MONITORING REPORT

PROJECT: ACHEMA UKL-7 plant N₂O abatement project

Prepared by:

VERTIS FINANCE

Monitoring periods

Line 2 Project campaign 1 FROM: TO: ERUS	07/11/2008 16/01/2009 23,041	Project campaign 2 FROM: TO: ERUs	16/01/2009 12/10/2009 142,227
Line 3 Project campaign 1 FROM: TO: ERUs	04/07/2008 27/08/2008 10,041	Project campaign 2 FROM: TO: ERUs	27/08/2008 16/06/2009 35,876
Line 4 Project campaign 1 FROM: TO: ERUs	06/10/2008 28/04/2009 22,314		
Line 5 Project campaign 1 FROM: TO: ERUs	02/07/2008 22/04/2009 93,617	Project campaign 2 FROM: TO: ERUs	23/04/2009 14/01/2010 84,445
Line 6 Project campaign 1 FROM: TO: ERUs	25/07/2008 21/04/2009 111,195		
Line 7 Project campaign 1 FROM: TO: ERUs	03/07/2008 22/10/2008 21,833	Project campaign 2 FROM: TO: ERUs	29/01/2009 01/11/2009 112,125
Line 8 Project campaign 1 FROM: TO: ERUS	11/06/2008 26/11/2008 32,131	Project campaign 2 FROM: TO: ERUs	09/12/2008 20/11/2009 49,413

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 2MONITORINGPERIOD:FROM:07/11/2008

TO: 16/01/2009

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N2O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N2O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	7
	3.4	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	19
	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	20
	6.4	STACK GAS TEMPERATURE	20
	6.5	STACK GAS PRESSURE	20
7.		EMISSION REDUCTION CALCULATIONS	21

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 2 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the first project campaign on Line 2.

The first project campaign on Line 2 started on 30/05/2008. Secondary catalyst was installed on 07/11/2008. Total quantity of emission reductions generated during the period from 07/11/2008 through 16/01/2009 on Line 2 is **23 041 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION								
Baseline Emission Factor	EF_BL	7.77	kgN2O/tHNO3					
Project Campaign Emission Factor	EF_P	1.77	kgN2O/tHNO3					
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 767	tHNO3					
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	12 380	tHNO3					
Nitric Acid Produced in the Project Campaign	NAP_P	12 392	tHNO3					
GWP	GWP	310	tCO2e/tN2O					
Emission Reduction	ER	23 041	tCOe					
ER=(EF_BL-EF_P)*NAP_P*GWP/1000								
batement Ratio 77.2%								

Baseline emission factor established for the Line 2 during baseline measurement carried from 09/11/2007 through 20/05/2008 is 7.77 kgN₂O/tHNO₃.

Project emission factor during the first project campaign after installation of secondary catalysts on Line 2, which started on 07/11/2008 and went through 16/01/2009 with secondary catalyst installed and commissioned on 07/11/2008, is $1.77 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 12 392 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 2 emission reductions including information on baseline emission factor setting for the Line 2.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 2 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 2 has been carried out from 09/11/2007 through 20/05/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 2 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

GS _{BL}	Johnson Matthey
GC _{BL}	Pt63/Rh4/Pl33

GS_{Project} Johnson Matthey GC_{Project} Pt63/Rh4/Pl33

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 2 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PEn = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because this campaign was first project campaign on Line 2 there has been no moving average emission factor established yet for this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF_{man} and EF_{n})

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 08/11/2007 and ending on 29/07/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 62 710 tHNO₃ and time duration was on average 239 days. Table contains also information on suppliers of primary catalysts for the line 2.

T 2 Historic campaigns

Line	ACHEMA UKL-2	Production	Start	End	Days	Production per day	Primary Catalyst
Historic Campaigns	1 t HNO3	63 318	07 Jun 2004	26 Jan 2005	233	272	Heraeus
	2 t HNO3	65 490	27 Jan 2005	21 Sep 2005	237	276	Umicore
	3 t HNO3	51 101	22 Sep 2005	10 Apr 2006	200	256	Heraeus
	4 t HNO3	63 008	11 Apr 2006	24 Jan 2007	288	219	Heraeus
	5 t HNO3	70 635	14 Mar 2007	08 Nov 2007	239	296	Johnson Matthey
Average HNO3 production	t HNO3	62 710			239	262	

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 09/11/2007 and continued through 20/05/2008 when the 60 767 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached 12 380 tHNO₃.

T 3 Baseline campaign length

ACHEMA UKL-2	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Nov 08	2007 Nov 09	2007 Dec 27	2008 May 20	2008 May 21
Baseline Factor kgN2O/tHNO3			7.77	7.77	7.77
Production tHNO3			12 380	60 767	-
Per Day Production tHNO3	261.9				
Baseline less Historic Production	(1 943.4)				
Baseline less Historic Days	(7.4)				

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 2 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 09/11/2007 through 20/05/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 504 tN_2O .

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 6.46%. As a result we have arrived to the baseline emission factor of 7.77 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 2 during the project campaign. Project campaign started on 07/11/2008 and went through 16/01/2009.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.77 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

This emission factor has been used in further calculation of emission reductions. Neither moving average emission factor nor minimum emission factor was established, since it was the first project campaign.

T 4 Baseline emission factor

	BASELINE EMIS	SION FACTOR									
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure	Operation	Production
							Ratio	•			NCSG
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP	0	NAP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa	h	t/h
											•
Elimination of extreme values					_						
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 254	4 633	1 012	4 217	4 296	4 277	4 606	4 576	4 061	1 153
as % of Dataset		92%	100%	22%	91%	93%	92%	99%	99%	88%	25%
Minimum			-	0	4	2 069	-	42	5		-
Maximum			15.73	1 757	106 041	6 243	18 13	1 100	679		16
Mean			13.12	1 279	82 420	5 815	9.78	843	604		11
Standard Deviation			3.81	441	17 719	262	1.67	207	45		6
Total			60 767		17 7 10	203	1.07	207	45		12 380
											12 000
N2O Emissions (VSG * NCSG * OH)		448	t N2O]							
Emission Factor		6.90	kgN2O / tHNO3								
Permitted Range											
Minimum					•.	4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		3 710		406	3 710					4 061	
as % of Operating Hours		87%		10%	87%					95%	
Minimum				800	8 892						
Maximum				1 642	103 800						
Mean				1 37/	85 240						
Standard Deviation				107	05 249						
				107							
N2O Emissions (VSG * NCSG * OH)		498	t N2O	1							
Emission Factor		7.67	kgN20 / tHNO3								
Data within the confidence interval											
95% Confidence interval					a						
Lower bound				1 165	66 326						
Upper bound				1 584	104 173						
Count				390	3 604						
as % of Operating Hours				9%	85%						
Minimum				1 177	75 679						
Maximum				1 583	103 800						
Mean				1 374	86 327						
Standard Deviation				87	7 344						
N2O Emissions (VSG * NCSG * OH)		504	t N2O								
Emission Factor (EF_BL)		7.77	kgN20 / tHNO3	J							

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure
							Ratio		
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa
The last and start and start and start									
Lower limit			0	0	0	0	0	- 50	0
			50.00	3 000	120.000	10,000	20.00	- 50	1 000
			50.00	3 000	120 000	10 000	20.00	1200	1000
Raw Data Measured Range									
Count		833	1 218	854	907	1 259	940	1 681	1 655
as % of Dataset		50%	73%	51%	54%	75%	56%	100%	99%
Minimum			-	0	69	2 799	-	(9)	0
Maximum			16.01	472	109 625	6 148	12.82	897	661
Mean			10.17	272	83 849	5 287	9.12	468	485
Standard Deviation			6.34	64	28 835	899	3.31	416	167
Total			12 392						
N2O Emissions (VSG * NCSG * OH)		19	t N2O						
Emission Factor		1.53	kaN2O / tHNO3						
			5						
Data within the confidence interval									
95% Confidence interval									
Lower bound				146	27 333				
Upper bound				399	140 365				
Count				798	824				
as % of Operating Hours				96%	99%				
Minimum				154	70 275				
Maximum				396	103 312				
Mean				281	93 430				
Standard Deviation				44	6 920				
N2O Emissions (VSG * NCSG * OH)		22	t N2O						
Actual Project Emission Factor (EF_PActual)	1.77	kgN20 / tHNO3						
Abatement Ratio		77.2%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule	1				
	1	1.77	1.77]				
	2	-			l				
Project Emission Factor (EF P)		1.77	kaN20 / tHNO3						
Abatement Ratio		77.2%		I					
			l						

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 2MONITORINGPERIOD:FROM:16/01/2009

TO: 12/10/2009

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N2O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N2O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	7
	3.4	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	19
	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	20
	6.4	STACK GAS TEMPERATURE	20
	6.5	STACK GAS PRESSURE	20
7.		EMISSION REDUCTION CALCULATIONS	21

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 2 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the second project campaign on Line 2.

The first project campaign on Line 2 started on 30/05/2008. Secondary catalyst was installed on 07/11/2008. Total quantity of emission reductions generated during the period from 16/01/2009 through 12/10/2009 on Line 2 is **142 227 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION				
Baseline Emission Factor	EF_BL	9.24	kgN2O/tHNO3	
Project Campaign Emission Factor	EF_P	1.79	kgN2O/tHNO3	
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 767	tHNO3	
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	60 767	tHNO3	
Nitric Acid Produced in the Project Campaign	NAP_P	61 628	tHNO3	
GWP	GWP	310	tCO2e/tN2O	
Emission Reduction	ER	142 227	tCOe	
ER=(EF_BL-EF_P)*NAP_P*GWP/1000				
Abatement Ratio		80.6%		

Baseline emission factor established for the Line 2 during baseline measurement carried from 09/11/2007 through 20/05/2008 is $9.24 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Project emission factor during the second project campaign after installation of secondary catalysts on Line 2, which started on 16/01/2009 and went through 12/10/2009 with secondary catalyst installed and commissioned on 07/11/2008, is $1.79 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 61 628 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 2 emission reductions including information on baseline emission factor setting for the Line 2.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 2 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 2 has been carried out from 09/11/2007 through 20/05/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 2 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

GS _{BL}	Johnson Matthey
GC _{BL}	Pt63/Rh4/Pl33

GS_{Project} Johnson Matthey GC_{Project} Pt63/Rh4/Pl33

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 2 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PEn = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 08/11/2007 and ending on 29/07/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 62 710 tHNO₃ and time duration was on average 239 days. Table contains also information on suppliers of primary catalysts for the line 2.

T 2 Historic campaigns

Line	ACHEMA UKL-2	Production	Start	End	Days	Production per day	Primary Catalyst
Historic Campaigns	1 t HNO3	63 318	07 Jun 2004	26 Jan 2005	233	272	Heraeus
	2 t HNO3	65 490	27 Jan 2005	21 Sep 2005	237	276	Umicore
	3 t HNO3	51 101	22 Sep 2005	10 Apr 2006	200	256	Heraeus
	4 t HNO3	63 008	11 Apr 2006	24 Jan 2007	288	219	Heraeus
	5 t HNO3	70 635	14 Mar 2007	08 Nov 2007	239	296	Johnson Matthey
Average HNO3 production	t HNO3	62 710			239	262	

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 09/11/2007 and continued through 20/05/2008 when the 60 767 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached 60 767 tHNO₃.

T 3 Baseline campaign length

ACHEMA UKL-2	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Nov 08	2007 Nov 09	2008 May 20	2008 May 20	2008 May 21
Baseline Factor kgN2O/tHNO3			9.24	9.24	9.24
Production tHNO3			60 767	60 767	-
Per Day Production tHNO3	261.9				
Baseline less Historic Production	(1 943.4)				
Baseline less Historic Days	(7.4)				

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 2 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 09/11/2007 through 20/05/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 600 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 6.46%. As a result we have arrived to the baseline emission factor of 9.24 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 2 during the project campaign. Project campaign started on 16/01/2009 and went through 12/10/2009.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.79 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

BASELINE EMISSION FACTOR											
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure	Operation	Production
							Ratio	-		-	NCSG
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP	0	NAP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa	h	t/h
										•	
Elimination of extreme values					-						
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 254	4 633	4 353	4 217	4 296	4 277	4 606	4 576	4 061	4 633
as % of Dataset		92%	100%	94%	91%	93%	92%	99%	99%	88%	100%
Minimum			-	0	4	2 069	-	42	5		-
Maximum			15.73	2 356	106 041	6 243	18.13	1 100	679		16
Mean			13.12	1 576	82 420	5 815	9.78	843	604		13
Standard Deviation			3.81	323	17 718	263	1.67	207	45		.0
Total			60 767	020	17710	205	1.07	201	45		60 767
											00101
N2O Emissions (VSG * NCSG * OH)		553	t N2O	1							
Emission Factor		8.51	kgN2O / tHNO3								
Permitted Range											
Minimum						4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		3 710		3 710	3 710					4 061	
as % of Operating Hours		87%		87%	87%					95%	
Minimum				465	8 892						
Maximum				2 356	103 800						
Mean				1 606	85 240						
Standard Deviation				250	05 249						
				200							
N2O Emissions (VSG * NCSG * OH)		582	t N2O]							
Emission Factor		8.96	kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound				1 115	66 326						
Upper bound				2 096	104 173						
Count				3 585	3 604						
as % of Operating Hours				84%	85%						
Minimum				1 118	75 679						
Maximum				2 074	103 800						
Mean				1 634	86 327						
Standard Deviation				184	7 344						
N2O Emissions (VSG * NCSG * OH)		600	t N2O								
Emission Factor (EF_BL)		9.24	kgN207tHN03	l							

T 5 Project emission factor

			PROJECT EI	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure
							Ratio		
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa
Elimination of extreme values									
Lower limit			0	0	0	0	0	- 50	0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000
Raw Data Measured Range									
Count		4 420	4.389	4.380	4 395	4 963	4 4 4 7	6 448	6.351
as % of Dataset		68%	68%	68%	68%	77%	69%	100%	98%
Minimum			0.86	109	4	2 242	7	(23)	0
Maximum			17.51	924	87 637	6 489	11.99	908	683
Mean			14.04	334	77 730	5 727	10.51	630	535
Standard Deviation			1.30	99	2 172	784	0.21	382	147
Total			61 628						
N2O Emissions (VSG * NCSG * OH)		115	t N2O						
Emission Factor		1.86	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				140	73 474				
Lipper bound				528	81 987				
				020	01001				
Count				4 128	4 240				
as % of Operating Hours				93%	96%				
Minimum				164	73 506				
Maximum				528	81 970				
Mean				322	77 576				
Standard Deviation				77	1 541				
N2O Emissions (VSG * NCSG * OH)		110	t N2O						
Actual Project Emission Factor (EF_PActual)		1.79	kgN20/tHNO3						
Abatement Ratio		80.6%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule	1				
	1	1.77	1.77						
	2	1.79	1.79						
	_				1				
Project Emission Factor (EF_P)		4 70							
		1.79	KgN207tHN03						

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 3MONITORINGPERIOD:FROM:04/07/2008

TO: 27/08/2008

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N2O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N2O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	7
	3.4	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	19
	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	20
	6.4	STACK GAS TEMPERATURE	20
	6.5	STACK GAS PRESSURE	20
7.		EMISSION REDUCTION CALCULATIONS	21

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 3 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the first project campaign on Line 3.

The first project campaign on Line 3 started on 01/02/2008. Secondary catalyst was installed on 04/07/2008. Total quantity of emission reductions generated during the period from 04/07/2008 through 27/08/2008 on Line 3 is **10 044 ERUs**.

