions from<br>release of methane into the<br>atmosphere in year y that is<br>avoided by the project activity       | $BE_{MR,y} = CMM_{PJ,y} \times GWP_{CH4}$                                                              |
| B4<br>BE <sub>⊎se,y</sub>   | Baseline emissions from the<br>production of power, heat or<br>supply to gas grid replaced by<br>the project activity in year y | $BE_{Use_{y}} = GEN_{y} * EF_{ELEC} + (HEAT_{y} / Eff_{HEAT, coal}) * EF_{HEAT}$                       |
| B14<br>CMM <sub>PJ,y</sub>  | CMM captured and destroyed in the project activity in year y                                                                    | $CMM_{PJ,y} = (MD_{FL} + MD_{ELEC} + MD_{HEAT})$                                                       |
| ER                          | Emission reductions                                                                                                             | $ER_{y} = BE_{y} - PE_{y}$                                                                             |
| PE <sub>Flare</sub>         | Project emissions from flaring                                                                                                  | $PE_{flare,y} = \sum_{h=1}^{8760} TM_{RG,h} x (1 - \eta_{flare,h}) x \frac{GWP_{CH4}}{1000}$           |

## D.2. Description and consideration of measurement uncertainties and error propagation:

The resulting uncertainty is shown in the <Possible sources of error> document. Obvious errors in the journals have been corrected by Eco-Alliance during the supervision of the documents.

# D.3. GHG emission reductions (referring to B.2. of this document):

# D.3.1. Project emissions:

| period                      | project emissions [t CO <sub>2eq</sub> ] |
|-----------------------------|------------------------------------------|
| 09/08/2008-31/12/2008       | 3,597                                    |
| 01/01/2009-03/11/2009       | 9,422                                    |
| Total 09/08/2008-03/11/2009 | 13,019                                   |

# D.3.2. Baseline emissions:

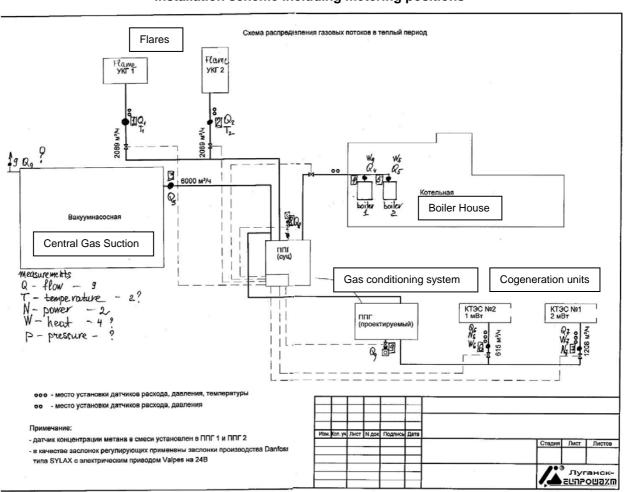
| period                      | baseline emissions [t CO <sub>2eq</sub> ] |
|-----------------------------|-------------------------------------------|
| 09/08/2008-31/12/2008       | 20,485                                    |
| 01/01/2009-03/11/2009       | 58,672                                    |
| Total 09/08/2008-03/11/2009 | 79,157                                    |

## D.3.3. Leakage:

Not applicable.

# D.3.4. Summary of the emissions reductions during the monitoring period:

| Period                      | Emission reductions [t CO <sub>2eq</sub> ] |  |
|-----------------------------|--------------------------------------------|--|
| 09/08/2008-31/12/2008       | 16,887                                     |  |
| 01/01/2009-03/11/2009       | 49,250                                     |  |
| Total 09/08/2008-03/11/2009 | 66,138                                     |  |


page 17

#### Annex 1

#### REFERENCES

- Project Design Document; Version 04, dated 2008-04-14
- Final Determination Report for the project: JI0079 CMM utilisation on the Joint Stock Company named Komsomolets Donbassa Coal Mine of DTEK (Donbasskaya Toplivnaya Energeticheskaya Kompanya), Report No: 2008-200 Rev 02, by DNV Det Norske Veritas, dated 2008-09-18
- Letter of Approval, Nr. M000011, issued on 2007-10-03 by the Ukraine (host party)
- Letter of Approval, Nr. 2007JI04, issued on 2007-11-26 by the Kingdom of the Netherlands (investor party)
- Letter of Endorsment, Nr. 11439/10/310, issued on 2006-12-22 by the Ukrainian Ministry of Environmental Protection
- supporting evidence documents provided by the coal mine
- [AM\_Tool\_07] Methodological "Tool to determine project emissions from flaring gases containing methane", EB 28, Meeting report, Annex 13 http://cdm.unfccc.int/Reference/tools/index.html