T 1 Emission reduction calculations

EMISSIO	N REDUCTION		
Baseline Emission Factor	EF_BL	4.27	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	1.86	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	42 999	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	12 741	tHNO3
Nitric Acid Produced in the Project Campaign	NAP_P	13 444	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	10 044	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		56.4%)

Baseline emission factor established for the Line 3 during baseline measurement carried from 01/02/2008 through 30/06/2008 is $4.27 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Project emission factor during the first project campaign after installation of secondary catalysts on Line 3, which started on 04/07/2008 and went through 27/08/2008 with secondary catalyst installed and commissioned on 04/07/2008, is $1.86 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 13 444 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 3 emission reductions including information on baseline emission factor setting for the Line 3.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 3 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 3 has been carried out from 01/02/2008 through 30/06/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 3 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

GS _{BL}	Heraous
GC _{BL}	Pt63/Rh4/PI33

GS_{Project} Heraous GC_{Project} Pt63/Rh4/PI33

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 3 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PEn = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
ОН	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because this campaign was first project campaign on Line 3 there has been no moving average emission factor established yet for this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF_{man} and EF_{n})

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 09/11/2007 and ending on 30/07/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 59 680 tHNO₃ and time duration was on average 316 days. Table contains also information on suppliers of primary catalysts for the line 3.

T 2 Historic campaigns

Line	ACHEMA UKL-3	Production	Start	End	Days	Production per day	Primary Catalyst
Historic Campaigns	1 t HNO3	64 017	05 Feb 2004	09 Oct 2005	612	105	Heraeus
	2 t HNO3	63 115	10 Oct 2005	28 Jun 2006	261	242	Heraeus
	3 t HNO3	59 912	01 Jul 2005	24 Jan 2006	207	289	Heraeus
	4 t HNO3	56 702	25 Jan 2006	23 Nov 2006	302	188	Heraeus
	5 t HNO3	54 654	24 Dec 2006	09 Jul 2007	197	277	Heraeus
Average HNO3 production	t HNO3	59 680			316	189	

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 01/02/2008 and continued through 30/06/2008 when the 42 999 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached 12 741 tHNO₃.

T 3 Baseline campaign length

ACHEMA UKL-3	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jul 09	2008 Feb 01	2008 Mar 08	2008 Jun 30	2008 Jul 01
Baseline Factor kgN2O/tHNO3			4.27	4.27	4.27
Production tHNO3			12 741	42 999	-
Per Day Production tHNO3	189.0				
Baseline less Historic Production	(16 681.1)				
Baseline less Historic Days	(88.3)				

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 3 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 01/02/2008 through 30/06/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 195 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.63%. As a result we have arrived to the baseline emission factor of 4.27 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 3 during the project campaign. Project campaign started on 04/07/2008 and went through 27/08/2008.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.86 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

This emission factor has been used in further calculation of emission reductions. Neither moving average emission factor nor minimum emission factor was established, since it was the first project campaign.

T 4 Baseline emission factor

BASELINE EMISSION FACTOR											
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure	Operation	Production
	• •						Ratio				NCSG
	Code	OH	NAP	NCSG	VSG	AFR	AIFR	ОТ	OP	0	NAP
	Unit	n	t/n	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa	h	t/h
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		3 107	3 552	860	3 196	3 592	3 365	3 593	3 593	3 1 3 9	865
as % of Dataset		86%	99%	24%	89%	100%	93%	100%	100%	87%	24%
Minimum			-	734	81	502	4	0	0		14
Maximum			16.11	1 701	78 393	6 22 1	19 99	906	626		16
Mean			12 11	960	65 431	5 136	10.00	785	549		15
Standard Deviation			4.73	112	7 702	1 642	1 22	265	102		1
Total			42 999	112	1193	1 043	1.52	203	105		12 741
				-							
N2O Emissions (VSG * NCSG * OH)		195	t N2O								
Emission Factor		4.28	kgN2O / tHNO3								
Permitted Range					-						
Minimum						4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		2 996		854	2 989					3 1 3 9	
as % of Operating Hours		96%		27%	96%					101%	
Minimum				734	13 365						
Maximum				1 701	73 898						
Mean				959	66 229						
Standard Deviation				112	2 341						
				_							
N2O Emissions (VSG * NCSG * OH)		197	t N2O								
Emission Factor		4.33	kgN20 / tHNO3	1							
Data within the confidence interval											
95% Confidence interval											
Lower bound				739	61 641						
Upper bound				1 178	70 817						
Count				834	2 944						
as % of Operating Hours				27%	95%						
Minimum				7/0	61 696						
Maximum				1 005	70 906						
Moon				1 095	70 808						
Standard Deviation				540	00 200						
Stanuard Deviation				61	1 896						
N2O Emissions (VSG * NCSG * OH)		195	t N2O	1							
Emission Factor (EF BL)		4.27	kgN2O / tHNO3								
				1							

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure
							Ratio		1
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa
Limination of extreme values			0	0	0	0	0	50	0
			50.00	3 000	120.000	10,000	20.00	- 50	1 000
			50.00	3 000	120 000	10 000	20.00	1200	1 000
Raw Data Measured Range									
Count		1 195	1 064	1 248	1 052	1 276	1 166	1 276	1 276
as % of Dataset		92%	82%	96%	81%	98%	90%	98%	98%
Minimum			-	1	1 238	711	9	1	0
Maximum			13.71	2 046	77 664	5 999	19.98	911	586
Mean			12.64	492	62 408	5 406	10.54	841	553
Standard Deviation			1.73	445	4 522	1 152	1.07	197	69
Total			13 444						
N2O Emissions (VSG * NCSG * OH)		37	t N2O						
Emission Factor		273	kaN20 / tHNO3						
		2.10	Kg11207 111100						
Data within the confidence interval									
95% Confidence interval									
Lower bound				- 381	53 544				
Upper bound				1 364	71 272				
Count				945	1 030				
as % of Operating Hours				79%	86%				
Minimum				175	57 992				
Maximum				1 286	66 277				
Mean				334	62 667				
Standard Deviation				109	1 357				
N2O Emissions (VSG * NCSG * OH)		25	t N2O						
Actual Project Emission Factor (EF_PActual)		1.86	kgN2O / tHNO3						
Abatement Ratio		56.4%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule	1				
	1	1.86	1.86		1				
	2	-							
Project Emission Factor (EF P)		1.86	kaN20 / tHNO3						
Abatement Ratio		56.4%		l					
		50							

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 3MONITORINGPERIOD:FROM:27/08/2008

TO: 16/06/2009

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N2O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N2O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	7
	3.4	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	19
	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	20
	6.4	STACK GAS TEMPERATURE	20
	6.5	STACK GAS PRESSURE	20
7.		EMISSION REDUCTION CALCULATIONS	21

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 3 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the second project campaign on Line 3.

The first campaign on Line 3 started on 27/08/2008. Secondary catalyst was installed on 04/07/2008. Total quantity of emission reductions generated during the period from 27/08/2008 through 16/06/2009 on Line 3 is **35 876 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION								
Baseline Emission Factor	EF_BL	4.99	kgN2O/tHNO3					
Project Campaign Emission Factor	EF_P	2.94	kgN2O/tHNO3					
Nitric Acid Produced in the Baseline Campaign	NAP_BL	59 042	tHNO3					
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	56 323	tHNO3					
Nitric Acid Produced in the Project Campaign	NAP_P	56 411	tHNO3					
GWP	GWP	310	tCO2e/tN2O					
Emission Reduction	ER	35 876	tCOe					
ER=(EF_BL-EF_P)*NAP_P*GWP/1000								
Abatement Ratio 41.1%								

Baseline emission factor established for the Line 3 during baseline measurement carried using overlapping approach from 01/02/2008 to 04/07/2008 and from 01/09/2007 through 03/11/2007 is $4.99 \text{ kgN}_2\text{O/tHNO}_3$.

Project emission factor during second project campaign after installation of secondary catalysts on Line 3, which started on 27/08/2008 and went through 16/06/2009 with secondary catalyst installed and commissioned on 04/07/2008, is $2.94 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 56 411 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 3 emission reductions including information on baseline emission factor setting for the Line 3.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 3 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 3 has been carried out using overlapping approach from 01/02/2008 to 04/07/2008 and from 01/09/2007 through 03/11/2007.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 3 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

GS _{BL}	Heraous
GC _{BL}	Pt63/Rh4/Pl33
GS _{Project}	Heraous
GC _{Project}	Pt63/Rh4/Pl33

Composition of oxidation catalysts installed during the baseline campaign has been in Line with compositions used in 5 previous campaigns.

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 3 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PEn = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

Because this campaign was second project campaign on Line 3 there has been no minimum average emission factor established yet for this campaign. This factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 09/11/2007 and ending on 30/07/2008 project uses HNO3 concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 59 680 tHNO₃ and time duration was on average 316 days. Table contains also information on suppliers of primary catalysts for the line 3. As shown in the table, it is usual practice in Achema to use primary catalysts from various suppliers.

T 2 Historic campaigns

Line	ACHEMA UKL-3	Production	Start	End	Days	Production per	Primary Catalyst
						day	
Historic Campaigns	1 t HNO3	64 017	05 Feb 2004	09 Oct 2005	612	105	Heraeus
	2 t HNO3	63 1 1 5	10 Oct 2005	28 Jun 2006	261	242	Heraeus
	3 t HNO3	59 912	01 Jul 2005	24 Jan 2006	207	289	Heraeus
	4 t HNO3	56 702	25 Jan 2006	23 Nov 2006	302	188	Heraeus
	5 t HNO3	54 654	24 Dec 2006	09 Jul 2007	197	277	Heraeus
Average HNO3 production	t HNO3	59 680			316	189	

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started using overlapping approach from 01/02/2008 to 04/07/2008 then from 01/09/2007 through 03/11/2007 when the 59 042 tHNO₃ nitric acid production was reached. The baseline measurement for N2O concentration (NCSG) was carried out until the production of 56 323 tHNO₃ was reached.

We have two campaigns available that we can use for the baseline. AMS was installed in the middle of the first campaign, whereas the secondary catalyst was installed in the middle of the consecutive second one. We use these two campaigns to construct the baseline campaign using the overlapping approach as set out by the PDD. To get a clear start, that is, the baseline series has to start with a primary catalyst change, we use the beginning of the second campaign as the basis, until the secondary catalyst installation is reached. If this baseline turns out to be shorter than the project line, we use data available from the first campaign from the AMS installation to overlap the two series, and get a comparable baseline. Since we use the earliest available data from the first campaign, where emissions are generally lower, this is a conservative approach and fully in line with the PDD.

ACHEMA UKL-3	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jul 09	2007 Sep 01	2008 Jul 04	2008 Jul 04	2008 Jul 05
Baseline Factor kgN2O/tHNO3		1	4.99	4.99	4.99
Production tHNO3			56 323	59 042	-
Per Day Production tHNO3	189.0				
Baseline less Historic Production	(637.7)				
Baseline less Historic Days	(3.4)				

T 3 Baseline campaign length

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on line 3 using the method as defined in the CDM methodology AM0034 and in the PDD.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 312 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.63%. As a result we have arrived to the baseline emission factor of 4.99 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 3 during the project campaign. Project campaign started on 27/08/2008 and went through 16/06/2009.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.94 kgN2O/tHNO3.

 $EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

BASELINE EMISSION FACTOR											
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure	Operation	Production
							Ratio				NCSG
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP	0	NAP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa	h	t/h
					-						
Elimination of extreme values								50	0		0
Lower limit			0	0	120,000	10,000	20.00	- 50	1 000		50
Opper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 224	5 074	4 477	4 585	5 148	4 843	5 235	5 232	4 454	4 880
as % of Dataset		81%	97%	85%	87%	98%	92%	100%	100%	85%	93%
Minimum			-	0	9	1	0	0	0		-
Maximum			16.63	1 864	90 511	6 221	19.99	906	626		17
Mean			11.64	1 100	67.036	1 97/	10.52	70/	5/5		12
Stendard Deviation			F 02	1 100	10 221	1 902	1.62	250	110		12
Standard Deviation			5.03	298	10 221	1 802	1.02	200	110		50,000
lotal			59 042								30 323
N2O Emissions (VSG * NCSG * OH)		311	t N2O	ľ							
Emission Factor		4.98	kaN20 / tHNO3								
			5	1							
Permitted Range						1.500					
Minimum						4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		3 788		3 697	3 770					4 454	
as % of Operating Hours		00%		88%	89%					105%	
Minimum		30%		201	-					10070	
				301	-						
Maximum				1 864	11 223						
Mean				1 124	65 258						
Standard Deviation				163	9 596						
N2O Emissions (VSG * NCSG * OH)		310	t N2O	I							
Emission Factor		4.95	kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound				804	46 450						
Lipper bound				1 //3	84.066						
				1 445	04 000						
Count				3 528	3 697						
as % of Operating Hours				84%	88%						
Minimum				2010	48 823						
Maximum				1 442	77 222						
Maan				1 443	11 223						
Near I Deviation				1 110	00 546						
Standard Deviation				130	2 850						
N20 Emissions ()/SC * NCSC * OU)		24.0	+ N2O	T							
Francisco Contex (FE BL)		312									
Emission Factor (EF_DL)		4.99	KgN207tHN03	L							

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure
							Ratio		
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa
Limination of extreme values			0	0	0	0	0	50	0
			50.00	3 000	120.000	10,000	20.00	- 50	1 000
			00.00	0.000	120 000	10 000	20.00	1200	1000
Raw Data Measured Range									
Count		4 371	5 214	4 733	5 0 2 9	6 840	4 768	7 029	7 029
as % of Dataset		62%	74%	67%	72%	97%	68%	100%	100%
Minimum			-	0	41	126	0	0	3
Maximum			15.72	1 230	84 191	7 706	19.90	1 100	660
Mean			10.82	555	60 291	4 157	10.75	617	562
Standard Deviation			4.96	163	21 304	2 584	1.50	377	93
Total			56 411						
		1/6	+ N2O						
Emission Factor		2 59	$k_0 N_{20} / tH N_{03}$						
		2.00	kg11207 ti 1100						
Data within the confidence interval									
95% Confidence interval									
Lower bound				235	18 535				
Upper bound				875	102 047				
Quest				4 007	4 0 7 7				
				4 237	4 2 7 7				
as % of Operating Hours				97%	98%				
Maximum				260	47 403				
Maximum				863	80 581				
Stondard Doviation				000	2 2 6 2				
				93	3 202				
N2O Emissions (VSG * NCSG * OH)		166	t N2O						
Actual Project Emission Factor (EF_PActual)		2.94	kgN2O / tHNO3						
Abatement Ratio		41.1%							
					-				
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule					
	1	1.86	1.86						
	2	2.94	2.94		I				
Project Emission Factor (EF_P)		2.94	kgN2O / tHNO3						
Abatement Ratio		41.1%							

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 4MONITORINGPERIOD:FROM:06/10/2008

TO: 28/04/2009

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N2O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N2O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	7
	3.4	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	19
	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	20
	6.4	STACK GAS TEMPERATURE	20
	6.5	STACK GAS PRESSURE	20
7.		EMISSION REDUCTION CALCULATIONS	21

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 4 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the first project campaign on Line 4.

The first project campaign on Line 4 started on 01/08/2008. Secondary catalyst was installed on 06/10/2008. Total quantity of emission reductions generated during the period from 06/10/2008 through 28/04/2009 on Line 4 is **22 314 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION				
Baseline Emission Factor	EF_BL	4.59	kgN2O/tHNO3	
Project Campaign Emission Factor	EF_P	2.75	kgN2O/tHNO3	
Nitric Acid Produced in the Baseline Campaign	NAP_BL	58 683	tHNO3	
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	38 721	tHNO3	
Nitric Acid Produced in the Project Campaign	NAP_P	39 157	tHNO3	
GWP	GWP	310	tCO2e/tN2O	
Emission Reduction	ER	22 314	tCOe	
ER=(EF_BL-EF_P)*NAP_P*GWP/1000				
Abatement Ratio 40.1%				

Baseline emission factor established for the Line 4 during baseline measurement carried from 28/12/2007 through 31/07/2008 is 4.59 kgN₂O/tHNO₃.

Project emission factor during the first project campaign after installation of secondary catalysts on Line 4, which started on 06/10/2008 and went through 28/04/2009 with secondary catalyst installed and commissioned on 06/10/2008, is $2.75 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 39 157 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 4 emission reductions including information on baseline emission factor setting for the Line 4.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 4 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 4 has been carried out from 28/12/2007 through 31/07/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 4 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

GS _{BL}	Johnson Matthey
GC _{BL}	Pt63/Rh4/PI33

GS_{Project} Johnson Matthey GC_{Project} Pt63/Rh4/PI33

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 4 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PEn = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because this campaign was first project campaign on Line 4 there has been no moving average emission factor established yet for this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF_{man} and EF_{n})

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 31/10/2007 and ending on 10/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 65 823 tHNO₃ and time duration was on average 275 days. Table contains also information on suppliers of primary catalysts for the line 4.

T 2 Historic campaigns

Line	ACHEMA UKL-4	Production	Start	End	Days	Production per day	Primary Catalyst
Historic Campaigns	1 t HNO3	69 782	18 Apr 2003	11 Dec 2003	237	294	Johnson Matthey
	2 t HNO3	65 420	11 Dec 2003	06 Dec 2004	361	181	Johnson Matthey
	3 t HNO3	66 1 2 9	07 Dec 2004	08 Nov 2005	336	197	Umicore
	4 t HNO3	66 826	22 Mar 2006	23 Nov 2006	246	272	Johnson Matthey
	5 t HNO3	60 959	23 Nov 2006	04 Jun 2007	193	316	Johnson Matthey
Average HNO3 production	t HNO3	65 823			275	240	

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 28/12/2007 and continued through 31/07/2008 when the 58 683 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached 38 721 tHNO₃.

T 3 Baseline campaign length

ACHEMA UKL-4	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jun 04	2007 Dec 28	2008 May 02	2008 Jul 31	2008 Aug 01
Baseline Factor kgN2O/tHNO3			4.59	4.59	4.59
Production tHNO3			38 721	58 683	-
Per Day Production tHNO3	239.7				
Baseline less Historic Production	(7 140.4)				
Baseline less Historic Days	(29.8)				

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 4 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 28/12/2007 through 31/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 285 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.45%. As a result we have arrived to the baseline emission factor of 4.59 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 4 during the project campaign. Project campaign started on 06/10/2008 and went through 28/04/2009.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.75 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

This emission factor has been used in further calculation of emission reductions. Neither moving average emission factor nor minimum emission factor was established, since it was the first project campaign.

T 4 Baseline emission factor

BASELINE EMISSION FACTOR											
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure	Operation	Production
							Ratio	•			
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP	0	NAP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa	h	t/h
									•		•
Elimination of extreme values					_						
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		2 892	4 906	2 973	4 467	4 733	5 086	5 161	4 755	4 377	2 935
as % of Dataset		56%	95%	57%	86%	91%	98%	100%	92%	84%	57%
Minimum			-	0	-	266	-	1	3		-
Maximum			15.12	2 132	83 541	6 465	19 28	906	634		15
Mean			11.96	1 399	66 158	5 718	9 71	791	572		13
Standard Deviation			4 35	230	10 119	991	2.06	272	62		2
Total			58 683	200	10 110	001	2.90	212	02		38 721
1000			00000		.						30721
N2O Emissions (VSG * NCSG * OH)		268	t N2O	1							
Emission Factor		4.31	kgN2O / tHNO3								
Permitted Range											
Minimum					-	4 500	0	880	0		
Maximum					_	7 500	11.70	910	800		
Data within the permitted range											
Count		2 774		2 756	2 756					4 377	
as % of Operating Hours		96%		95%	95%					151%	
Minimum				11	35 467						
Maximum				1 922	73 553						
Mean				1 /30	69 474						
Standard Deviation				1430	2 173						
Standard Deviation											
N2O Emissions (VSG * NCSG * OH)		283	t N2O	1							
Emission Factor		4.56	kgN2O / tHNO3								
Data within the confidence interval											
95% Confidence interval											
Lower bound				1 200	64 216						
Upper bound				1 659	72 732						
Count				2 688	2 686						
as % of Operating Hours				93%	93%						
Minimum				1 201	64 218						
Maximum				1 658	72 726						
Mean				1 437	68 493						
Standard Deviation				96	1 820						
					. 520						
N2O Emissions (VSG * NCSG * OH)		285	t N2O								
Emission Factor (EF_BL)		4.59	kgN2O / tHNO3								

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure
							Ratio		
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa
Elimination of extreme values									
Lower limit			0	0	0	0	0	- 50	0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000
Raw Data Measured Range									
Count		3 01 3	3 531	3 368	3 2 1 7	4 327	3 538	4 893	4 869
as % of Dataset		62%	72%	69%	66%	- 327	72%	100%	99%
Minimum		0270	-	0	-	264	-	1	0
Maximum			16 18	896	81,308	7 672	19.62	90.3	683
Mean			11.09	483	63 088	4 617	9.93	581	556
Standard Deviation			4 75	151	16 700	2 223	2.12	391	154
Total			39 157	101	10100	2 220	2.12	001	101
			00 101						
N2O Emissions (VSG * NCSG * OH)		92	t N2O						
Emission Factor		2.35	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				187	30 357				
Upper bound				779	95 820				
Count				2 006	2.074				
could at Operating Hours				2 000	2 974				
				90%	99%				
Minimum				300	55719				
Maximum				771	74 026				
Mean Oran Januar Davis ting				528	67 598				
Standard Deviation				78	1607				
N2O Emissions (VSG * NCSG * OH)		108	t N2O						
Actual Project Emission Factor (FE PActual))	2 75	kaN20/tHN03						
Abatement Ratio		40.1%	kghze, thitee						
		401170							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule	1				
	1	2.75	2.75]				
	2	-							
Decident Employing Eastern (E.E. D)		A 75		1					
Project Emission Factor (EF_P)		2.75	kgN207tHN03						
		40.1%	l						

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 5MONITORINGPERIOD:FROM:02/07/2008

TO: 22/04/2009

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N2O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N2O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	7
	3.4	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	19
	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	20
	6.4	STACK GAS TEMPERATURE	20
	6.5	STACK GAS PRESSURE	20
7.		EMISSION REDUCTION CALCULATIONS	21

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 5 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the first project campaign on Line 5.

The first project campaign on Line 5 started on 02/07/2008. Secondary catalyst was installed on 02/07/2008. Total quantity of emission reductions generated during the period from 02/07/2008 through 22/04/2009 on Line 5 is **93 617 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION					
Baseline Emission Factor	EF_BL	6.69	kgN2O/tHNO3		
Project Campaign Emission Factor	EF_P	1.68	kgN2O/tHNO3		
Nitric Acid Produced in the Baseline Campaign	NAP_BL	55 079	tHNO3		
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	55 079	tHNO3		
Nitric Acid Produced in the Project Campaign	NAP_P	60 229	tHNO3		
GWP	GWP	310	tCO2e/tN2O		
Emission Reduction	ER	93 617	tCOe		
ER=(EF_BL-EF_P)*NAP_P*GWP/1000					
Abatement Ratio		74.9%			

Baseline emission factor established for the Line 5 during baseline measurement carried from 29/11/2007 through 17/06/2008 is 6.69 kgN₂O/tHNO₃.

Project emission factor during the first project campaign after installation of secondary catalysts on Line 5, which started on 02/07/2008 and went through 22/04/2009 with secondary catalyst installed and commissioned on 02/07/2008, is $1.68 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 60 229 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 5 emission reductions including information on baseline emission factor setting for the Line 5.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 5 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 5 has been carried out from 29/11/2007 through 17/06/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 5 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

GS _{BL}	Umicore
GC _{BL}	Pt63/Rh4/PI33

GS_{Project} Umicore GC_{Project} Pt63/Rh4/PI33

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 5 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PEn = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N ₂ O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because this campaign was first project campaign on Line 5 there has been no moving average emission factor established yet for this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF_{man} and EF_{n})

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.
After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 15/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 64 818 tHNO₃ and time duration was on average 238 days. Table contains also information on suppliers of primary catalysts for the line 5.

T 2 Historic campaigns

Line	ACHEMA UKL-5	Production	Start	End	Days	Production per day	Primary Catalyst
Historic Campaigns	1 t HNO3	65 664	06 Jun 2003	23 Dec 2003	200	328	Heraeus
	2 t HNO3	63 844	23 Dec 2003	24 Aug 2004	245	261	Johnson Matthey
	3 t HNO3	58 961	01 Sep 2004	10 May 2005	251	235	Johnson Matthey
	4 t HNO3	66 432	12 May 2005	06 Mar 2006	298	223	Heraeus
	5 t HNO3	69 1 8 9	06 Nov 2006	23 May 2007	198	349	Heraeus
Average HNO3 production	t HNO3	64 818			238	272	

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 29/11/2007 and continued through 17/06/2008 when the 55 079 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached 55 079 tHNO₃.

T 3 Baseline campaign length

ACHEMA UKL-5	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 May 23	2007 Nov 29	2008 Jun 17	2008 Jun 17	2008 Jun 18
Baseline Factor kgN2O/tHNO3			6.69	6.69	6.69
Production tHNO3			55 079	55 079	-
Per Day Production tHNO3	271.9				
Baseline less Historic Production	(9 739.2)				
Baseline less Historic Days	(35.8)				

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 5 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 29/11/2007 through 17/06/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 390 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.45%. As a result we have arrived to the baseline emission factor of 6.69 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 5 during the project campaign. Project campaign started on 02/07/2008 and went through 22/04/2009.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 1.68 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

This emission factor has been used in further calculation of emission reductions. Neither moving average emission factor nor minimum emission factor was established, since it was the first project campaign.

T 4 Baseline emission factor

	BASELINE EMIS	SION FACTOR									
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air Ratio	Temperature	Pressure	Operation	Production
	Code	ОН	ΝΔΡ	NCSG	VSG	AED	AIED	от	<u></u>	0	NAD
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	MIEK %	•C	kPa	b	t/h
	•				NIII5/II	Nill y /II	70	Ŭ	, Ki d		- VII
Elimination of extreme values					_						
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 519	4 571	4 660	4 558	4 701	4 4 1 4	4 797	4 698	4 427	4 571
as % of Dataset		94%	95%	97%	94%	97%	92%	99%	97%	92%	95%
Minimum			-	0	-	315	-	(0)	0		-
Maximum			15.02	2 289	82 389	6 482	19 73	908	673		15
Mean			12.05	1 230	64 702	5 022	10.70	844	612		10
Standard Doviation			12.00	1 235	64703	0 932	10.24	044	013		12
			3.12	200	14 929	990	0.81	195	46		3
lotal			55 079		-						55 079
N2O Emissions (VSG * NCSG * OH)		362	t N2O	1							
Emission Factor		6.22	kgN20 / tHNO3]							
Permitted Range											
Minimum					-	4 500	0	880	0		
Maximum						7 500	11.70	910	800		
Data within the permitted range											
Count		4 249		4 211	4 211					4 4 2 7	
as % of Operating Hours		94%		93%	93%					98%	
Minimum		0470		28	6 694					0070	
Maurineure				20	74.005						
Maximum				2 289	74 365						
Mean				1 263	68 111						
Standard Deviation				210	2 250						
N2O Emissions (VSG * NCSG * OH)		389	t N2O	1							
Emission Factor		6.67	kgN20 / tHNO3								
Data within the confidence interval					_						
95% Confidence interval											
Lower bound				851	63 701						
Upper bound				1 674	72 520						
Count				4.040	4 0.07						
				4 046	4 087						
as % of Operating Hours				90%	90%						
Minimum				865	63 704						
Maximum				1 674	72 518						
Mean				1 266	68 156						
Standard Deviation				187	1 884						
N20 Emissions (VSG * NCSG * 04)		200	+ N2O	1							
Emission Eactor (EE BL)		590	kaN20 / +UNO2								
LIIIISSIUII FACIUI (EF_DL)		0.09	KyNZU / LHINU3	J							

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure
							Ratio		
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa
Elimination of entropy column									
Lower limit			0	0	0	0	0	- 50	0
			50.00	3 000	120.000	10,000	20.00	- 50	1 000
			00.00	3 000	120 000	10 000	20.00	1200	1000
Raw Data Measured Range									
Count		4 666	5 245	5 165	5 077	5 832	5 678	7 032	7 009
as % of Dataset		66%	74%	73%	72%	83%	80%	100%	99%
Minimum			-	0	-	288	-	(0)	3
Maximum			15.61	2 072	80 444	6 628	19.99	910	732
Mean			11.48	325	59 005	5 615	9.75	619	580
Standard Deviation			4.86	193	21 725	1 477	3.64	397	152
Total			60 229						
N2O Emissions (VSG * NCSG * OH)		89	t N2O						
Emission Factor		1.48	kaN2O / tHNO3						
			9						
Data within the confidence interval									
95% Confidence interval									
Lower bound				- 53	16 424				
Upper bound				702	101 586				
Count				4 230	4 4 1 9				
as % of Operating Hours				91%	95%				
Minimum				0	23 154				
Maximum				700	77 427				
Mean				321	67 339				
Standard Deviation				71	2 811				
N2O Emissions (VSG * NCSG * OH)	、	101	t N2O						
Actual Project Emission Factor (EF_PActual)	1.68	KGN207 tHN03						
		74.9%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule]				
	1	1.68	1.68		1				
	2	-			l				
Project Emission Factor (EF_P)		1.68	kgN20 / tHNO3						
Abatement Ratio		74.9%	-						
			-						

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 5MONITORINGPERIOD:FROM:23/04/2009

TO: 14/01/2010

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N2O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N2O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	7
	3.4	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	19
	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	20
	6.4	STACK GAS TEMPERATURE	20
	6.5	STACK GAS PRESSURE	20
7.		EMISSION REDUCTION CALCULATIONS	21

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 5 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the second project campaign on Line 5.

The first project campaign on Line 5 started on 02/07/2008. Secondary catalyst was installed on 02/07/2008. Total quantity of emission reductions generated during the period from 23/04/2009 through 14/01/2010 on Line 5 is **84 445 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION							
Baseline Emission Factor	EF_BL	6.69	kgN2O/tHNO3				
Project Campaign Emission Factor	EF_P	2.87	kgN2O/tHNO3				
Nitric Acid Produced in the Baseline Campaign	NAP_BL	55 079	tHNO3				
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	55 079	tHNO3				
Nitric Acid Produced in the Project Campaign	NAP_P	71 273	tHNO3				
GWP	GWP	310	tCO2e/tN2O				
Emission Reduction	ER	84 445	tCOe				
ER=(EF_BL-EF_P)*NAP_P*GWP/1000							
batement Ratio 57.1%							

Baseline emission factor established for the Line 5 during baseline measurement carried from 29/11/2007 through 17/06/2008 is 6.69 kgN₂O/tHNO₃.

Project emission factor during the second project campaign after installation of secondary catalysts on Line 5, which started on 23/04/2009 and went through 14/01/2010 with secondary catalyst installed and commissioned on 02/07/2008, is $2.87 \text{ kgN}_2\text{O/tHNO}_3$.

During the project campaign 71 273 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 5 emission reductions including information on baseline emission factor setting for the Line 5.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 5 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 5 has been carried out from 29/11/2007 through 17/06/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 5 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

GS _{BL}	Umicore
GC _{BL}	Pt63/Rh4/PI33

GS_{Project} Umicore GC_{Project} Pt63/Rh4/PI33

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 5 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PEn = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 15/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 64 818 tHNO₃ and time duration was on average 238 days. Table contains also information on suppliers of primary catalysts for the line 5.