page 18



# Annex 2 Installation scheme including metering positions

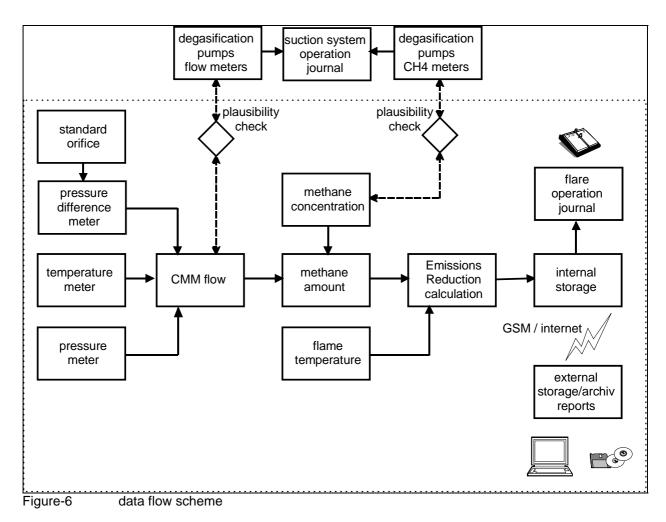
Figure-2

Installation scheme – Coal Mine Komsomolets Donbassa, Air Shaft Nr.3

Вакуум насосная – Gas pumps of the Coal Mine

Котельная – boiler house – four boilers, two of which have been upgraded with a CMM burner system

 $\Pi\Pi\Pi - gas \ conditioning \ system$ 


УКГ - flares

KTЭC – cogeneration units

page 19

#### Annex 3





page 20

#### Annex 4

#### Deviation from the monitoring plan as stated in the PDD

#### A4.1 Project emissions from flaring

In the PDD the formula for project emissions from uncombusted methane is given as per:

$$PE_{UM} = GWP_{CH4} \times \left[ (MM_{FL} \times (1 - Eff_{FL}) + MM_{ELEC} \times (1 - Eff_{ELEC}) + MM_{HEAT} \times (1 - Eff_{HEAT}) \right]$$
(9)

In this Monitoring Report the formula 9 has been replaced by the following formula:

 $PE_{UM} = GWP_{CH4} x [MM_{ELEC} x (1 - Eff_{ELEC}) + MM_{HEAT} x (1 - Eff_{HEAT})] + PE_{flare}$ 

Using formula (15) from the flaring tool for the calculation of PE<sub>Flare</sub>:

| $PE_{flare,y} = \sum_{h=1}^{8760}$ | $\int TM_{RG,h} x(1-\eta_{flare,h}) x \frac{GWP_{CH4}}{1000}$                  | (AM_Tool_07-15) |
|------------------------------------|--------------------------------------------------------------------------------|-----------------|
| where:                             |                                                                                |                 |
| $PE_{flare,y}$                     | Project emissions from flaring of the residual gas stream in year y (t         | $CO_2 eq)$      |
| TM <sub>RG,h</sub>                 | Mass flow rate of methane in the residual gas in the hour h (kg/h)             |                 |
| $\eta_{\rm flare,h}$               | flare efficiency in the hour h                                                 |                 |
| GWP <sub>CH4</sub>                 | Global warming potential of methane (21 tCO <sub>2</sub> eq/tCH <sub>4</sub> ) |                 |

For  $\eta_{\text{flare h}}$  three different values have been taken, depending on the combustion temperature of the flare:

| T <sub>Flame</sub> | $\eta_{\rm flare,h}$ |
|--------------------|----------------------|
| >850°C             | 99.5%                |
| 500-850°C          | 90.0%                |
| < 500°C            | 0%                   |

#### A4.2 Project emissions from energy use to capture and use methane

The formula for the calculation of  $PE_{ME}$  is given in the PDD. The amount of the energy used by the compressors installed in the flares  $CONS_{ELEC}$  has not been measured, but calculated using the operation hours of the flare, whereby the effective load and capacity are different if the flare unit is standby and the compressor is not working:

 $CONS_{ELEC} = CONS_{ELEC, Flare 3} + CONS_{ELEC, Flare 4}$ 

 $CONS_{ELEC, Flare i} = (Eff_M * P_M * h_{i,M}) + ((h_{i,total} - h_{i,M}) * (P_{total} - P_M) * Eff_{SB})$ 

with

CONS<sub>ELEC,Flare i</sub> additional electric energy used by the compressors and other equipment installed in the flares [MWh]

| page | 21 |
|------|----|
|------|----|

| $h_{i;M}$                    | operation hours of compressor from flare i [h] (operation)                      |
|------------------------------|---------------------------------------------------------------------------------|
| h <sub>4i, total</sub>       | operation hours of flare i [h] (operation+standby)                              |
| P <sub>M</sub>               | motor capacity [kW], set to 45 kW for each compressors                          |
| P <sub>total</sub>           | total capacity of the flare unit [kW], set to 60 kW for each flare              |
| $Eff_M$                      | effective load of electric motor [%], set to 75% for both flares                |
| $\mathrm{Eff}_{\mathrm{SB}}$ | effective load of the flare unit during standby [%], set to 45% for both flares |

page 22

# <u>Annex 5</u> Photo of the plant



Figure-4 Flare 3 and Flare 4 – Komsomolets Donbassa Coal Mine, Air Shaft Nr.3