T 2 Historic campaigns

Line	ACHEMA UKL-5	Production	Start	End	Days	Production per day	Primary Catalyst
Historic Campaigns	1 t HNO3	65 664	06 Jun 2003	23 Dec 2003	200	328	Heraeus
	2 t HNO3	63 844	23 Dec 2003	24 Aug 2004	245	261	Johnson Matthey
	3 t HNO3	58 961	01 Sep 2004	10 May 2005	251	235	Johnson Matthey
	4 t HNO3	66 432	12 May 2005	06 Mar 2006	298	223	Heraeus
	5 t HNO3	69 1 8 9	06 Nov 2006	23 May 2007	198	349	Heraeus
Average HNO3 production	t HNO3	64 818			238	272	

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 29/11/2007 and continued through 17/06/2008 when the 55 079 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached 55 079 tHNO₃.

T 3 Baseline campaign length

ACHEMA UKL-5	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 May 23	2007 Nov 29	2008 Jun 17	2008 Jun 17	2008 Jun 18
Baseline Factor kgN2O/tHNO3			6.69	6.69	6.69
Production tHNO3			55 079	55 079	-
Per Day Production tHNO3	271.9				
Baseline less Historic Production	(9 739.2)				
Baseline less Historic Days	(35.8)				

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 5 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 29/11/2007 through 17/06/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 390 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.45%. As a result we have arrived to the baseline emission factor of 6.69 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 5 during the project campaign. Project campaign started on 23/04/2009 and went through 14/01/2010.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.87 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

	BASELINE EMIS	BASELINE EMISSION FACTOR										
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid	
			Production	Concentration	Flow	Flow Rate	to Air Ratio	Temperature	Pressure	Operation	Production	
	Code	ОН	ΝΔΡ	NCSG	VSG	AED	AIED	от	OP	0	NAD	
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	MIEK %	÷	kPa	b	t/h	
	•		4.1		Nili Ş/II	Nilly/II	70	Ŭ	, Kia		411	
Elimination of extreme values					_							
Lower limit			0	0	0	0	0	- 50	0		0	
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50	
Raw Data Measured Range												
Count		4 519	4 571	4 660	4 558	4 701	4 4 1 4	4 797	4 698	4 4 27	4 571	
as % of Dataset		94%	95%	97%	94%	97%	92%	99%	97%	92%	95%	
Minimum			-	0	-	315	-	(0)	0		-	
Maximum			15.02	2 289	82 389	6 482	19 73	908	673		15	
Mean			12.05	1 230	64 702	5 022	10.70	844	612		10	
Standard Deviation			12.00	1 235	64703	0 932	10.24	044	013		12	
			3.12	200	14 929	990	0.81	195	46		3	
lotal			55 079		-						55 079	
N2O Emissions (VSG * NCSG * OH)		362	t N2O	1								
Emission Factor		6.22	kgN20 / tHNO3									
Permitted Range												
Minimum					-	4 500	0	880	0			
Maximum						7 500	11.70	910	800			
Data within the permitted range												
Count		4 249		4 211	4 211					4 4 2 7		
as % of Operating Hours		94%		93%	93%					98%		
Minimum		0470		28	6 694					00/0		
Maurian				20	74.005							
Waximum				2 209	74 305							
Mean				1 263	68 111							
Standard Deviation				210	2 250							
N2O Emissions (VSG * NCSG * OH)		389	t N2O	1								
Emission Factor		6.67	kgN20 / tHNO3									
Data within the confidence interval												
95% Confidence interval												
Lower bound				851	63 701							
Upper bound				1 674	72 520							
oppor bound					12 020							
Count				4 046	4 087							
as % of Operating Hours				90%	90%							
Minimum				865	63 704							
Maximum				1 674	72 640							
Moon				1 074	12 310							
Chanderd Deviation				1 200	001 00							
Standard Deviation				187	1 884							
N2O Emissions (VSG * NCSG * OH)		390	t N2O	1								
Emission Factor (EF BL)		6.69	kaN2O / tHNO3									
		0.00		1								

T 5 Project emission factor

Parameter Code Unit Operating Hours (Code Unit Nitro Acid Production NAP N2D Concentration (NCS6 (NS6) Gas Volume Flow Rate (NM2h) Ammonia Temperature Ratio Oxidation Pressure (NS6) Oxidation (NS6) OXidat	PROJECT EMISSION FACTOR									
Production Production Flow Flow <th></th> <th>Parameter</th> <th>Operating Hours</th> <th>Nitric Acid</th> <th>N2O</th> <th>Gas Volume</th> <th>Ammonia</th> <th>Ammonia</th> <th>Oxidation</th> <th>Oxidation</th>		Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation
Code Unit OH h NAP th NCS0 mg N20/Nm3 VSG Nm3/h AFR AFR Nm3/h AFR AFR AFR Nm3/h OT P F OP KPa Elimination of extreme values 0				Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure
Code Unit OH It NAP NCS VSG Nn3h AFR Nn3h AFR VF OT OF OP KP Elimination of extreme values 0								Ratio		
Unif h th ing N20/Nm3 Nm3/h Nm3/h % °C KPa Elimination of extreme values 0 0 0 0 0 - 50 0 Upper Limit 0.00 3.000 120.00 10.000 20.00 1.200 1.000 Raw Data Measured Range		Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP
Elimination of extreme values 0		Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa
Limitation of extreme values 0	Elizaben eta en el controloción de la control									
During limits 50.00 3 000 120.00 12	Lower limit			0	0	0	0	0	- 50	0
Opposite Limit Doco Doco Loco Loco <thloco< th=""> Loco Loco</thloco<>				50.00	3 000	120.000	10,000	20.00	- 50	1 000
Raw Data Measured Range 4 966 5 612 4 902 4 888 5 633 5 100% 100				50.00	3 000	120 000	10 000	20.00	1200	1000
Count as % of Oberaset 4966 5 612 4 902 4 888 5 633 5 100 6 377 6 377 Minimum 0.61 0 45 182 312 3 (0) 33 Maximum 0.61 0 45 182 312 3 (0) 33 Maximum 16.85 1369 80 902 6 541 13.29 914 714 Mannum 12.70 611 67 369 5 711 10.68 709 577 Standard Deviation 4.13 93 2 074 1 214 0.62 350 170 Total 71 273 93 2 074 1 214 0.62 350 170 Minitom 204 1 N20 2.87 kgN20 / tHN03 283 430 63 304 Lower bound 430 63 304 28% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95	Raw Data Measured Range									
as % of Dataset 78% 88% 77% 77% 88% 80% 100% 100% Minimum 0.61 0 45 182 312 3 (0) 3 Maximum 16.85 1369 80.902 6541 19.29 914 714 Mean 12.70 611 67.369 57.11 10.68 709 577 Standard Deviation 4.13 93 2.074 1.214 0.62 350 170 Total 71.273 71 1.214 0.62 350 170 N2O Emissions (VSG * NCSG * OH) 2.04 t N2O 1214 0.62 350 170 N2O Emission Factor 2.87 kgN2O / tHNO3 63.304 1214 0.62 350 170 Data within the confidence interval 430 63.304 430 63.304 430 63.304 430 63.304 430 63.304 430 63.304 430 63.304 430 63.304 430 63.304 430 63.304 430 63.304 430 63.304	Count		4 966	5 612	4 902	4 888	5 633	5 100	6 377	6 377
Minimum 0.61 0 45182 312 3 (0) 3 Maximum 16.85 1369 89.092 6541 19.29 914 714 Mean 12.70 611 67.369 5.711 10.68 709 5.77 Standard Deviation 71.273 93 2.074 1.214 0.62 350 170 N2O Emission K VSG * NCSG * OH) 2.04 t N2O Emission Factor 2.87 kgN2O / tHNO3 KgN2O / tHNO3<	as % of Dataset		78%	88%	77%	77%	88%	80%	100%	100%
Maximum 18.65 1369 89 092 6 541 19.29 914 714 Maan 12.70 611 67 369 5 771 10.68 709 577 Standard Deviation 4.13 93 2.074 1 214 0.62 350 170 Total 71 273 7 1 214 0.62 350 170 Maximum 2.04 1 N20 <	Minimum			0.61	0	45 182	312	3	(0)	3
Mean 12.70 611 67 369 5 711 10.68 709 577 Total 71 273 93 2 074 1 214 0.62 350 170 N20 Emissions (VSG * NCSG * OH) 204 t N20 Emission Factor 2.87 kgN20 / tHN03 53 304 577 58% 60% 5711 10.68 709 577 N20 Emission Factor 2.87 kgN20 / tHN03 430 63 304 53 304 58% 5714 33 58% 58% 5715 5717 10.68 709 577 <td< td=""><td>Maximum</td><td></td><td></td><td>16.85</td><td>1 369</td><td>89 092</td><td>6 541</td><td>19.29</td><td>914</td><td>714</td></td<>	Maximum			16.85	1 369	89 092	6 541	19.29	914	714
Standard Deviation 4.13 93 2.074 1.214 0.62 350 170 Total 71.273 <td< td=""><td>Mean</td><td></td><td></td><td>12.70</td><td>611</td><td>67 369</td><td>5 711</td><td>10.68</td><td>709</td><td>577</td></td<>	Mean			12.70	611	67 369	5 711	10.68	709	577
Total 71 273 NZO Emissions (VSG * NCSG * OH) 204 t NZO Emission Factor 2.87 kgN2O / HNO3 Data within the confidence interval 95% Confidence interval GS% Confidence interval 430 Lower bound 430 Upper bound 793 2.87 kgN2O / HNO3 71 433 Count 4582 as % of Operating Hours 92% Maimum 430 Mean 792 Standard Deviation 71 Actual Project Emission Factor (EF_PActual) 2.87 Abatement Ratio 57.1%	Standard Deviation			4.13	93	2 074	1 214	0.62	350	170
N2O Emissions (VSG * NCSG * OH) 204 t N2O Emission Factor 2.87 kgN2O / tHNO3 Data within the confidence interval 30 63 304 Lower bound 430 63 304 Upper bound 793 71 433 Count 4582 4 723 as % of Operating Hours 92% 95% Minimum 430 63 304 Maximum 792 71 433 Mean 792 71 433 Standard Deviation 71 1 823 N2O Emissions (VSG * NCSG * OH) 204 t N2O Abatement Ratio 57.1% Project Emission Factor (EF_P) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1%	Total			71 273						
Low Boot Pactor 2.87 kgN20 / tHN03 Data within the confidence interval 30 63 304 S% Confidence interval 430 63 304 Lower bound 430 63 304 Upper bound 4582 4 723 Count 4 582 4 723 as % of Operating Hours 92% 95% Minimum 430 63 304 Maximum 430 63 304 Maximum 612 67 320 Standard Deviation 71 1 823 N2O Emissions (VSG * NCSG * OH) 204 t N2O Actual Project Emission Factor (EF_PActual) 2.87 kgN2O / tHN03 Abatement Ratio 57.1% 2.87 2.87 Project Emission Factor (EF_P) 2.87 kgN2O / tHN03 Abatement Ratio 57.1% 57.1% 57.1%	N2O Emissions (VSG * NCSG * OH)		204	t N2O						
Data within the confidence interval 95% Confidence interval Lower bound 430 63 304 Upper bound 793 71 433 Count 4 582 4 723 as % of Operating Hours 92% 95% Minimum 430 63 304 Maximum 92% 95% Minimum 430 63 304 Maximum 792 71 433 Mean 612 67 320 Standard Deviation 71 1 823 N2O Emissions (VSG * NCSG * OH) 204 t N2O Actual Project Emission Factor (EF_PActual) 2.87 kgN20 / tHNO3 Abatement Ratio 57.1% 1.68 2 2.87 2.87 Project Emission Factor (EF_P) 2.87 kgN20 / tHNO3 Abatement Ratio 57.1% 1	Emission Eactor		2.87	kaN2O / tHNO3						
Data within the confidence interval 95% Confidence interval Lower bound 430 63 304 Upper bound 793 71 433 Count 4 582 4 723 as % of Operating Hours 92% 95% Minimum 430 63 304 Maximum 430 63 304 Maximum 792 71 433 Mean 612 67 320 Standard Deviation 71 1 823 N2O Emissions (VSG * NCSG * OH) 204 t N2O Actual Project Emission Factor (EF_PActual) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1% 2.87 2.87 Project Emission Factor (EF_P) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1% 57.1%			2.01	RgH207 antoo						
95% Confidence interval 430 63 304 Lower bound 793 71 433 Count 4 582 4 723 as % of Operating Hours 92% 95% Minimum 430 63 304 Maximum 792 71 433 Mean 612 67 320 Standard Deviation 71 1 823 N2O Emissions (VSG * NCSG * OH) 204 t N2O Actual Project Emission Factor (EF_PActual) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1% 2.87 Project Emission Factor (EF_P) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1% 5.87	Data within the confidence interval									
Lower bound 430 63 304 Upper bound 793 71 433 Count 4 582 4 723 as % of Operating Hours 92% 95% Minimum 430 63 304 Mean 792 71 433 Standard Deviation 71 1 823 N2O Emissions (VSG * NCSG * OH) 204 t N2O Actual Project Emission Factor (EF_PActual) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1% 1.68 1.68 2 2.87 2.87 2.87 Project Emission Factor (EF_P) 2.87 kgN2O / tHNO3 Abatement Ratio Abatement Ratio 57.1% 57.1%	95% Confidence interval									
Upper bound 793 71 433 Count 4 582 4 723 as % of Operating Hours 92% 95% Minimum 430 63 304 Maximum 792 71 433 Mean 612 67 320 Standard Deviation 71 1 823 N2O Emissions (VSG * NCSG * OH) 204 t N2O Actual Project Emission Factor (EF_PActual) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1% 1.68 2.87 Project Emission Factor (EF_P) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1% 57.1%	Lower bound				430	63 304				
Count as % of Operating Hours 4 582 4 723 minimum 92% 95% Minimum 430 63 304 Maximum 792 71 433 Mean 612 67 320 Standard Deviation 71 1 823 N2O Emissions (VSG * NCSG * OH) Actual Project Emission Factor (EF_PActual) 204 t N2O Actual Factors Moving Average Rule Moving Average Emission Factor Correction Actual Factors Moving Average Rule 1 1 1.68 1.68 2 2 2.87 2.87 2.87	Upper bound				793	71 433				
as % of Operating Hours 92% 95% Minimum 430 63 304 Maximum 792 71 433 Mean 612 67 320 Standard Deviation 71 1 823	Count				1 582	1 723				
Minimum 430 63 304 Maximum 792 71 433 Mean 612 67 320 Standard Deviation 71 1 823 N2O Emission Factor (EF_PActual) 204 t N2O Actual Project Emission Factor Correction Actual Factors Moving Average Rule 1 1.68 1.68 2 2.87 2.87 Project Emission Factor (EF_P) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1%	as % of Operating Hours				92%	95%				
Maximum 792 71 433 Mean 612 67 320 Standard Deviation 71 1 823 N2O Emissions (VSG * NCSG * OH) 204 t N2O Actual Project Emission Factor (EF_PActual) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1% Moving Average Emission Factor (EF_P) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1%	Minimum				430	63 304				
Mean 612 67 320 Standard Deviation 71 1 823 N20 Emissions (VSG * NCSG * OH) 204 t N20 Actual Project Emission Factor (EF_PActual) 2.87 kgN20 / tHNO3 Abatement Ratio 1 1.68 1 1.68 1.68 2 2.87 2.87 Project Emission Factor (EF_P) 2.87 kgN20 / tHNO3 Abatement Ratio 57.1%	Maximum				792	71 433				
Standard Deviation 71 1 823 N2O Emissions (VSG * NCSG * OH) 204 t N2O Actual Project Emission Factor (EF_PActual) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1% Moving Average Emission Factor Correction Actual Factors Moving Average Rule 1 1.68 1.68 2 2.87 2.87 Project Emission Factor (EF_P) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1%	Mean				612	67 320				
N2O Emissions (VSG * NCSG * OH) 204 t N2O Actual Project Emission Factor (EF_PActual) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1% Moving Average Emission Factor Correction Actual Factors Moving Average Rule 1 1.68 1.68 2 2.87 2.87 Project Emission Factor (EF_P) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1%	Standard Deviation				71	1 823				
N2O Emissions (VSG * NCSG * OH) 204 t N2O Actual Project Emission Factor (EF_PActual) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1% Moving Average Emission Factor Correction Actual Factors Moving Average Emission Factor Correction Actual Factors 1 1.68 2 2.87 2 2.87 2 2.87 2 2.87 Abatement Ratio 57.1%										
Actual Project Emission Factor (EF_PActual) 2.87 kgN20 / tHNO3 Abatement Ratio 57.1% Moving Average Emission Factor Correction Actual Factors Moving Average Rule 1 1.68 1.68 2 2.87 2.87 Project Emission Factor (EF_P) 2.87 kgN20 / tHNO3 Abatement Ratio 57.1%	N2O Emissions (VSG * NCSG * OH)		204	t N2O						
Abatement Ratio 57.1% Moving Average Emission Factor Correction Actual Factors Moving Average Rule 1 1.68 1.68 2 2.87 2.87 Project Emission Factor (EF_P) 2.87 kgN20 / tHN03 Abatement Ratio 57.1%	Actual Project Emission Factor (EF_PActual)		2.87	kgN20 / tHNO3						
Moving Average Emission Factor Correction Actual Factors Moving Average Rule 1 1.68 1.68 2 2.87 2.87 Project Emission Factor (EF_P) 2.87 kgN20 / tHN03 Abatement Ratio 57.1%	Abatement Ratio		57.1%							
I 1.68 1.68 2 2.87 2.87 Project Emission Factor (EF_P) 2.87 kgN20 / tHN03 Abatement Ratio 57.1%	Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule	1				
2 2.87 2.87 Project Emission Factor (EF_P) 2.87 kgN2O / tHNO3 Abatement Ratio 57.1%		1	1.68	1.68		1				
Project Emission Factor (EF_P) 2.87 kgN20 / tHN03 Abatement Ratio 57.1%		2	2.87	2.87						
Project Emission Factor (EF_P) 2.87 kgN20 / tHNO3 Abatement Ratio 57.1%						•				
Project Emission Factor (EF_P) 2.87 kgN20 / tHN03 Abatement Ratio 57.1%					l					
Adatement Katio 57.1%	Project Emission Factor (EF_P)		2.87	kgN20 / tHNO3						
	Abatement Ratio		57.1%							

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 6MONITORINGPERIOD:FROM:25/07/2008

TO: 21/04/2009

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N2O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N2O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	7
	3.4	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	19
	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	20
	6.4	STACK GAS TEMPERATURE	20
	6.5	STACK GAS PRESSURE	20
7.		EMISSION REDUCTION CALCULATIONS	21

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 6 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the first project campaign on Line 6.

The first project campaign on Line 6 started on 21/07/2008. Secondary catalyst was installed on 25/07/2008. Total quantity of emission reductions generated during the period from 25/07/2008 through 21/04/2009 on Line 6 is **111 195 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION							
Baseline Emission Factor	EF_BL	10.08	kgN2O/tHNO3				
Project Campaign Emission Factor	EF_P	4.83	kgN2O/tHNO3				
Nitric Acid Produced in the Baseline Campaign	NAP_BL	60 850	tHNO3				
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	60 850	tHNO3				
Nitric Acid Produced in the Project Campaign	NAP_P	68 318	tHNO3				
GWP	GWP	310	tCO2e/tN2O				
Emission Reduction	ER	111 195	tCOe				
ER=(EF_BL-EF_P)*NAP_P*GWP/1000							
Abatement Ratio		52.1%					

Baseline emission factor established for the Line 6 during baseline measurement carried from 11/01/2008 through 21/07/2008 is $10.08 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Project emission factor during the first project campaign after installation of secondary catalysts on Line 6, which started on 25/07/2008 and went through 21/04/2009 with secondary catalyst installed and commissioned on 25/07/2008, is $4.83 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 68 318 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 6 emission reductions including information on baseline emission factor setting for the Line 6.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 6 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 6 has been carried out from 11/01/2008 through 21/07/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

 $EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 6 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room A, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

GS _{BL}	Heraous
GC _{BL}	Pt63/Rh4/PI33

GS_{Project} Heraous GC_{Project} Pt63/Rh4/PI33

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 6 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PEn = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because this campaign was first project campaign on Line 6 there has been no moving average emission factor established yet for this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF_{man} and EF_{n})

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 08/09/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 61 599 tHNO₃ and time duration was on average 241 days. Table contains also information on suppliers of primary catalysts for the line 6.

T 2 Historic campaigns

Line	ACHEMA UKL-6	Production	Start	End	Days	Production per day	Primary Catalyst
Historic Campaigns	1 t HNO3	62 918	28 Aug 2003	25 Mar 2004	210	300	Heraeus
	2 t HNO3	61 366	01 Apr 2004	02 Feb 2005	307	200	Johnson Matthey
	3 t HNO3	64 872	26 Jul 2005	10 Mar 2006	227	286	Johnson Matthey
	4 t HNO3	55 693	10 Mar 2006	29 Nov 2006	264	211	Umicore
	5 t HNO3	63 1 48	29 Nov 2006	12 Jun 2007	195	324	Heraeus
Average HNO3 production	t HNO3	61 599			241	256	

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 11/01/2008 and continued through 21/07/2008 when the 60 850 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached 60 850 tHNO₃.

T 3 Baseline campaign length

ACHEMA UKL-6	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Jun 12	2008 Jan 11	2008 Jul 21	2008 Jul 21	2008 Jul 22
Baseline Factor kgN2O/tHNO3			10.08	10.08	10.08
Production tHNO3			60 850	60 850	-
Per Day Production tHNO3	256.0				
Baseline less Historic Production	(749.3)				
Baseline less Historic Days	(2.9)				

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 6 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 11/01/2008 through 21/07/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 650 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.62%. As a result we have arrived to the baseline emission factor of 10.08 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 6 during the project campaign. Project campaign started on 25/07/2008 and went through 21/04/2009.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 4.83 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

This emission factor has been used in further calculation of emission reductions. Neither moving average emission factor nor minimum emission factor was established, since it was the first project campaign.

T 4 Baseline emission factor

BASELINE EMISSION FACTOR											
		Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure	Operation	Production
							Ratio				NCSG
	Code	OH	NAP	NCSG	VEC	AED	AIED	OT		•	NAD
	Unit	6 h	t/b	mg N2O/Nm2	VSG Nm2/h			01	UP	0	NAP t/h
	Um		U/II	Ing N20/Nin3	Nm3/n	NM3/N	70	· U	кра	n	τ/n
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 233	4 363	4 494	4 286	4 324	4 361	4 585	4 564	4 194	4 363
as % of Dataset		92%	95%	98%	93%	94%	95%	100%	99%	91%	95%
Minimum			-	1	2	568	-	(1)	0		-
Maximum			16.37	2 303	116 940	6 423	15.58	905	634		16
Mean			13.95	1 422	98 069	6 050	10.50	833	583		14
Standard Deviation			3.18	416	17 002	456	1 70	201	44		
Total			60.850	410	17 093	450	1.70	201	44		60.950
Total			00000		-,						00 850
N2O Emissions (VSG * NCSG * OH)		590	t N2O	1							
Emission Factor		9.15	kgN2O / tHNO3								
Demolities of Demons											
Permitted Range						4.500					
Manimum						4 500	0	088	0		
Maximum					-	7 500	11.70	910	800		
Data within the permitted range											
Count		4 116		4 015	4 015					4 194	
as % of Operating Hours		07%		05%	05%					00%	
Minimum		51 /0		3070	40.000					3370	
Maria				406	10 090						
Maximum				2 230	109 235						
Mean				1 491	100 972						
Standard Deviation				261	2 445						
		627	+ N2O	1							
Emission Eactor		9.88	$k_{\rm d}N_{\rm 2O}$ / tHNO3								
		0.00	kg/1207 ti 1100	1							
Data within the confidence interval											
95% Confidence interval											
Lower bound				980	96 180						
Upper bound				2 002	105 763						
Count				3 886	3 981						
as % of Operating Hours				92%	94%						
Minimum				994	96 248						
Maximum				1 993	105 753						
Mean				1 520	101 000						
Standard Deviation				1 320	4 700						
				204	1 / 22						
N2O Emissions (VSG * NCSG * OH)		650	t N2O	1							
Emission Eactor (EE BL)		10.00	kaN20 / +UN02								
		10.08	RgINZO / LEINOS	1							

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure
							Ratio		
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa
Elimination of extreme values									
Lower limit			0	0	0	0	0	- 50	0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000
Raw Data Measured Range									
Count		4 620	5 963	5 040	4 796	6 188	4 733	6 457	6 4 1 5
as % of Dataset		71%	92%	78%	74%	95%	73%	100%	99%
Minimum		1170	-	0	2	-	-	(43)	-
Maximum			16 10	2 078	119 957	6 722	19.62	912	664
Mean			11 46	648	102 374	4 797	10.54	672	582
Standard Deviation			5 56	288	20 601	2 550	0.54	361	58
Total			68.318	200	20 001	2 000	0.01	001	00
			00010						
N2O Emissions (VSG * NCSG * OH)		307	t N2O						
Emission Factor		4.49	kgN2O / tHNO3						
Data within the confidence interval									
95% Confidence interval									
Lower bound				85	61 996				
Upper bound				1 212	142 753				
Count				4 227	4 204				
could at Operating Hours				4 321	4 394				
				94%	95%				
Minimum				C8	79728				
Maximum				1 210	119 822				
Mean Oran Januar Davis ting				672	106 222				
Standard Deviation				230	5 357				
N2O Emissions (VSG * NCSG * OH)		330	t N2O						
Actual Project Emission Factor (FE PActual))	4 83	kaN20/tHN03						
Abatement Ratio		52.1%	kghze, thitee						
		•=: , , ,							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule]				
	1	4.83	4.83]				
	2	-							
Decident Emission Easter (EE_D)		4.00		l					
Abatement Patio		4.83	KgN207 THNO3						
		JZ. 170	l						

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 7MONITORINGPERIOD:FROM:03/07/2008

TO: 22/10/2008

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N2O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N2O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	7
	3.4	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	19
	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	20
	6.4	STACK GAS TEMPERATURE	20
	6.5	STACK GAS PRESSURE	20
7.		EMISSION REDUCTION CALCULATIONS	21

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 7 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the first project campaign on Line 7.

The first project campaign on Line 7 started on 28/03/2008. Secondary catalyst was installed on 03/07/2008. Total quantity of emission reductions generated during the period from 03/07/2008 through 22/10/2008 on Line 7 is **21 833 ERUs**.

T 1 Emission reduction calculations

EMISSIC	N REDUCTION		
Baseline Emission Factor	EF_BL	4.51	kgN2O/tHNO3
Project Campaign Emission Factor	EF_P	2.27	kgN2O/tHNO3
Nitric Acid Produced in the Baseline Campaign	NAP_BL	55 626	tHNO3
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	31 035	tHNO3
Nitric Acid Produced in the Project Campaign	NAP_P	31 445	tHNO3
GWP	GWP	310	tCO2e/tN2O
Emission Reduction	ER	21 833	tCOe
ER=(EF_BL-EF_P)*NAP_P*GWP/1000			
Abatement Ratio		49.7%)

Baseline emission factor established for the Line 7 during baseline measurement carried from 12/09/2007 through 27/03/2008 is $4.51 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Project emission factor during the first project campaign after installation of secondary catalysts on Line 7, which started on 03/07/2008 and went through 22/10/2008 with secondary catalyst installed and commissioned on 03/07/2008, is $2.27 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 31 445 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 7 emission reductions including information on baseline emission factor setting for the Line 7.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 7 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 7 has been carried out from 12/09/2007 through 27/03/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 7 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

GS _{BL}	Heraous
GC _{BL}	Pt63/Rh4/PI33

GS_{Project} Heraous GC_{Project} Pt63/Rh4/PI33

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 7 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PEn = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
ОН	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because this campaign was first project campaign on Line 7 there has been no moving average emission factor established yet for this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF_{man} and EF_{n})

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 04/05/2008 and ending on 18/08/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 64 274 tHNO₃ and time duration was on average 218 days. Table contains also information on suppliers of primary catalysts for the line 7.

T 2 Historic campaigns

Line	ACHEMA UKL-7	Production	Start	End	Days	Production per day	Primary Catalyst
Historic Campaigns	1 t HNO3	57 671	10 Sep 2004	16 Mar 2005	187	308	Heraeus (90/5/5)
	2 t HNO3	70 015	16 Mar 2005	07 Nov 2005	236	297	JM (90/5/5)
	3 t HNO3	55 426	08 Nov 2005	20 May 2006	193	287	Heraeus (63/4/34)
	4 t HNO3	67 588	24 May 2006	04 Jan 2007	225	300	JM (n/a)
	5 t HNO3	70 670	04 Jan 2007	11 Sep 2007	250	283	Umicore (95/5)
Average HNO3 production	t HNO3	64 274			218	295	

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 12/09/2007 and continued through 27/03/2008 when the 55 626 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached 31 035 tHNO₃.

T 3 Baseline campaign length

ACHEMA UKL-7	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Sep 11	2007 Sep 12	2008 Jan 07	2008 Mar 27	2008 Mar 28
Baseline Factor kgN2O/tHNO3			4.51	4.51	4.51
Production tHNO3			31 035	55 626	-
Per Day Production tHNO3	294.6				
Baseline less Historic Production	(8 647.4)				
Baseline less Historic Days	(29.4)				

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 7 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 12/09/2007 through 27/03/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 266 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.64%. As a result we have arrived to the baseline emission factor of 4.51 kgN₂O/tHNO₃.

Table T 5 shows the calculation of the project emission factor on Line 7 during the project campaign. Project campaign started on 03/07/2008 and went through 22/10/2008.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.27 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

This emission factor has been used in further calculation of emission reductions. Neither moving average emission factor nor minimum emission factor was established, since it was the first project campaign.

T 4 Baseline emission factor

BASELINE EMISSION FACTOR											
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure	Operation	Production
							Ratio				NCSG
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP	0	NAP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa	h	t/h
					-						
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		0
Opper Limit			50.00	3 000	150 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		2 357	4 238	2 559	4 238	4 708	4 485	4 708	4 708	3 910	2 373
as % of Dataset		50%	90%	54%	90%	100%	95%	100%	100%	83%	50%
Minimum			0.00	0	1 728	0	0	33	3		0
Maximum			16.41	1 728	112 864	6 476	18.83	915	667		16
Mean			13.13	1 075	81 088	5 394	9.92	811	590		13
Standard Deviation			4.69	414	24 852	1 806	1 37	228	112		5
Total			55 626		24 002	1 000	1.07	220	112		31 035
N2O Emissions (VSG * NCSG * OH)		205	t N2O								
Emission Factor		3.49	kgN2O / tHNO3								
Permitted Pange											
Minimum					-		0	880	550		
Maximum						7 500	11.20	910	800		
					a,						
Data within the permitted range				1.055							
Count		1 520		1 255	1 255					3 910	
as % of Operating Hours		64%		53%	53%					166%	
Minimum				776	80 872						
Maximum				1 728	97 966						
Mean				1 264	89 241						
Standard Deviation				283	5 789						
		220	+ N2O	1							
N2O Effissions (VSG INCSG IOH)		∠00 4.51									
		4.51	kginz07 ti ino3	1							
Data within the confidence interval											
95% Confidence interval											
Lower bound				709	77 894						
Upper bound				1 819	100 588						
Count				1 255	1 255						
as % of Operating Hours				53%	53%						
Minimum				776	80.872						
Maximum				1 729	00 072						
Moon				1 / 20	97 900						
Standard Doviation				1 204	09 241						
				283	5 789						
N2O Emissions (VSG * NCSG * OH)		266	t N2O	1							
Emission Factor (FE_BL)		4 51	kaN20 / tHNO3								
		-1.7		1							

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure
							Ratio		
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa
Limination of extreme values			0	0	0	0	0	50	0
Lower limit			50.00	2 000	150,000	10,000	20.00	- 50	1 000
			50.00	3 000	150 000	10 000	20.00	1 200	1000
Raw Data Measured Range									
Count		2 301	2 565	2 287	2 531	2 642	2 552	2 643	2 642
as % of Dataset		86%	96%	86%	95%	99%	96%	99%	99%
Minimum			-	0	138	3	0	65	6
Maximum			15.64	781	106 178	5 944	17.85	1 100	666
Mean			12.26	362	76 389	5 019	10.22	827	597
Standard Deviation			4.67	127	21 053	1 597	0.69	223	91
Total			31 445						
N2O Emissions (VSG * NCSG * OH)		64	t N2O						
Emission Factor		2 0 2	kaN2O / tHNO3						
		2.02	Kgrt207 tillt00						
Data within the confidence interval									
95% Confidence interval									
Lower bound				113	35 1 26				
Upper bound				611	117 652				
Count				1 945	2 184				
as % of Operating Hours				85%	95%				
Minimum				202	77 822				
Maximum				586	95 168				
Mean				375	82 746				
Standard Deviation				97	2 1 39				
N2O Emissions (VSG * NCSG * OH)		71	t N2O						
Actual Project Emission Factor (EF_PActual)		2.27	kgN2O / tHNO3						
Abatement Ratio		49.7%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	lule	1				
	1	2.27	2.27		1				
	2	-							
					•				
Deviced Enviroime Easter (EE, D)				1					
Project Emission Factor (EF_P)		2.27	KgN20 / tHNO3	l					
Apatement Katio		49.7%	l						

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 7MONITORINGPERIOD:FROM:29/01/2009

TO: 01/11/2009

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N2O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N2O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	7
	3.4	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	19
	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	20
	6.4	STACK GAS TEMPERATURE	20
	6.5	STACK GAS PRESSURE	20
7.		EMISSION REDUCTION CALCULATIONS	21

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 7 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the second project campaign on Line 7.

The first project campaign on Line 7 started on 28/03/2008. Secondary catalyst was installed on 03/07/2008. Total quantity of emission reductions generated during the period from 29/01/2009 through 01/11/2009 on Line 7 is **112 125 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION								
Baseline Emission Factor	EF_BL	9.05	kgN2O/tHNO3					
Project Campaign Emission Factor	EF_P	2.91	kgN2O/tHNO3					
Nitric Acid Produced in the Baseline Campaign	NAP_BL	55 626	tHNO3					
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	55 626	tHNO3					
Nitric Acid Produced in the Project Campaign	NAP_P	58 897	tHNO3					
GWP	GWP	310	tCO2e/tN2O					
Emission Reduction	ER	112 125	tCOe					
ER=(EF_BL-EF_P)*NAP_P*GWP/1000								
batement Ratio 67.8%								

Baseline emission factor established for the Line 7 during baseline measurement carried from 12/09/2007 through 27/03/2008 is $9.05 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

Project emission factor during the second project campaign after installation of secondary catalysts on Line 7, which started on 29/01/2009 and went through 01/11/2009 with secondary catalyst installed and commissioned on 03/07/2008, is 2.91 kgN₂O/tHNO₃.

During the project campaign 58 897 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 7 emission reductions including information on baseline emission factor setting for the Line 7.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 7 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 7 has been carried out from 12/09/2007 through 27/03/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 7 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

GS _{BL}	Heraous
GC _{BL}	Pt63/Rh4/PI33

GS_{Project} Heraous GC_{Project} Pt63/Rh4/PI33

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 7 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PEn = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 04/05/2008 and ending on 18/08/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 64 274 tHNO₃ and time duration was on average 218 days. Table contains also information on suppliers of primary catalysts for the line 7.

T 2 Historic campaigns

Line	ACHEMA UKL-7	Production	Start	End	Days	Production per day	Primary Catalyst
Historic Campaigns	1 t HNO3	57 671	10 Sep 2004	16 Mar 2005	187	308	Heraeus (90/5/5)
	2 t HNO3	70 015	16 Mar 2005	07 Nov 2005	236	297	JM (90/5/5)
	3 t HNO3	55 426	08 Nov 2005	20 May 2006	193	287	Heraeus (63/4/34)
	4 t HNO3	67 588	24 May 2006	04 Jan 2007	225	300	JM (n/a)
	5 t HNO3	70 670	04 Jan 2007	11 Sep 2007	250	283	Umicore (90/5/5)
Average HNO3 production	t HNO3	64 274			218	295	

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 12/09/2007 and continued through 27/03/2008 when the 55 626 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached 55 626 tHNO₃.

T 3 Baseline campaign length

ACHEMA UKL-7	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign
Dates	2007 Sep 11	2007 Sep 12	2008 Mar 27	2008 Mar 27	2008 Mar 28
Baseline Factor kgN2O/tHNO3			9.05	9.05	9.05
Production tHNO3			55 626	55 626	-
Per Day Production tHNO3	294.6				
Baseline less Historic Production	(8 647.4)				
Baseline less Historic Days	(29.4)				

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 7 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 12/09/2007 through 27/03/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 534 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.64%. As a result we have arrived to the baseline emission factor of 9.05 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 7 during the project campaign. Project campaign started on 29/01/2009 and went through 01/11/2009.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 2.91 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was higher than the moving average EF of the campaigns on this line so far, we have used the actual project EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

	BASELINE EMIS										
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air Ratio	Temperature	Pressure	Operation	Production
	Code	ОН	ΝΔΡ	NCSG	VSC	AED		от	0.0	0	NAD
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa	h	t/h
					11110/11	Nillo/II	70	Ŭ	Ki u		411
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	150 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 097	4 238	4 385	4 238	4 708	4 485	4 708	4 708	3 910	4 238
as % of Dataset		87%	90%	93%	90%	100%	95%	100%	100%	83%	90%
Minimum			0.00	0	1 728	0	0	33	3		0
Maximum			16.41	1 933	112 864	6 476	18 83	915	667		16
Mean			13.13	1 250	81 088	5 30/	0.02	811	590		13
Standard Deviation			4 69	148	24 952	1 906	1.32	011	110		15
Total			55 626		24 032	1 000	1.57	220	112		55 626
			00 020		-,						55 020
N2O Emissions (VSG * NCSG * OH)		415	t N2O	1							
Emission Factor		7.04	kgN2O / tHNO3								
Permitted Range											
Minimum					-	-	0	880	550		
Maximum						7 500	11.20	910	800		
Data within the permitted range											
Count		3 145		2 856	2 856					3 910	
as % of Operating Hours		77%		70%	70%					95%	
Minimum				776	56 955						
Maximum				1 933	98 891						
Mean				1 436	80 202						
Standard Deviation				278	5 775						
N2O Emissions (VSG * NCSG * OH)		525	t N2O								
Emission Factor		8.91	kgN2O / tHNO3								
Data within the confidence interval					_						
95% Confidence interval											
Lower bound				891	77 974						
Upper bound				1 981	100 611						
Count				0.704							
				2 /64	2 841						
as % of Operating Hours				67%	69%						
Minimum				913	78 315						
Maximum				1 933	98 891						
Mean				1 457	89 404						
Standard Deviation				257	5 550						
		E0.4	4 N2O	1							
Emission Eactor (EE_BL)		534									
		9.05	rgit207 thit03	1							

T 5 Project emission factor

PROJECT EMISSION FACTOR											
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation		
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure		
							Ratio				
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP		
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa		
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		
Upper Limit			50.00	3 000	150 000	10 000	20.00	1 200	1 000		
Raw Data Measured Range											
Count		4 010	6 173	3 968	3 990	6 446	5 4 5 9	6 4 4 6	6 4 4 7		
as % of Dataset		61%	93%	60%	60%	97%	82%	97%	97%		
Minimum			0.04	65	0	4	0	29	1		
Maximum			17.60	1 250	110 546	7 323	19.23	911	651		
Mean			9.54	466	94 1 00	4 389	10.35	612	526		
Standard Deviation			6.74	118	6 254	2 319	0.69	370	155		
Total			58 897								
N2O Emissions (VSG * NCSG * OH)		176	t N2O								
Emission Factor		2.99	kgN2O / tHNO3								
Dete within the confidence interval											
Data within the confidence interval											
				225	01 0 / 1						
				233	106 358						
				037	100 330						
Count				3 731	3 865						
as % of Operating Hours				93%	96%						
Minimum				262	81 875						
Maximum				696	105 597						
Mean				452	94 7 32						
Standard Deviation				97	3 911						
N2O Emissions (VSG * NCSG * OH)		172	t N2O								
Actual Project Emission Factor (EF_PActual)	2.91	kgN20/tHNO3								
Abatement Ratio		67.8%									
Maying Average Emission Factor Correction		Actual Easters	Moving Average D	ula	1						
Noving Average Emission Factor Conection	1	207	2 97		1						
	2	2.27	2.27								
	2	2.51	2.31		I						
Project Emission Factor (EF_P)		2.91	kgN2O / tHNO3								
Abatement Ratio		67.8%									
MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 8MONITORINGPERIOD:FROM:11/06/2008

TO: 26/11/2008

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N2O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N2O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	7
	3.4	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	19
	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	20
	6.4	STACK GAS TEMPERATURE	20
	6.5	STACK GAS PRESSURE	20
7.		EMISSION REDUCTION CALCULATIONS	21

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 8 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the first project campaign on Line 8.

The first project campaign on Line 8 started on 17/04/2008. Secondary catalyst was installed on 11/06/2008. Total quantity of emission reductions generated during the period from 11/06/2008 through 26/11/2008 on Line 8 is **32 131 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION							
Baseline Emission Factor	EF_BL	6.59	kgN2O/tHNO3				
Project Campaign Emission Factor	EF_P	4.29	kgN2O/tHNO3				
Nitric Acid Produced in the Baseline Campaign	NAP_BL	63 396	tHNO3				
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	45 057	tHNO3				
Nitric Acid Produced in the Project Campaign	NAP_P	45 181	tHNO3				
GWP	GWP	310	tCO2e/tN2O				
Emission Reduction	ER	32 131	tCOe				
ER=(EF_BL-EF_P)*NAP_P*GWP/1000							
Abatement Ratio		34.8%					

Baseline emission factor established for the Line 8 during baseline measurement carried from 02/09/2007 through 15/04/2008 is 6.59 kgN₂O/tHNO₃.

Project emission factor during the first project campaign after installation of secondary catalysts on Line 8, which started on 11/06/2008 and went through 26/11/2008 with secondary catalyst installed and commissioned on 11/06/2008, is $4.29 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 45 181 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 8 emission reductions including information on baseline emission factor setting for the Line 8.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 8 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 8 has been carried out from 02/09/2007 through 15/04/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 8 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

GS _{BL}	Umicore
GC _{BL}	Pt63/Rh4/PI33

GS_{Project} Umicore GC_{Project} Pt63/Rh4/PI33

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 8 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PEn = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N_2O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
ОН	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because this campaign was first project campaign on Line 8 there has been no moving average emission factor established yet for this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP *GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum
	value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular
	campaign (i.e. the higher of EF_{man} and EF_{n})

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 20/10/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 63 620 tHNO₃ and time duration was on average 228 days. Table contains also information on suppliers of primary catalysts for the line 8.

T 2 Historic campaigns

Line	ACHEMA UKL-8	Production	Start	End	Days	Production per day	Primary Catalyst
Historic Campaigns	1 t HNO3	-	00 Jan 1900	00 Jan 1900	-	n/a	0
	2 t HNO3	62 575	10 Dec 2004	17 Aug 2005	250	250	Heraeus (90/5/5)
	3 t HNO3	63 418	02 Nov 2005	14 Jun 2006	224	283	Umicore (95/5)
	4 t HNO3	63 1 38	15 Jun 2006	01 Feb 2007	231	273	JM (n/a)
	5 t HNO3	65 347	02 Feb 2007	28 Aug 2007	207	316	JM (n/a)
Average HNO3 production	t HNO3	63 620			228	279	

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 02/09/2007 and continued through 15/04/2008 when the 63 396 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached 45 057 tHNO₃.

T 3 Baseline campaign length

ACHEMA UKL-8	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign	
Dates	2007 Aug 28	2007 Sep 02	2008 Feb 20	2008 Apr 15	2008 Apr 16	
Baseline Factor kgN2O/tHNO3	0		6.59	6.59	. 6.59	
Production tHNO3			45 057	63 396	-	
Per Day Production tHNO3	279.0					
Baseline less Historic Production	(223.5)					
Baseline less Historic Days	(0.8)					

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 8 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 02/09/2007 through 15/04/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 444 tN_2O .

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.89%. As a result we have arrived to the baseline emission factor of 6.59 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 8 during the project campaign. Project campaign started on 11/06/2008 and went through 26/11/2008.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 4.29 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

This emission factor has been used in further calculation of emission reductions. Neither moving average emission factor nor minimum emission factor was established, since it was the first project campaign.

T 4 Baseline emission factor

BASELINE EMISSION FACTOR											
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure	Operation	Production
							Ratio			-	NCSG
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP	0	NAP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa	h	t/h
Elimination of extreme values					-						
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 696	4 931	3 483	4 566	4 964	4 640	5 402	5 402	4 1 4 3	3 629
as % of Dataset		87%	91%	64%	84%	92%	86%	100%	100%	76%	67%
Minimum			0.00	0	3	0	0	27	5		0
Maximum			24.99	1 917	103 514	6 796	14.80	912	654		25
Mean			12.86	1 032	78 802	5 617	10.08	801	564		12
Standard Deviation			5.07	446	16 / 29	1 475	0.00	246	117		5
Total			63 396		10 423	14/5	0.50	240	117		45 057
N2O Emissions (VSG * NCSG * OH)		382	t N2O								
Emission Factor		5.67	kgN2O / tHNO3								
Permitted Range											
Minimum					-	-	0	880	550		-
Maximum						7 500	11.20	910	800		
Data within the permitted range											
Count		4 396		2 745	4 118					4 1 4 3	
as % of Operating Hours		0/%		58%	88%					88%	
Minimum		0470		803	0070					0070	
Maximum				1 722	06 662						
Maan				1 1 0 5 2	90 003						
Standard Deviation				1 195	1/ 610						
				197	16 282						
N2O Emissions (VSG * NCSG * OH)		436	t N2O	1							
Emission Factor		6.47	kgN2O / tHNO3								
Data within the confidence interval				-							
95% Confidence interval					a						
Lower bound				809	45 697						
Upper bound				1 581	109 524						
					100 02 1						
Count				2 578	3 949						
as % of Operating Hours				55%	84%						
Minimum				828	75 498						
Maximum				1 580	96 663						
Mean				1 168	80 932						
Standard Deviation				169	2 756						
				100	2.00						
N2O Emissions (VSG * NCSG * OH)		444	t N2O	1							
Emission Factor (EF_BL)		6.59	kgN2O / tHNO3								

T 5 Project emission factor

			PROJECT E	MISSION FACTOR					
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation
			Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure
							Ratio		
	Code	ОН	NAP	NCSG	VSG	AFR	AIFR	от	OP
	Unit	h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa
Elimination of entropy column									
Lower limit			0	0	0	0	0	- 50	0
			50.00	3 000	120.000	10,000	20.00	- 50	1 000
			50.00	3 000	120 000	10 000	20.00	1200	1000
Raw Data Measured Range									
Count		3 176	3 927	3 612	3 508	3 283	3 183	4 010	4 010
as % of Dataset		79%	97%	90%	87%	81%	79%	99%	99%
Minimum			-	0	1	23	0	37	6
Maximum			16.48	1 886	93 300	7 764	18.38	902	620
Mean			11.51	639	71 046	5 792	10.37	747	540
Standard Deviation			5.94	317	21 870	379	0.36	301	124
Total			45 181						
N2O Emissions (VSG * NCSG * OH)		144	t N2O						
Emission Factor		3.19	kaN2O / tHNO3						
			5						
Data within the confidence interval									
95% Confidence interval									
Lower bound				17	28 182				
Upper bound				1 260	113 910				
Count				2 743	3 078				
as % of Operating Hours				86%	97%				
Minimum				47	68 1 30				
Maximum				1 088	88 844				
Mean				785	77 866				
Standard Deviation				76	1 902				
		40.4	(100						
N20 Emissions (VSG * NCSG * OH)	`	194							
Actual Project Emission Factor (EF_PActual))	4.29	KgN207 THNO3						
Abatement Ratio		34.0%							
Moving Average Emission Factor Correction		Actual Factors	Moving Average R	ule]				
	1	4.29	4.29						
	2	-							
Project Emission Factor (EF_P)		4.29	kgN2O/tHNO3						
Abatement Ratio		34.8%	-						

MONITORING REPORT

PROJECT:ACHEMA UKL nitric acid plant N2O abatement projectLINE:Line 8MONITORINGPERIOD:FROM:09/12/2008

TO: 20/11/2009

Prepared by:

VERTIS FINANCE

www.vertisfinance.com

Table of Contents

1.		EXECUTIVE SUMMARY	3
2.		DESCRIPTION OF THE PROJECT ACTIVITY	4
3.		BASELINE SETTING	5
	3.1 3.1	MEASUREMENT PROCEDURE FOR N2O CONCENTRATION AND TAIL GASVOLUME FLOW1TAIL GAS N2O CONCENTRATION	6 6
	3.1	2 TAIL GAS FLOW RATE, PRESSURE AND TEMPERATURE	6
	3.2	PERMITTED RANGE OF OPERATING CONDITIONS OF THE NITRIC ACID PLANT	6
	3.3	COMPOSITION OF THE AMMONIA OXIDATION CATALYST	7
	3.4	HISTORIC CAMPAIGN LENGTH	7
4.	4.1	PROJECT EMISSIONS 1 ESTIMATION OF CAMPAIGN-SPECIFIC PROJECT EMISSIONS FACTOR	8 8
	4.1	2 DERIVATION OF A MOVING AVERAGE EMISSION FACTOR	8
	4.2	MINIMUM PROJECT EMISSION FACTOR	8
	4.3	PROJECT CAMPAIGN LENGTH	8
	4.4	LEAKAGE	9
	4.5	EMISSION REDUCTIONS	9
5.		MONITORING PLAN	10
6.		QAL 2 CALIBRATION ADJUSTMENTS	19
	6.1	APPLIED PRINCIPLE	19
	6.2	STACK GAS VOLUME FLOW	20
	6.3	NITRIC ACID CONCENTRATION IN STACK GAS	20
	6.4	STACK GAS TEMPERATURE	20
	6.5	STACK GAS PRESSURE	20
7.		EMISSION REDUCTION CALCULATIONS	21

1. EXECUTIVE SUMMARY

This monitoring report determines baseline emission factor for the Line 8 of ACHEMA UKLnitric acid plant and quantity of emission reduction generated during the second project campaign on Line 8.

The first project campaign on Line 8 started on 17/04/2008. Secondary catalyst was installed on 11/06/2008. Total quantity of emission reductions generated during the period from 09/12/2008 through 20/11/2009 on Line 8 is **49 413 ERUs**.

T 1 Emission reduction calculations

EMISSION REDUCTION							
Baseline Emission Factor	EF_BL	6.95	kgN2O/tHNO3				
Project Campaign Emission Factor	EF_P	4.26	kgN2O/tHNO3				
Nitric Acid Produced in the Baseline Campaign	NAP_BL	63 577	tHNO3				
Nitric Acid Produced in the NCSG Baseline Campaign	NAP_BL_NCSG	52 603	tHNO3				
Nitric Acid Produced in the Project Campaign	NAP_P	59 291	tHNO3				
GWP	GWP	310	tCO2e/tN2O				
Emission Reduction	ER	49 413	tCOe				
ER=(EF_BL-EF_P)*NAP_P*GWP/1000							
Abatement Ratio		39.2%)				

Baseline emission factor established for the Line 8 during baseline measurement carried from 01/09/2007 through 15/04/2008 is 6.95 kgN₂O/tHNO₃.

Project emission factor during the second project campaign after installation of secondary catalysts on Line 8, which started on 09/12/2008 and went through 20/11/2009 with secondary catalyst installed and commissioned on 11/06/2008, is $4.26 \text{ kgN}_2\text{O}/\text{tHNO}_3$.

During the project campaign 59 291 tonnes of nitric acid was produced.

2. DESCRIPTION OF THE PROJECT ACTIVITY

Purpose of the Project (the "Project") is the reduction of nitrous oxide (N_2O) emissions from nitric acid production Lines at the UKL-7 nitric acid plant of AB Achema ("Achema" or "the Company"). The Company is situated in Jonava, Lithuania.

Achema has installed and operates secondary N_2O reduction catalysts underneath the primary catalyst precious metal catching and catalytic gauzes package in the ammonium burners of the UKL-7 nitric acid plant.

This monitoring report contains information on Line 8 emission reductions including information on baseline emission factor setting for the Line 8.

The separate treatment of nitric acid lines and overlapping of the monitoring periods are allowed by the clarification issued Joint Implementation Supervisory Committee: "CLARIFICATION REGARDING OVERLAPPING MONITORING PERIODS UNDER THE VERIFICATION PROCEDURE UNDER THE JOINT IMPLEMENTATION SUPERVISORY COMMITTEE". The Project meets all the requirements set out by the clarification:

- 1. The Project is composed of clearly identifiable components for which emission reductions or enhancements of removals are calculated independently; and
- 2. Monitoring is performed independently for each of these components, i.e. the data/parameters monitored for one component are not dependent on/effect data/parameters (to be) monitored for another component; and
- 3. The monitoring plan ensures that monitoring is performed for all components and that in these cases all the requirements of the JI guidelines and further guidance by the JISC regarding monitoring are met.

3. BASELINE SETTING

Baseline emission factor for line 8 has been established on the Line-specific basis. Campaign used for baseline measurements on the line 8 has been carried out from 01/09/2007 through 15/04/2008.

N₂O concentration and gas volume flow are monitored by monitoring system complying with requirements of the European Norm 14181.

Monitoring system provides separate readings for N_2O concentration and gas flow volume for every hour of operation as an average of the measured values for the previous 60 minutes.

Measurement results can be distorted before and after periods of downtime or malfunction of the monitoring system and can lead to mavericks. To eliminate such extremes and to ensure a conservative approach, the following statistical evaluation is applied to the complete data series of N_2O concentration as well as to the data series for gas volume flow. The statistical procedure is applied to data obtained after eliminating data measured for periods where the plant operated outside the permitted ranges:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N₂O concentration of stack gas (NCSG))

The average mass of N_2O emissions per hour is estimated as product of the NCSG and VSG. The N_2O emissions per campaign are estimates product of N_2O emission per hour and the total number of complete hours of operation of the campaign using the following equation:

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

The Line specific baseline emissions factor representing the average N_2O emissions per tonne of nitric acid over one full campaign is derived by dividing the total mass of N_2O emissions by the total output of 100% concentrated nitric acid during baseline campaign.

The overall uncertainty of the monitoring system has been determined by the QAL2 report and the measurement error is expressed as a percentage (UNC). The N_2O emission factor per tonne of nitric acid produced in the baseline period (EFBL) has been then be reduced by the percentage error as follows:

$$\mathsf{EF}_{\mathsf{BL}} = (\mathsf{BE}_{\mathsf{BC}} / \mathsf{NAP}_{\mathsf{BC}}) (1 - \mathsf{UNC}/100) (\mathsf{tN}_2\mathsf{O}/\mathsf{tHNO}_3)$$

where:

Variable	Definition
EF _{BL}	Baseline N ₂ O emissions factor (tN ₂ O/tHNO ₃)
ΒE _{BC}	Total N ₂ O emissions during the baseline campaign (tN ₂ O)
NCSG _{BC}	Mean concentration of N_2O in the stack gas during the baseline campaign (mgN ₂ O/m ³)
OH _{BC}	Operating hours of the baseline campaign (h)
VSG _{BC}	Mean gas volume flow rate at the stack in the baseline measurement period (m^3/h)
NAP _{BC}	Nitric acid production during the baseline campaign (tHNO ₃)
UNC	Overall uncertainty of the monitoring system (%), calculated as the combined uncertainty of the applied monitoring equipment.

3.1 Measurement procedure for N_2O concentration and tail gas volume flow

3.1.1 Tail gas N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from the Line 8 tail gas duct at sampling point located after expansion turbine and transported by sample Line to the Monitoring room B, where the analyzer is located.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis.

 N_2O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production lines. N_2O concentration is measured by 3 concentration meters on a switched basis.

 N_2O concentration measured data are sent from the analyzer on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.1.2 Tail gas flow rate, pressure and temperature

Tail gas flow, pressure and temperature is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section. Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

3.2 Permitted range of operating conditions of the nitric acid plant

Under certain circumstances, the operating conditions during the measurement period used to determine baseline N_2O emission factor may be outside the permitted range or limit corresponding to normal operating conditions. N_2O baseline data measured during hours

where the operating conditions were outside the permitted range have been eliminated from the calculation of the baseline emissions factor.

Normal ranges for operating conditions have been determined for the following parameters:

oxidation temperature; oxidation pressure; ammonia gas flow rate, air input flow rate.

The permitted range for these parameters has been established using the plant operation manual, as described in the PDD.

3.3 Composition of the ammonia oxidation catalyst

GS _{BL}	Umicore
GC _{BL}	Pt63/Rh4/PI33

GS_{Project} Umicore GC_{Project} Pt63/Rh4/PI33

3.4 Historic Campaign Length

The average historic campaign length (CL_{normal}) defined as the average campaign length for the historic campaigns used to define operating condition (the previous five campaigns), has not been used as a cap on the length of the baseline campaign because of shorter project campaign.

4. PROJECT EMISSIONS

During the first project campaign on line 8 the tail gas volume flow in the stack of the nitric acid plant as well as N_2O concentration have been measured on the continuous basis.

4.1.1 Estimation of campaign-specific project emissions factor

The monitoring system was installed using the guidance document EN 14181 and provides separate readings for N_2O concentration and gas flow volume for every hour of operation. Same statistical evaluation that was applied to the baseline data series has been applied to the project data series:

a) Calculate the sample mean (x)

- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval

e) Calculate the new sample mean from the remaining values

$$PEn = VSG * NCSG * 10^{-9} * OH (tN_2O)$$

where:

Variable	Definition
VSG	Mean stack gas volume flow rate for the project campaign (m ³ /h)
NCSG	Mean concentration of N ₂ O in the stack gas for the project campaign (mgN_2O/m^3)
PEn	Total N ₂ O emissions of the n th project campaign (tN ₂ O)
OH	Is the number of hours of operation in the specific monitoring period (h)

4.1.2 Derivation of a moving average emission factor

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

4.2 Minimum project emission factor

The minimum average emission factor established factor will be established after 10th project campaign.

4.3 **Project Campaign Length**

Project campaign production of nitric acid has been below defined nameplate capacity and thus all NAP produced from date of installation of secondary catalysts has been used for calculation of emission reductions.

4.4 Leakage

No leakage calculation is required.

4.5 Emission reductions

The emission reductions for the project activity during this campaign have been determined by deducting the campaign-specific emission factor from the baseline emission factor and multiplying the result by the production output of 100% concentrated nitric acid over the campaign period and the GWP of N_2O :

 $ER = (EFBL - EFP) * NAP * GWPN_2O (tCO_2e)$

Where:

Variable	Definition
ER	Emission reductions of the project for the specific campaign (tCO ₂ e)
NAP	Nitric acid production for the project campaign (tHNO ₃). The maximum value of NAP shall not exceed the design capacity.
EFBL	Baseline emissions factor (tN ₂ O/tHNO ₃)
EFP	Emissions factor used to calculate the emissions from this particular campaign (i.e. the higher of $EF_{ma,n}$ and EF_n)

5. MONITORING PLAN

Purpose of the monitoring plan

The purpose of the monitoring plan is to describe the system used to monitor emissions of N_2O from the plant in such a way that is compliant with the prescriptions of the AM0034/Version 02.

Plant description

The UKL-7 nitric acid plant comprises 8 production Lines numbered from 1 through 8, each with its own burner, absorption column and expansion turbine. Each production Line represents a separate nitric acid production unit independent from each other. The tail gasses from each Line are after expansion turbines led to a common stack bus and vented through two interconnected stacks.

Primary catalyst is changed at different times thus it is necessary to measure the emissions from each Line individually. This means that eight separate sets of monitoring equipment are installed to measure tail gas flow, nitric acid production, nitric acid concentration, and the operating conditions. N_2O concentration in the tail gas is measured by 3 switched concentration meters.

Monitoring System architecture

Methodology AM0034/Version 02 requires installation of an N_2O monitoring system that includes both a gas volume flow meter to determine the tail gas mass volume flow and an infrared gas analyser to determine the concentration of N_2O .

But tail gas N_2O concentration meter and tail gas volume flow meter alone are not sufficient for a JI project purposes. In order of being able to calculate the baseline emission factor expressed as tonnage of N_2O in t CO_2e per 1 tonne of HNO_3 (100%), it is necessary to include also HNO_3 measurement, and in order of being able to document normal operating conditions it is necessary to include also operating conditions measurement.

Because of this we use the term Monitoring System (MS) to describe entire monitoring system directly and indirectly used for the JI purposes, while Automated Measurement System (AMS) covers only N_2O emissions and tail gas mass volume part of the MS.

Monitoring System (MS) for purpose of this monitoring plan means:

monitoring system measuring operational conditions;

Ammonia volume flow Ammonia temperature Ammonia pressure Primary air volume flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

nitric acid 100% concentrate production;

Nitric acid concentration Nitric acid flow Nitric acid temperature

and newly installed measurement devices for measurement of N2O concentration and tail gas flow, temperature and pressure (AMS) N₂O concentration in the stack

N₂O concentration in the Stack volume flow rate Stack gas temperature Stack gas pressure

Incorporation of the AMS into the MS by interfacing already existing and newly installed measurement devices is documented by the diagram below.

N₂O automated measurement system

Main purpose of the N₂O automated measurement system (AMS) is to measure total mass of N₂O emitted during particular campaigns (both baseline and project). In order of calculation of total mass of N₂O emitted during particular campaign it is necessary to measure on an extractive basis the N₂O concentration in a tail gas and on a non-extractive basis tail gas flow, pressure and temperature.

N₂O concentration

 N_2O concentration is measured by extractive measurement system. Tail gas samples are taken from respective tail gas ducts at sampling points located after expansion turbines and transported by heated sample lines to the Monitoring room A located next to the main production hall. This applies to 2 concentration meters measuring lines 1-3 and lines 4-6. lines 7-8 are measured by third concentration meter located at the other side of the production hall (Monitoring room B) physically closer to respective production lines 7 and 8.

Tail gas samples are filtered and conditioned in the condensation dryer (4°C), so N_2O concentration is measured on a dry basis. Correction of dry basis ppmV value to real wet tail

gas conditions based on steam flow injected into the system is part of both - the project emissions calculations and baseline emission factor calculations.

N₂O concentration is measured by concentration infrared absorption principle meters Xentra 4900 using GFX monitoring technology.

Recently there are 8 production Lines. N_2O concentration is measured by 3 concentration meters on a switched basis. Tail gas samples are automatically switched. Under-sampling uncertainty is part of both - the project emissions calculations and baseline emission factor calculations.

 N_2O concentration measured data are sent from the concentration meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

Tail gas flow, pressure and temperature

Tail gas flow is measured by ultrasonic Durag DF-L 200 flowmeters based on ultrasonic pulse fly time across the entire duct cross-section.

The tail gas ducts do not allow any optimum location to perform the flow monitoring. The only possible location is the quite short vertical tube behind the 90° "knee".

Since the flow is not really laminar, a classical Pitot tube one point solution wouldn't allow good results. The ultrasonic system is under these conditions superior to differential pressure. Cross duct monitoring is more accurate than a couple of discrete point averaged pressure.

Tail gas flow, pressure and temperature measured data are sent from the flow meter on a 2 sec basis in a form of 4-20mA signal to the datalogger and processed further.

EN14181 compliance

As required by the AM0034/Version 02 methodology the N₂O automated measurement system (AMS) complies with requirements of the technical norm EN14181. N₂O AMS consists from the N₂O concentration meter and integrated flowmeter (F, T, P). Both measurement devices are QAL1 certified (concentration meter for the N₂O measurand specifically) and after full commissioning of the monitoring system there was the QAL2 test carried out by an independent laboratory certified according to ISO17025.

Operating conditions

For purpose of the baseline emissions factor setting it is necessary to monitor and report operating conditions in all 8 burners. Namely:

Ammonia flow Ammonia temperature Ammonia pressure Primary air flow Primary air temperature Primary air pressure Oxidation temperature Oxidation pressure

All these parameters are measured by the plant monitoring system as presented on diagrams below:

P in mixer 7-8 line

NH3 to mixer 1-6 line

NH3 to mixer 7-8 line

Signals obtained from these measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Operating conditions measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further. Maintenance procedures for the ammonia oxidation parameters follow the existing procedures for the operation of the nitric acid plant.

Nitric acid production

Nitric acid concentration is based on two components: nitric acid and water. Standard monitoring method is on-Line refractometry. Measurement of nitric acid (100%) mass volume production per campaign is necessary for calculation of the baseline emissions factor. Nitric acid concentration on all 8 Lines is measured by K-Patents PR-23-GP refractometers.

This analyzer is applying a prism to "return" a generated optical beam back to an LCD detector.

The detector is measuring refraction of monitored liquid based on known refraction of water and nitric acid. The instrument is calibrated for percent concentration of nitric acid. The analyzer is mounted on DIN-flange 2656, PN25 DN80. The optical prism does not require cleaning.

PR-23-GP characteristics:

Measuring RI is a direct concentration measurement principle. No need to rely or convert magnitudes. Digital instrument – no calibration drift As it is a robust instrument it is maintenance free Dual connectivity if the installation positions allow. On-Line data logging, through Ethernet, on whichever web browser. No influence by bubbles or particles. It is very common that air enters the process pipeline and still the refractometer measures accurately.

Nitric acid concentration data are in an analog 4-20mA format provided to dataloggers which process these signals further.

In order of being able to calculate total mass volume of nitric acid 100% concentrate produced during the baseline campaign it is necessary to monitor also nitric acid flow and temperature. Measurement of pressure is not necessary for determination of the nitric acid mass volume flow, because nitric acid is in form of liquid and as such it has stabile pressure characteristic.

Signals obtained from the nitric acid flow and temperature measurement devices from production Lines 1-6 are converted from pneumatic to 4-20mA analog signals. Nitric acid flow and temperature measurement devices installed in production Lines 7-8 provide the 4-20mA signals which are digitalized and provided to the monitoring system dataloggers, which process them further.

After installation of refractometers there have been occurrences of their failure and following repair service by the manufacturer. For this period starting from 05/10/2007 and ending on 20/10/2008 project uses HNO₃ concentration data provided by the laboratory measurements.

6. QAL 2 CALIBRATION ADJUSTMENTS

6.1 Applied principle

As required in the applicable norm EN14181: "The relation between the instrument readings of the recording measuring procedure and the quantity of the measuring objects has to be described by using a suitable convention method. The results have to be expressed by a regression analysis."

As it is described in the Calibration Report issued by Airtec laboratory, the measurement results derived from the analog signals (4 mA to 20 mA) provided the installed instruments have been compared to the comparative measurements.

Linearity check of the instruments characteristics is stated in the QAL2 Calibration Report issued by the laboratory. The valid ranges of Linearity are determined by statistical analysis according to the guideline and the Linearity assumptions are further used in the Calibration Report establishing Linear regression Lines.

The general formula of the regression Line, established in the EN14181 and used in the Calibration Report is:

where:

X is the measured value of the instrument in mA Y is the value of the parameter being objective of the measurement a is a constant of the regression Line b is the slope of the regression Line

After a comparative test the laboratory issued the old and new regression Lines properties, namely "a" and "b" applying for all of the measured parameters that are subject to calibration as stated in the Calibration Report.

The QAL2 corrections are based on the fact that the actual analog current outputs (in mA) of the measurement instruments are relevant for both, the old and new regression Lines:

Xo=Xn=X

where:

Xn: X new Yo: Y old

This allows us to derive a calibrating formula that gives us the corrected value of the measured physical parameters. The applied calibrating equation is:

In order to take into account the properties of the AMS and their implication to the QAL 2 implementation in the model, we will further introduce several remarks to the conversion and normalization of the data.

The units returned by the AMS "nm3/h" stand for normalized cubic meters of the gas volume at normal gas conditions (0° C, 1 atm.).

6.2 Stack gas volume flow

Based on the real conditions measured and applied by the AMS for normalization (TSG in °C and PSG in hPa), the stack gas volume flow values are converted to real conditions before the regression analysis using the ideal gas law. The actual gas volume flow rates are derived from gas velocity measurements, therefore, before applying the regression analysis the gas speed is calculated from the volume flow and the duct cross-section and is fed into the calibrating equation. The calibrated values derived from the calibrating equation then converted back to normalized units using the calibrated real conditions (calibrated TSG and PSG). The normalized calibrated stack gas flow rates are further fed into the emission calculation model for further processing as set out by the Approved Baseline and Monitoring Methodology AM_0034.

6.3 Nitric acid concentration in stack gas

The nitric acid concentration in the raw data set from the AMS is in mgN_2O/m_3 . The concentration was converted to ppmv to make it compatible with the regression Lines parameters. The nitrous gas concentration values are then calibrated using the provided regression Lines parameters and are input in the model.

6.4 Stack gas Temperature

The stack gas temperature was calibrated by the regression conversion formula

6.5 Stack gas Pressure

The calibration report provides us with a regression Line for the stack gas pressure. We calibrate the readings of the measurements system using the regression formula and applying the values (in kPa).

7. EMISSION REDUCTION CALCULATIONS

Table T 2 illustrates the establishment of historic campaign length based on 5 previous campaigns. Average production in 5 campaigns preceding the baseline campaign was 63 620 tHNO₃ and time duration was on average 228 days. Table contains also information on suppliers of primary catalysts for the line 8.

T 2 Historic campaigns

Line	ACHEMA UKL-8	Production	Start	End	Days	Production per day	Primary Catalyst
Historic Campaigns	1 t HNO3	-	00 Jan 1900	00 Jan 1900	-	n/a	0
	2 t HNO3	62 575	10 Dec 2004	17 Aug 2005	250	250	Heraeus (90/5/5)
	3 t HNO3	63 418	02 Nov 2005	14 Jun 2006	224	283	Umicore (95/5)
	4 t HNO3	63 1 38	15 Jun 2006	01 Feb 2007	231	273	JM (n/a)
	5 t HNO3	65 347	02 Feb 2007	28 Aug 2007	207	316	JM (n/a)
Average HNO3 production	t HNO3	63 620			228	279	

T 3 and Chart C 1 define the length of the baseline campaign. Baseline campaign measurements for this project campaign started on 01/09/2007 and continued through 15/04/2008 when the 63 577 tHNO₃ nitric acid production was reached. The measurement of baseline Nitrous Acid Concentration (NCSG) was carried out until production reached 52 603 tHNO₃.

T 3 Baseline campaign length

ACHEMA UKL-8	Historic Campaings End	Start of Baseline Measurement	End of Baseline Measurement NCSG	End of Baseline Measurement	End of Baseline Campaign	
Dates	2007 Aug 28	2007 Sep 01	2008 Mar 15	2008 Apr 15	2008 Apr 16	
Baseline Factor kgN2O/tHNO3	°,		6.95	6.95	. 6.95	
Production tHNO3			52 603	63 577	-	
Per Day Production tHNO3	279.0					
Baseline less Historic Production	(42.6)					
Baseline less Historic Days	(0.2)					

C 1 Baseline campaign length

Table T 4 illustrates the calculation of the baseline emission factor on Line 8 using the method as defined in the CDM methodology AM0034 and in the PDD. We have not used overlapping approach allowed by the PDD. Baseline emission factor was determined based on raw data measured from 01/09/2007 through 15/04/2008.

Extreme values and data measured during hours when one or more of operating conditions were outside of the permitted range have been eliminated from the calculations. As a next step we have eliminated data beyond 95% confidence interval and calculated new mean values of N_2O concentration and stack gas volume flow using following method:

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values (volume of stack gas (VSG) and N_2O concentration of stack gas (NCSG))

Using the means values we have calculated the baseline emissions as set out in the PDD.

$$BE_{BC} = VSG_{BC} * NCSG_{BC} * 10^{-9} * OH_{BC} (tN_2O)$$

Operating hours defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred. Calculated baseline N2O emissions were 469 tN₂O.

$$EF_{BL} = (BE_{BC} / NAP_{BC}) (1 - UNC/100) (tN_2O/tHNO_3)$$

The UNC factor defined by the QAL2 report is 5.89%. As a result we have arrived to the baseline emission factor of 6.95 $kgN_2O/tHNO_3$.

Table T 5 shows the calculation of the project emission factor on Line 8 during the project campaign. Project campaign started on 09/12/2008 and went through 20/11/2009.

We have eliminated extreme values and data beyond the 95% confidence interval as prescribed by the PDD.

- a) Calculate the sample mean (x)
- b) Calculate the sample standard deviation (s)
- c) Calculate the 95% confidence interval (equal to 1.96 times the standard deviation)
- d) Eliminate all data that lie outside the 95% confidence interval
- e) Calculate the new sample mean from the remaining values

Using the mean values we have calculated total mass of N₂O emissions (PEn) as follows:

$$PEn = VSG * NCSG * 10-9 * OH (tN_2O)$$

Operating hours (OH) defined as hours, when nitric acid production at least 0.1 tHNO3 and oxidation temperature at least 600°C occurred.

By dividing total mass of N_2O emissions by the nitric acid production (capped by nameplate capacity 350 tHNO3/day) we have determined the project campaign specific emission factor at value of 4.26 kgN2O/tHNO3.

$$EF_n = PE_n / NAP_n (tN_2O/tHNO_3)$$

Because the project emission factor measured was lower than the moving average EF of the campaigns on this line so far, we have used the average EF for the calculation of the quantity of emission reductions generated during this campaign.

T 4 Baseline emission factor

BASELINE EMISSION FACTOR											
	Parameter	Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation	AMS in	Nitric Acid
			Production	Concentration	Flow	Flow Rate	to Air Ratio	Temperature	Pressure	Operation	Production
	Code	ОН	NAP	NCSG	VEC	AED		OT	0.0	0	NAD
	Unit	h	t/h	mg N2O/Nm3	Nm2/h	AFK Nm2/b		01 °C		0 b	t/b
	•		4.1		NII 3/II	Nilly/II	70	Ŭ	Кіа		411
Elimination of extreme values											
Lower limit			0	0	0	0	0	- 50	0		0
Upper Limit			50.00	3 000	120 000	10 000	20.00	1 200	1 000		50
Raw Data Measured Range											
Count		4 719	4 954	4 059	4 589	4 987	4 663	5 425	5 425	4 1 4 3	4 211
as % of Dataset		87%	91%	75%	84%	92%	86%	100%	100%	76%	77%
Minimum			0.00	0	3	0	0	27	5		0
Maximum			24.99	1 968	103 514	6 796	14 80	912	654		25
Mean			12.83	1 067	78 893	5 591	10.07	801	564		12
Standard Deviation			5.07	458	16 439	1 520	0.02	245	116		5
Total			63 577	400	10 430	1 520	0.95	243	110		52 603
					•						
N2O Emissions (VSG * NCSG * OH)		397	t N2O								
Emission Factor		5.88	kgN2O / tHNO3								
Permitted Range					_						
Minimum						-	0	880	550		
Maximum						7 500	11.20	910	800		
Data within the permitted range											
Count		4 453		3 230	4 131					4 1 4 3	
as % of Operating Hours		94%		68%	88%					88%	
Minimum				803	-						
Maximum				1 732	96 663						
Mean				1 23/	77 266						
Standard Deviation				205	16 828						
N2O Emissions (VSG * NCSG * OH)		451	t N2O								
Emission Factor		6.67	kgN20 / tHNO3								
Data within the confidence interval											
95% Contidence interval											
Lower bound				832	44 383						
Upper bound				1 636	110 349						
Count				3 168	3 0/0						
as % of Operating Hours				67%	0 349 0 10/						
Minimum				07 /0	75 400						
Maximum				837	15 498						
Maar				1 635	96 663						
wear				1 229	80 932						
Standard Deviation				198	2 756						
N2O Emissions (VSG * NCSG * OH)		469	t N2O	1							
Emission Factor (EF BL)		6.95	kaN20 / tHNO3								
		0.00		1							

T 5 Project emission factor

PROJECT EMISSION FACTOR										
Param	eter Operating Hours	Nitric Acid	N2O	Gas Volume	Ammonia	Ammonia	Oxidation	Oxidation		
		Production	Concentration	Flow	Flow Rate	to Air	Temperature	Pressure		
						Ratio				
0	ode OH	NAP	NCSG	VSG	AFR	AIFR	от	OP		
	<i>Unit</i> h	t/h	mg N2O/Nm3	Nm3/h	Nm3/h	%	°C	kPa		
Elimination of extreme values		0	0	0	0	0	50	0		
		50.00	3 000	120.000	10,000	20.00	- 50	1 000		
		30.00	3 000	120 000	10 000	20.00	1 200	1000		
Raw Data Measured Range										
Count	4 130	7 450	4 108	4 104	7 176	6 706	7 828	7 829		
as % of Dataset	50%	90%	49%	49%	86%	81%	94%	94%		
Minimum		0.02	328	3	-	-	(20)	6		
Maximum		16.73	1 940	103 655	7 575	19.05	911	649		
Mean		7.96	689	88 540	3 489	7.05	507	569		
Standard Deviation		7.19	170	4 955	2 842	4.71	407	68		
Total		59 291								
	25.2	+ N2O								
Emission Eactor	232	$k_{0}N_{2}O$ / $tHNO_{3}$								
	4.20	kgiv207 ti inos								
Data within the confidence interval										
95% Confidence interval										
Lower bound			357	78 829						
Upper bound			1 022	98 251						
Count			3 027	3 806						
as % of Operating Hours			05%	000						
Minimum			357	78 8/8						
Maximum			1 021	97 830						
Mean			687	88 301						
Standard Deviation			163	4 146						
N2O Emissions (VSG * NCSG * OH)	250	t N2O								
Actual Project Emission Factor (EF_PActual)	4.22	kgN2O / tHNO3								
Abatement Ratio	39.2%	,								
Moving Average Emission Easter Correction	Actual Eactors	Moving Average P		1						
Noving Average Emission Factor Correction	1 4 20	4 29								
	2 422	4.26								
		1.20		1						
Project Emission Factor (EF_P)	4.26	kgN20 / tHNO3								
Abatement Ratio	38.7%	1								